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1. Introduction 

The plane wave integral representation of the 
dyadic Green's function for the canonical problem of 
electric current sources in the presence of the layered 
media may be constructed in several ways. One of the 
most common approaches is to express the Green's 
function in terms of a magnetic vector potential 
(Somerfeld, 1949), where as another less used 
approach is to construct the Green's function from a set 
of appropriate electric and magnetic vector potentials 
(Kong, 1986). In the former case, the magnetic vector 
potential has two components; one parallel and one 
normal to the interface. In the other approach, the 
magnetic and electric vector potentials are normal to 
the interface. If the electric current moment is chosen 
entirely normal to the interface, then the two 
approaches become identical since only a single 
normally directed magnetic vector potential suffices in 
this case. This is related to the fact that the normally 
oriented current moment excites only the TM waves 

(with respect to the normal z  to the interface), whereas 
the current moment parallel to the interface excites 
both TM and TE waves. Therefore, the total 
electromagnetic field must be constructed either with 
magnetic vector potential which can produce both TM 
and TE waves (in this case the magnetic vector 
potential must have components normal and parallel to 
the interface in order to satisfy the appropriate 
boundary conditions), or with the magnetic and electric 
vector potentials which are both normal to the interface 
(since a normally directed magnetic vector potential 
produces TM waves and a normally directed electric 
vector potential produces TE waves). One of the main 
advantages of the later formulation is that boundary 
conditions associated with the differential operators for 
the two different types of vector potentials can be 
uncoupled (Aliet al.,1982). In the case of a choice of a 
single type of magnetic vector potential containing 

both a vertical (normal z  to the interface) and a 

horizontal (transverse to z  or parallel to the interface) 
components, the transverse component of the magnetic 
vector potential will contribute to both TE and TM 
waves, therefore, the boundary conditions for normal 
and transverse components will be coupled. This 
disadvantage will be pronounced if one deals with a 
stratified or multilayer dielectric media, for which the 
number of coupled boundary conditions increase, and 
no simple approach exists. 

In this study, a unified general approach to the 
problem of radiation of arbitrary sources in a stratified 
medium is presented. The model of the medium is 
considered to consists of N horizontally stratified 
layers and an upper half-space. First, all layers are 
assumed to be isotropic, then the more general case of 
a uniaxial medium is considered where all layers 
posses both tensor permittivities and tensor 
permeabilities which in general can be complex. All 
axes of anisotropy are considered perpendicular to the 
boundaries separating the different layers. 

Starting by defining two types of dyadic Green's 
functions which are dual to each other, namely an 

electric type dyadic Green's function G  and a 

magnetic type dyadic Green's function  (Stratton, 
1941). These Green's functions are resolved into their 
TE and TM parts. The resulting integrals are expressed 
in cartesian coordinates in terms of Weyl-type integral. 
A simple procedure to obtain the fields in any arbitrary 
layer is described. Tractable forms are shown to be 
easily deduced from the physical picture of the waves 
radiated from the primary sources and the multiple 
reflections from the stratified medium. The dyadic 
Green's function in the field region is properly 
represented by extracting the delta function singularity. 
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Recursion relations for appropriately defined reflection 
and transmission coefficients are presented. 
 
2. Material and Methods 
2-2Dyadic Green's Functions for Layered Isotropic 
Media 
2-2-1Formulation 

Consider the layered medium shown in (Figure. 
2.1) with impressed sources located in an arbitrary 
layer 

(
j

), 
j

 = 0,1,..., t . The layers are assumed to be 

isotropic with parameters 
( , ) j j . For an impressed 

electric current source J j  located in layer ( j ) and 

varies harmonically with time as e i t 
, the wave 

equation for Ei  in the layer ( i ) is given by 

 
Figure 2.1, Geometric configuration of layered medium 

              =  I k I E r i J ri i j j ij
2 ( ) ( ) 

                                                          (2.1) 

where
k Ii i i

2 2    ,   is the unit dyadic or 

idem factor, and 
 ij  is the kronecker delta (

 ij  1
 

for 
i j

 and 
 ij 0

 for  
i j

 ). 
To integrate Eq. 2.1 an electric type dyadic 

Green's function 
G r rij ( , )

 for the layered medium 

may be introduced. Using first subscript ( i ) to denote 
the layer containing the observation point and the 

second subscript ( j ) to indicate that the source is in 
layer 

( j ). 

The dyadic Green's function 
G r rij ( , )

 satisfies 
the following relation 

      








    ( , ) =  
          ,        

( , ) ,       =  
I k I G r r

i j

I r r i ji ij
2

0



                                                       (2.2) 
It can be easily shown that 

E r i G r r J r dVi j ij j
Vj

( ) =   ( , ) ( )               
                                                              (2.3) 

where
V j  is the volume included by the sources in 

the layer ( j ). 

Thus, if the electric current density J r( )  is 
taken to be arbitrary oriented point source of strength 

pe at r r  , then 

J r p r re( ) ( )     

The electric field E  may now be viewed as 

E i G r r po e     ( )  
where the dielectric layers are assumed to be 

nonmagnetic with 
 j  0 . Thus, it is important to 

observe that the components of the dyadic Green’s 
function can be inferred from the equation of the 

electric field by inspection if E  is excited by the 

arbitrary oriented current point source pe  is known. It 

is noted that the units of pe   are A-m (and 
therefore constitutes a point current moment ) 

where as  ( , )r r   has the  units of  

1
3m , thus 

J r p r re( ) ( )     consistently has the units of 

A

m3
. 

Therefore the dyadic Green’s function G r r( , )  

can be obtained from the electric field E  in matrix 
form as: 
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This explains the physical meaning of the 
different components of the dyadic Green’s function

G r r( , )  

The dyadic Green's function 
Gij  satisfies the 

following boundary conditions: 

jiij GzGz )1+( ˆ =  ˆ 
                             (2.4a) 

ji

i

ij

i

GzGz )1+(

)1+(

  ˆ
1

 =    ˆ
1




(2.4b) 

at the surface z d i i ni   , ( , ... , ).0  
When the impressed sources are magnetic, a 

magnetic type dyadic Green's function 
ij r r( , )

 
which satisfy dual expressions to Eq. 2.3 and Eq. 2.4 
may be introduced. 

Hence, if 
M j  represents a distribution of 

magnetic currents in the layer (
j

), one gets 

H r i r r M r dVi j ij j
Vj

( ) =   ( , ) ( )                
                                                         (2.5) 

Since G  and   are dual to each other, G  and 

by duality the results will apply directly to  shall deal 

with. The dyadic Green's function 
G jj  in the layer (

j
) 

containing the sources, can be expressed as a 
superposition of the unbounded dyadic Green's 

function 
G p( )

 due to the primary excitation and a 

scattered dyadic Green's function
G s( )

. 
Hence for any layer (i) 

Gij  = 
G p( )  ij ij

sG ( )

                   (2.6) 
where the scattered dyadic Green's function 

satisfies the homogeneous wave equation 

               =  ( )I k I G r ri ij
s2 0( , )

  (2.7) 
 
2-2-2 The Unbounded Dyadic Green's Function 

In an arbitrary region ( j ) the unbounded dyadic 
Green's function satisfy the following differential 
equation 

)(  =),(  ),(     )(2)( rrIrrGkrrG p
j

p  

 (2.8) 
where by applying the Fourier transform, than 

 ( )r r   =  
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 rrkiekd
  

G r r
p( )

  ( , ) = 

1

2 3( )
    ( ,   ( ) ( )

-
dk G k r ep ik r r

~
)   






 

    (2.10) 
where 

zs kzkk ˆ +   =   

 ˆ + ˆ  =  yxs kykxk
 

dk dk dk dkx y z  =    
 

 

Thus, Fourier transforming Eq. 2.8 in the r  
variable, the result will be 
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That is 
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Dot multiplying Eq. 2.11a by k , get 

(2.13))),(
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Multiplying Eq. 2.12 by 
k j

2

and using Eq. 2.13, 
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This Fourier transform representation does not 
converge. The integrand tends to a constant as 

k 
 while k x  and 

k y  remain finite, than 
(Chew, 1989): 
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The 1st integrand vanishes as 

1
2kz  when

k z   , while k x  and 
k y  are held finite. 

By virtue of Jordan’s Lemma and 

Cauch’stheorem, the dkz  integral can be evaluated 

first using residue calculus for 
z z   0

, by 
picking up the residue contributions at the pole 
locations given by 

k k k kz j s jz    2 2

. The second 
integral in Eq. 2.16 is just the Fourier representation of 

delta function  ( )r r  . 
Consequently, 
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 where 

yyxxr s ˆˆ   

For z> z , we deform the integration path in the 

complex k z -plane upwards ( see Figure. 2.2), to pick 

up the contribution of the pole at 
k kz jz 

. 

For z< z , we deform downwards, to pick up the 

contribution of the pole at 
k kz jz 

. 

The integration path is chosen such that Im(
k jz ) 

> 0 in order to satisfy the radiation condition. 
 
Thus. 

 

 
Figure 2.2, Integration Path in the Complex kz plane 
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                                                     (2.18a) 
where 

jzsj kzkk ˆ +  =  (2.18b) jzsj kzkK ˆ   =  
(2.18c) 

Recognizing that j

j

j
k

k
k =ˆ

 

, forming an 
orthogonal system consisting of unit vectors 

 jzj kvk ˆ,ˆ
  and 

 jzkĥ
 as follows (Kong, 1986) 
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, 
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, and 
 jzkh ˆ

 form 
another orthonormal set of unit vectors as follows : 
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  (2.21)ˆ
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Since I can be written as 

I  = jj kk ˆˆ
 + 
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or 
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 + 

 jzkv ˆ

 jzkv ˆ
                                  (2.23b) 
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 = 
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                                         (2.24b) 

The dyadic Green’s function 
 G r rp( ) , 

 in a 

region ( j ), can be represented in the following form 
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                                (2.25) 

Notice that 
 jzkh ˆ

 is a unit vector in the 
direction of the electric field for a horizontally 

polarized TE wave and 
 jzkv ˆ

 is a unit vector in the 
direction of the electric field for a vertically polarized 
TM wave. 

In the above for z > z , the TE dyad 
 jzkĥ

  )(ˆ zzik

jz
jzekh



 is formed by two unit vectors, the 
anterior one is related to the field point where the wave 
vector has a positive 

z-component ( wave is propagating upward ). The 
posterior unit vector is related to the source point 
where the wave vector has also a positive z-component. 

The propagator e
i k z zjz ( ) 

 accounts for the phase 
difference as the wave propagates from the source 

point at z  to the field point at z. For z >  z , 

 jzkh ˆ   )(ˆ zzik

jz
jzekh




. Similar discussion holds 
for the dyad of the TM waves. 
 
2-3Source and Observation Points in the Same 
Layer 

2-3-1The Dyadic Green's Function 
G r r00 ( , )  

Consider electric sources be located in the upper 
half-space of the layered isotropic medium of Figure. 
2.1, and it is required to find the field in the upper half-
space also. 

In this case 
G00  is the superposition of the 

unbounded dyadic Green's function 
G p( )

 given by Eq. 

2.25 and a scattered dyadic Green's function G s
00
( )

which is the contribution caused by layered medium. 

(i) For z< z : 
It is possible to construct the dyadic Green's 

function G r r00 ( , )  from the physical picture of the 
waves radiated from the source and reaching the field 
point. From Figure. 2.3, it is clear that adding the 
unbounded dyadic Green's function (the direct waves 
from the source point to the field point) and the waves 
reflected from the layered stratified medium with 

generalized reflection coefficient R s
0  at the lower 

boundary of layer ( 0 ) together. The superscript S 
stands for TE or TM waves. 

Thus, 
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                                                      (2.26) 

2-3-2The Generalized Reflection Coefficient R l
s
  

The generalized reflection coefficient R l
s
  with 

l = 0,1,... ( )n 1 , can be obtained by using the 
picture of the multiple reflections shown in Figure. 2.4. 
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Figure 2.4, Determination of R l
s
  

 

Note that R l
s
  is the reflection occurring at the 
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contribution of all the underlying layers. 

R l
s
 = 

R T e R e Tl l
s

l l
s ik h

l
s ik h

l l
sl z l l z l

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

    
   

1 1 1 1
1 1 1 1+

 

+ T e R el l
s ik h

l
s ik hl z l l z l

( ) ( )
( ) ( ) ( ) ( )

  
   

1 1
1 1 1 1

R e R e Tl l
s ik h

l
s ik h

l l
sl z l l z l

( ) ( ) ( )
( ) ( ) ( ) ( ) ...   
    1 1 1

1 1 1 1

 

= 
R T R T el l

s
l l
s

l
s

l l
s ik hl z l

( ) ( ) ( ) ( )
( ) ( )

      

1 1 1 1

2 1 1

 1 2 m m .  .  .  
(2.27) 
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The recurrence relation Eq. 2.27 can be put in the 

form 
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where l  = 0,..., ( )n 1  and R Rn
s

nt
s

 = . 

R Rij
s

ji
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s
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 are the Fresnel’s 
reflection and transmission coefficients, respectively. 
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Relation Eq. 2.28 can be put in the other form 
given by 
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where l  = 0,..., 
( )n 1

 and R n
s
  = Rnt

s

. 

So, to get R s
0  we start with R n

s
 = Rnt

s

 and 
proceed upward using either of the recurrence relations 

Eq. 2.28 or Eq. 2.31 

(ii) For z< z  : 

Using Fig. 2.5, than
G r r00 ( , )
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expression 
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where 
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2-3-3The Dyadic Green's Function G r rtt ( , )  
If the source and observation points are located in 

the lower half-space of the stratified medium, 

G r rtt ( , )
 can be obtained as a superposition of the 

unbounded dyadic Green's function plus the 
contribution of the reflected waves from the layered 
medium. Using the local  coordinates shown in Fig. 
2.6, the result will  be 

 

(i) For z> z : 
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where
R t

S
  ( S  = TE and TM ) is the generalized 

reflection coefficient at the upper boundary of layer 

( t ). 



 Life Science Journal 2015;12(4)       http://www.lifesciencesite.com 

 

170 

 
Figure 2.5,  Source and Observation points in the upper 

half-space (z < z ) 
 

 
Figure  2.6, Source and Observation points in the lower 
half-space 
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2-3-4 The Generalized Reflection Coefficient
R l

s
  

The generalized reflection coefficient 
R l

s
  at the 

upper boundary of layer ( l ), can be obtained in a 

similar way to R l
s
 . With the aid of Fig. 2.7, the 

recurrence relation for 
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  can be obtained in a 

similar way as 
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(2.35) 

where l  = 2,3,..., t  and 
R s
1 = Rs

10 . 
Relation Eq. 2.35 can be put in the other form 
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So, to get 
R t

s
   starting with 

R s
1 = Rs

10  and 
proceed downward using either of the recurrence 
relations 

 
Eq. 2.35 or Eq. 2.36. 

 

Figure 2.7,  Determination of  
R l

s
  

 
 

2-3-5The Dyadic Green's Function G r rll ( , )  
When the source and observation points are in an 

arbitrary layer ( l ), l  0  or t, the waves reaching the 
observation point from the source are those shown in 
Figure 2.8 plus those due to multiple reflections. If the 

local coordinates are at the upper boundary of layer ( l
), the dyadic Green's function takes the form. 

(i) For z> z : 
Using Fig. 2.8a, can be written as  the following 

expression 
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which can be written in the more compact form : 
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where 

r TE
 = (2.38a)
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rl
TE

and rl
TM

 account, respectively, for the 
multiple reflections of  the TE and TM waves inside 

layer ( l ). 

(ii) For  z < z  : 
Using Figure 2.8b, can be written as the following 

expression for 
G r rll ( , )
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(2.39) 
 

 
Figure 2.8, Source and Observation points in a general 

layer ( l) ( z z dl l  ( )1 ) 
 

Choosing the local coordinates of layer ( l ) as 
shown in Figure 2.9, than the following expression for 

the dyadic Green’s function 
G r rll ( , )

:  
 

(i) For z> z  : 
Using Figure 2.9a, than 
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Figure 2.9, Source and Observation points in a general 

layer ( l) ( z z dl l  ) 
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(ii) For z< z : 
Using Figure 2.9a, than 
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(2.41) 

 
2.4 Source and Observation Points in Different 
Layers 

2-4-1The Dyadic Green's Function
G r rlm ( , )  

The geometry of the problem is shown in Figure 
2.10, where the sources are in layer ( m ) and the 

observation point is in the layer ( l ) below layer 
( m ). 
In this case choosing the local coordinates of  

both layers to be at the boundaries most near to each 
other. 

With all multiple reflections, assuming that the 
waves transmitted from the source in the layer ( m  ) 

propagate downwards and enter layer ( l ) with a 

transmission coefficient  
X l m

S
 , ( S  = TE or TM )  

which shall call downward transmission coefficient. 
Thus, 
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2-4-2 The Downward Transmission Coefficient 

X l m
S
 ,  

The downward transmission coefficient 
X l m

S
 ,  

from layer ( m  ) to layer ( l ) is obtained by writing 

G l m( )1  and applying the boundary condition at 

zl  0 . 
Thus, 
 

 
Figure 2.10, Source and Observation points in two 

different layers ( z< z )  (
z z d z z dl l m m   ( ) ,1  ) 
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So, equality of the TE part gives 
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where l  = m +2, m +3,..., t . 

For  l   = m +1, it can be easily shown that 
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where l  = m +2, m +3,..., t  

For l = m +1, we have 
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(2.48b) 

So, the transmission coefficient 
X l m

S
 ,  is 

calculated recursively starting from the source layer 
with 

X m m
S
 ,  = 1 and proceeding downwards. 

It is clear that 
G r rtm ( , )  can be obtained from 

Eq. 2.43 where l = m  and 
R t

S

= 0. 

Also, 
G r rt0 ( , )

can be obtained from Eq2.43 

where m  = 0 and 
R0

S

=0. 

2-4-3The Upward Transmission Coefficient
X l m ,

S

 
 

 
Figure 2.11, Source and Observation points in two 

different layers ( z> z )
z z d z z dl l m m    , ( )1  

 
The geometry of the problem is shown in Figure 

2.11 where sources exist in a layer below that of the 
observation point. In this case, the local coordinates 
have been chosen at the boundaries most near to each 
other. Assuming that waves transmitted from the 
sources in layer ( m  ) together with multiple reflections 

propagate upward and enter layer ( l ) with 

transmission coefficient 
X l m

S
 ,  which will be called 

upward transmission coefficient. 
Using Figure 2.11 than 
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(2.49) 

To find the recurrence relations for 
X l m

S
 , , the 

expression can be written for 
G l m( )1  and apply the 

boundary conditions at zl  0 . In this case, getting 
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where l  = ( m  2), (m  3),..., 0. 

For l  = m  1, 
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Similarly, for 
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where l  = ( m  2), (m  3),..., 0. For l  = m 
1, we have 
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(2.51b) 

It is clear that the dyadic Green's functions 
G m0 , 

G t0  and Glt  can be obtained as special cases of Eq. 
2.49. 

 
3. Conclusion 

A solution of the canonical problem of the 
electromagnetic radiation by current point in the 
presence of horizontally stratified anisotropic medium 
has been constructed. 

This solution is developed in terms of the well 
known vertical (or z-propagation) plane wave spectrum 
integral representation for the EM fields. The fields can 
be expressed in a compact form in terms of the dyadic 
Green's function for this problem 

 
4. Discussions 

A unified general approach to the problem of 
radiation of arbitrary sources in a stratified medium is 
presented. The model of the medium is considered to 
consists of N horizontally stratified layers and an upper 
half-space. First, all layers are assumed to be isotropic, 
then the more general case of a uniaxial medium is 
considered where all layers posses both tensor 
permittivities and tensor permeabilities which in 

general can be complex. All axes of anisotropy are 
considered perpendicular to the boundaries separating 
the different layers. 

Starting by defining two types of dyadic Green's 
functions which are dual to each other, namely an 

electric type dyadic Green's function G  and a 

magnetic type dyadic Green's function  (Stratton, 
1941). These Green's functions are resolved into their 
TE and TM parts. The resulting integrals are expressed 
in cartesian coordinates in terms of Weyl-type integral. 
A simple procedure to obtain the fields in any arbitrary 
layer is described. Tractable forms are shown to be 
easily deduced from the physical picture of the waves 
radiated from the primary sources and the multiple 
reflections from the stratified medium. The dyadic 
Green's function in the field region is properly 
represented by extracting the delta function singularity. 
Recursion relations for appropriately defined reflection 
and transmission coefficients are presented. 
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