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1. Introduction and Definitions 

The aging life is usually characterized by non-

negative random variable  with distribution 

function (cdf), F and survival function (sf), FF 1 . 
Associated with X is the notion "random remaining 

life" at age t, denoted by tX
where tX

has sf as 

)1.1(0,,
)(

)(
)( 


 tx

tF

txF
xFt

   

Note that 
X

st

tX
, of )()(Ft xFx  ( st denote the 

stochastic ordering) if and only if  is an exponential 

distribution. Comparing X and tX in various forms and 
types create classes of aging useful in many 
biomedical, engineering and statistical studies, see 
Barlow and Proschan (1981). It is well known that the 

relation 
X

st

tX
or )()(Ft xFx   defines the class of 

new better than used (NBU). 

On the other hand, the relation )()E(Xt XE  
defines the class of new better than used in expectation 
(NBUE), harmonic new better than used in expectation 
(HNBUE), decreasing mean residual lifetime (DMRL), 
exponential better than used (EBU) and exponential 
better than used in convex (EBUC). 

Many test statistics have been developed for 
testing exponentiality against various aging 
alternatives. Testing exponentiality against the classes 
of life distribution has received a good deal of 
attention. For testing against new better than used 
(NBU) we refer to Hollander and Proschan (1972) and 
Koul (1977) among others. For testing against new 

better than used in expectation (NBUE), we refer to 
Hollander and Proschan (1975) and Ahmad et al. 
(1999) among others. For harmonic new better than 
used in expectation (HNBUE), we refer to Klefsjo 
(1982) and Hendi et al. (1998). For decreasing mean 
residual lifetime (DMRL), we refer to Hollander and 
Proschan (1975), Ahmad and Li (1992) among others. 
For exponential better than used (EBU), we refer to 
Hendi et al. (2005). And For testing against 
exponential better than used in convex (EBUC), we 
refer to Hendi and ALghufily (2009). 

Moments inequalities for some classes of life 
distribution have been appeared in beginning of this 
decade and hence have been used in testing. Ahmad 
(2001) used the new testing against IFR, NBU, and 
NBUE. Testing against IFRA, NBUC and DMRL 
based on moments inequality have been studied by 
Ahmad and Mugdadi (2002). Abu-Youssef (2002) used 
the same technique for testing against DMRL. For 
testing against HNBUE see AL-Ruzaiza et al. (2003). 
Elbatal (2009) used the moments inequality for testing 
against RNBRU. And for testing against EBELC see 
Abdul-Moniem (2011). 

The classes EBUC and EBUCA may be defined 
on basis of a variability definitions due to ALghufily 
(2008), which is the following: 
Definition (1.1): F belongs to EBUC iff 
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Using the above definition to introduce 
exponential better than used in convex average order 
(EBUCA). 
Definition (1.2): F belongs to EBUCA iff 
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Putting 





tx
duuFtxv )()(

. then (1.3) 
becomes 
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The implication among the above classes of life 
distributions are: 

 
NBU NBUE  HNBUE 
 
 
 
EBU  EBUC  EBUCA 
The purpose of this paper is to give a moment 

inequality for the EBUCA class. The moments 
developed in section 2 are used to construct test 
statistics for the class EBUCA in section 3. In that 
section we obtained Monte Carlo null distribution 
critical points for sample sizes 5(1)40. This test statistic 
has exponentially high efficiencies and power for some 
of the well known alternatives relative to other tests. 
Finally in section 4 we apply the proposed test to real 
practical data in medical science. 
 
2. Moment Inequality 

We state and prove the following result. 
Theorem 2.1 if F is EBUCA, then 
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oof: 

F is EBUCA, then (1.4) holds. Multiplying both 
sides in (1.4) by tr, r>0 and integrating over (0,∞) with 
respect to t, then 
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Using integrating by parts, the left hand said 

(L.H.S) of (2.3) will be 
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L.H.S may be written as follows: 
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Also, the right- hand side of (2.3) is equal to 
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Substituting by (2.4)and (2.5) in (2.3), hence the 
result (2.1) now follows. 

 
3. Testing The EBUCA Class 
3.1 Test Procedure 

Let nXXX ,...,, 21  represent a random sample 
from a population with distribution F. We wish to test 
the null hypothesis H0 : F is exponential with mean µ 
against H1 :F is EBUCA and not exponential. Using 
theorem (2.1), we may use the following as a measure 
of departure from H0 in favor of H1: 

)1.3(,
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Note that under 0:0 EH  , while under 

0:1 EH 
. Thus to estimate E by E̂ , let 

nXXX ,...,, 21 be a random sample from F and µ is 

estimated by X , where 
 iX

n
X

1

 is the usual 

sample mean. Then E̂  is given by using (3.1) as 
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, then 

nE̂
 in (3.3) is a classical U-statistic, cf. Lee (1990). 

The following theorem summarizes the large sample 

properties of nE̂
. 

Theorem 3.1. As 
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asymptotically normal with mean 0 and variance 
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distribution, we use
)ˆ( EEn

n 
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to be the sum of the right hand side of 
(3.7),(3.8) and that of (3.9). Thus 
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Then (3.4) follows. 

Under 0H  
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Hence (3.5) follows. The Theorem is proved. 

When r = 0, 
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3.2 Monte Carlo Null Distribution Critical values 

In this section we use Monte Carlo simulation 
method to find the critical points of the measure given 
in (3.14) for sample sizes 5(1)40 and based on 1000 
replications. It is clear from Table (3.1) that the critical 
values change slowly as n increases and behave like 
normal for large sample size. Also, the critical values 
in Table (3.1) increases as the level of significant 
increases. 
3.3 The Power estimates 

We calculate the power estimate of the 

statistic nE1
̂

 in (3.14) at level 95% upper percentile 
and for following alternatives distributions: 

i) The linear failure rat family: 

0,0),
2

(exp)( 2
1  xxxxF 



 
The Makham family: 

0,0)],1([exp)(2   xexxxF x 
The Weibull family: 

0,0),(exp)(3  xxxF 

 
All these alternative distributions are IFR (for an 

appropriate restriction on  ) they all belong to wider 
class. Moreover, all these distribution reduce to 
exponential distribution for (i) and (ii) when the value 

0 and for (iii) when the value 1 . Table (3.2) 

displays the power estimate for nE1
̂

test statistic with 
respect to these distributions. The estimates are based 
on1000 simulated samples of size 10,20 and 30 at level 
95% upper percentile. 
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Table (3.1): Critical values of nE1
̂

 
n 1% 5% 10% 90% 95% 99% 
5 -1.83238 -0.32672 -0.03550 1.77920 2.82063 5.95206 
6 -2.35108 -0.40027 -0.08074 1.85956 2.56796 5.71912 
7 -2.25305 -0.46969 -0.12102 1.31544 1.79062 4.23534 
8 -2.09101 -0.56434 -0.15649 1.33548 1.94028 3.44891 
9 -2.54397 -0.62547 -0.18200 1.18529 1.66927 2.76958 
10 -3.59582 -0.63582 -0.28096 1.01725 1.49677 3.40802 
11 -2.53083 -0.79468 -0.28323 1.01864 1.47210 2.60973 
12 -2.23502 -0.54662 -0.20208 0.87189 1.37917 2.25489 
13 -2.37739 -0.87166 -0.43448 0.93298 1.37352 2.20668 
14 -2.35406 -0.71336 -0.31486 0.88554 1.22039 2.28772 
15 -2.80908 -0.76775 -0.30584 0.90328 1.11454 1.93806 
16 -2.42074 -0.89948 -0.40881 0.83246 1.16078 1.94603 
17 -2.30671 -0.87638 -0.39452 0.83846 1.19083 1.92082 
18 -2.19052 -0.67124 -0.29398 0.75374 1.08480 2.08989 
19 -2.79121 -0.73590 -0.35234 0.69678 0.95742 1.81973 
20 -2.66603 -0.91918 -0.42214 0.74602 0.95603 1.48212 
21 -2.07895 -0.76676 -0.36460 0.73970 0.91138 1.48607 
22 -2.00371 -0.83233 -0.38720 0.65043 0.84561 1.39481 
23 -2.42023 -0.96643 -0.42168 0.66727 0.90187 1.48137 
24 -2.43669 -0.83594 -0.36578 0.58519 0.76914 1.30803 
25 -3.09942 -0.68886 -0.39708 0.64729 0.84751 1.26803 
26 -1.80176 -0.76338 -0.39321 0.64028 0.85413 1.24436 
27 -2.13363 -0.86304 -0.41420 0.60959 0.81524 1.41560 
28 -2.02121 -0.77687 -0.43473 0.55761 0.71666 1.33047 
29 -2.15574 -0.78476 -0.39013 0.65616 0.84376 1.31038 
30 -1.73304 -0.63646 -0.35049 0.58457 0.76211 1.07752 
31 -1.90722 -0.67857 -0.35822 0.57278 0.73072 1.12261 
32 -2.58974 -0.76264 -0.38828 0.59514 0.74379 1.12293 
33 -2.61048 -0.81816 -0.42122 0.53567 0.67144 0.95865 
34 -1.95412 -0.71222 -0.39667 0.54671 0.68720 1.11895 
35 -2.08193 -0.78461 -0.40382 0.50379 0.63482 0.95667 
36 -1.91167 -0.74702 -0.43382 0.55387 0.73678 1.00468 
37 -1.52007 -0.66158 -0.32030 0.54067 0.68728 0.97243 
38 -1.86049 -0.69478 -0.41492 0.50313 0.66101 1.05507 
39 -1.60343 -0.76881 -0.41749 0.50826 0.62593 1.12496 
40 -1.93253 -0.73665 -0.44209 0.47925 0.60808 0.92844 

 

Table (3.2): power estimate for nE1
̂

 

Distribution   
Sample size 
n=10 n=20 n=30 

1F :Linear failure rat 
 

2 
3 
4 

0.784 
0.844 
0.852 

0.919 
0.938 
0.954 

0.905 
0.928 
0.964 

2F
:Makham 

 

2 
3 
4 

0.527 
0.566 
0.597 

0.589 
0.616 
0.658 

0.490 
0.552 
0.572 

3F
:Weibull 

2 
3 
4 

0.993 
1.000 
1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

 

From above table it noted that the power of the 
test increases by increasing the value of the parameter 
  and the sample size n as it was expected. 
3.4 Pitman asymptotic efficiency 

In this section we calculate the Pitman asymptotic 

efficiency (PAE) of our test nE̂
for the three 

alternatives (i),(ii) and (iii) presented above. The 

efficiency of E is equal to 
0
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We compare our test to other classes. Here we 

choose the test  presented by Abdul-Moniem (2011) 
for EBELC class. The comparison is achieved by using 
Pitman asymptotic relative efficiency (PARE) which 
can be defined as follows: 

Let nT1  and nT2  be two test statistics for testing 
1

0 }{:  cnFFH nn
  , where c an arbitrary 

constant, then the asymptotic relative efficiency of 

nT1 relative to nT2 can be defined as: 
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 is the null variance. 
Table (3.3) contains PAE’s of the above 

alternatives (i),(ii) and (iii) by using (3.15). Also we 

give PARE of nE̂
and   

Table (3.3): Efficiencies of nE̂
and   

Distribution 
nE̂

 
  ),ˆ( 

nEe 
 

1F
:Linear failure rat 1.581 0.949 1.666 

2F
:Makham 0.257 0.198 1.298 

3F
:Weibull 1.054 0.791 1.332 

 
The Efficiencies in Table (3.3), shown clearly that 

our test statistic nE̂
 perform well for 1F , 2F and 3F  

than the procedure nE̂
 of Abdul-Moniem (2011) and 

more efficient. 
 
4. Applications 

Example 1: 
The following data represent 39 liver cancer's 

patients taken from El Minia Cancer Center Ministry of 
Health in Egypt [see Attia et al. (2004)]. The ordered 
life times (in day) are: 10, 14, 14, 14, 14, 14, 15, 17, 
18, 20, 20, 20, 20, 20, 23, 23, 24, 26, 30, 30, 31, 40, 49, 
51, 52, 60, 61, 67, 71, 74, 75, 87, 96, 105, 107, 107, 
107, 116, 150. 

It is found that the nE1
̂

test statistic for the set 
data by using (3.14) is 0.4796 which is less than the 
critical value in Table (3.1) at 95% upper percentile. 

Thus we reject 1H which states the data set has 
EBUCA property. 

Example 2: 

We calculate the nE1
̂

test statistic for the data set 
of 40 patients suffering from blood cancer (Leukemia) 
from one of Ministry of Health in Saudi Arabia [see 
Aboummah et al. (1994)]. The ordered life times (in 
day) are: 115, 181, 255, 418, 441, 461, 516, 739, 743, 
789, 807, 865, 924, 983, 1024, 1062, 1063, 1165, 1191, 
1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 
1478, 1549, 1578, 1599, 1603, 1605, 1607, 1696, 1735, 
1799, 1815, 1852. 

From the above set of data, we have the computed 

values of nE1
̂

given (3.14) is 0.7517 which is greater 
than the critical value in Table (3.1) at 95% upper 

percentile. Thus we accept 1H which states the data set 
has EBUCA property. 
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