Correlation analysis for morpho-physiological traits of maize (Zea mays L.)

Qurban Ali^{1,3}, Arfan Ali³, Muhammad Waseem², Adnan Muzaffar³, Shafique Ahmed³, Sajed Ali³, Kamran Shehzad Bajwa², Mudassar Fareed Awan³, Tahir Rehman Samiullah³, Idrees Ahmad Nasir² and Tayyab Husnain²

¹Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan ²Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences Uthal, Pakistan ³Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan saim1692@gmail.com (+9203219621929)

Abstract: The present study was conducted in the glasshouse of Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan during crop growing season 2011. It was concluded that higher heritability was recorded for all traits while higher genetic advance was recorded for fresh root-to-shoot weight ratio (49.07%), dry root weight (62.86%, dry shoot weight (47.75%), total dry weight (51.19%), dry root-to-shoot weight ratio (58.66%), chlorophyll contents (193.59%), photosynthetic rate (138.40%), sub-stomata CO_2 concentration (145.28%), water use efficiency (181.28%), transpiration rate (96.29%) and stomata conductance (75.98%). It was found that significant genotypic and phenotypic correlations were shown by fresh root length, fresh shoot length, fresh shoot weight, total fresh weight, dry root weight, dry shoot weight, total dry weight, photosynthetic rate, chlorophyll contents, leaf temperature and water use efficiency. Higher heritability, genetic advance and significant correlation indicated that selection on basis of these morpho-physiological traits may be helpful to improve maize grain yield.

[Ali Q, Ali A, Waseem M, Muzaffar A, Ahmad S, Ali S, Awan MF, Samiullah TR. **Correlation analysis for morpho-physiological traits of maize** (*Zea mays* L.). *Life Sci J* 2014;11(12s):9-13]. (ISSN:1097-8135). http://www.lifesciencesite.com. 2

Key words: Zea mays, heritability, genetic advance, genotypic, phenotypic, correlation

1. Introduction

Zea mays L. is the most important cereal food crop of world with supplementary importance for countries akin to Pakistan where swiftly increasing population has already outstripped the existing food provisions. Maize is the third vital cereal in Pakistan after wheat and rice. Maize contributes 5.67 % of the worth of agriculture outputs. It was grown on 1083 thousands hectares with annual production of 4271 thousands tons (Anonymous, 2011-12). Maize is used as food for human while feed for livestock and also used as industrial raw material to produce diverse types of by-products. It has highest 9.9% crude protein at early and at full bloom stages that decreases to 7% at milk stage (grain formation starting stage) and to 6% at maturity. Maize contains 72% starch, 10% protein, 4.80% oil, 9.50% fiber, 3.0% sugar, 1.70% ash, 82% endosperm, 12% embryo, 5% bran testa and 1% tip cap (Chaudhary, (1983) and Bureau of Chemistry, U.S., (2010)). The production of Pakistan is low as compared to other maize growing countries due to nonavailability of resources and potential germplasm. Grain yield is related with various morphological, physiological and agronomic traits of maize. By improving these traits production of maize genotypes may be increased. Genotypic correlation provides an opportunity to a plant breeder to select genotypes on the basis of strong correlation among grain yielding contributing traits as reported by Mehdi and Ahsan (2000a); Grzesiak *et al.* (2007); Ali *et al.* (2011a, b); Ali *et al.* (2012); Ali *et al.* (2013); Jehangir *et al.* (2013); Anwar *et al.* (2013); Ali *et al.* (2014); Muhammad *et al.* (2014) and Qamar *et al.* (2014a,b). The present study was conducted to evaluate maize accessions for morpho-physiological seedling traits.

2. Material and methods

The current study was conceded out in the glasshouse of the Department of Plant Breeding and Genetics, University of Agriculture Faisalabad to assess the maize genotypes for seedling traits for the period of the crop season in February 2011. The experimental material was comprising of 80 accessions including ten check varieties namely: F-121, F-130, F-140, F-143, F-113, F-111, F-105, F-148, F-146, B-303, F-128, B-306, B-303, B-313, F-117, B-316, EV-324, EV-335, EV-310, F-114, F-136, F-122, F-134, F-147, F-135, VB-06, EV-334, EV-330, EV-329, EV-338, B-314, B-305, B-321, B-326, B-308, F-118, B-304, EV-343. F-150. F-142. F-151. POP/209, BF-337, BF-248, BF-212, BF-236, EV-342, EV-323, BF-238, B-15, EV-347, F-96, B-312, EV-344, E-352, E-341, E-351, E-322, E-346, F-98, B-96, EV-340, E-349, B-121, E-336, B-11, Sh-213, Sh-139, SWL-2002, Pak-Afgoee, Islamabad W, EV-7004Q, EV-1097, Raka-Poshi, VB-51, Gold Isalamabad, Sawan-3, BS-2 and POP/2007). The seeds of all accessions were sown in iron trays filled with sand following a randomized complete

block design (RCBD) with three replications at the depth of 2.5 cm and twenty seedlings of each accession were established in each replication. The data of 5 plants was recorded for physiological traits including chlorophyll contents measured with the help of Chlorophyll Meter and leaf temperature, stomata conductance, transpiration rate, photosynthetic rate, sub-stomata CO₂ concentration, water use efficiency help of IRGA (Infrared Gas Analyzer), fresh root length, fresh shoot length, root-to-shoot length ratio, fresh root weight, fresh shoot weight, total fresh weight, fresh root-to-shoot weight ratio, dry root weight, dry shoot weight, total dry weight and dry root-to-shoot weight ratio by using meter rod (length) and electronic balance (weight). The data was statistically analyzed by using analysis of variance technique (Steel et al. 1997). The genotypic and phenotypic correlations were calculated by Kwon and Torrie (1964) technique. The genetic advance was calculated by using Falconer (1989) formula. Heritability was recorded by using Burton, (1951) technique.

2.1. Statistical Analysis Formulae:

Phenotypic and genotypic coefficients of variation were calculated according to the formula given below:-

GCV =Genotypic coefficient of variation (%), PCV = Phenotypic coefficient of variation (%),

 $\overline{X} =$ Grand mean of the trait $\int_{\alpha}^{\alpha} \sigma^2 p =$ phenotypic

variance, $\hat{\sigma}^{g} = \text{genotypic variance}$

$$GCV = \frac{\sqrt{\overset{\sim}{\sigma g}}}{\overline{X}} \times 100 \qquad PCV = \frac{\sqrt{\overset{\sim}{\sigma p}}}{\overline{X}} \times 100$$

Broad sense heritability for each recorded trait was calculated as a ratio of the genotypic variances to phenotypic variances. Phenotypic (r_p) and genotypic (r_g) correlation coefficient was calculated as outlined by Kwon and Torrie (1964).

$$r_{\rm p} = \frac{M_{\rm ij}}{\sqrt{(M_{\rm ii})(M_{\rm jj})}} \qquad r_{\rm G} = \frac{Cov_{\rm gij}}{\sqrt{(Var_{\rm g})(Var_{\rm gj})}}$$

Where, r_p = the estimate of phenotypic correlation coefficient, Mij = the mean product of genotypes for the ith and jth traits, Mii and Mjj = Variety mean squares for ith and jth traits, respectively.

 r_G = Genotypic correlation coefficient

CoV gij =Genotypic covariance of ith and jth traits

Var gi = Genotypic variance of ith traits

Var gj = Genotypic variance of jth traits

Standard error of genotypic correlation coefficients (SE of rg) were calculated according to Reeve (1955). Genotypic correlation coefficient was considered significant if their absolute value exceeded twice their standard error.

S.E. of
$$r_G = \frac{1 - r_G^2}{\sqrt{2}} \sqrt{\frac{\sqrt{h_i^2} \sqrt{h_j^2}}{h_i^2 \cdot h_j^2}}$$
 Where

 r_G^2 = The genotypic correlation coefficient between the traits I and j.

 h_{i}^{2} = The heritability of ith trait.

 h_{i}^{2} = The heritability of jth trait.

The estimates of heritability and genotypic correlation coefficient were considered significant if their absolute value exceeded twice of their standard error. Phenotypic correlation coefficients were tested using t-test (Steel and Torrie, 1997) as given below.

$$t = \frac{r}{\sqrt{(1 - r^2) / n - 2}}$$

 $\sqrt{(1-1)^{r}}$ Where, r = the phenotypic correlation coefficient, n-2 = correlation error degree of freedom

Genetic advance (GA) was calculated by the following formula.

 $GA = \sigma_p x h^2 x i$, Where, σ_p = the phenotypic standard deviation, h^2 = Estimate of broad sense heritability, i = constant value (1.755) that reflects selection intensity (10%)

3. Results and discussions

It was persuaded from table 1 that heritability was found between the ranges of 82.35% to 100%.

Table 1: heritability and genetic advance for various morpho-physiological traits of maize

Traits	Heritability (h ² _{bs} %)	Genetic advance %				
Fresh root length	99.88	41.01				
Fresh shoot length	99.19	28.95				
Fresh Root-to-shoot length ratio	99.49	41.67				
Fresh root weight	96.00	37.26				
Fresh shoot weight	96.67	36.10				
Total fresh weight	98.63	30.59				
Fresh root-to-shoot weight ratio	98.51	49.07				
Dry root weight	97.07	62.86				
Dry shoot weight	92.31	47.75				
Total dry weight	97.47	51.19				
Dry root-to-shoot weight ratio	88.73	58.66				
Chlorophyll contents	99.99	193.59				
Photosynthetic rate	100.00	138.40				
Stomata conductance	82.35	57.98				
Transpiration rate	99.30	96.29				
Sub-stomata CO ₂ concentration	99.97	145.28				
Water use efficiency	99.70	181.28				
Leaf temperature	99.63	9.88				

Higher heritability was reported for photosynthetic rate (100%) followed by chlorophyll contents (99.99%) while lower for dry root/shoot weight ratio (88.73%) followed by stomata conductance (82.35%). Higher genetic advance was found for chlorophyll contents (193.59%) followed by water use efficiency (181.28%) and sub-stomata CO_2 concentration (145.28%) while lower for fresh shoot length (28.95%) followed by total fresh weight (30.59%) and fresh shoot weight (36.10). Higher values of heritability and genetic advance indicated that selection of higher yielding maize genotypes may be useful on the basis of these traits. Higher genetic advance also indicated the additive effects were very higher and on the basis of genetic advance selection can be made to improve genetic potential of maize genotypes. Similar results were reported by Mehdi and Ahsan (2000); Afarinesh *et al.* (2005); Ali *et al.* (2011a); Ali *et al.* (2011b); Fang *et al.* (2011); Ali *et al.* (2012) and Ahsan *et al.* (2013).

Traits	FSL	RSLR	FRW	FSW	TFW	FRSWR	DRW	DSW	TDW	DRSWR	Α	LT	Chl. C	gs	E	Ci	WUE			
FRL	0.3967*	0.7156*	0.2894*	0.4006*	0.4269*	-0.0723	0.2779*	0.2643*	0.3133*	0.0841	0.0586*	-0.0758	-0.0132	0.1412	0.0786	-0.0557	0.0231			
FSL		-0.3288*	0.0079	0.3984*	0.2616	-0.3369	0.2244*	0.3876*	0.3074*	-0.0998	0.0597	0.110*	-0.0741	0.1567	-0.0877	-0.1442	-0.1120			
RSLR			0.2877	0.0893	0.2251	0.2013	0.1199	-0.0373	0.0875	0.1977	-0.0087	0.0299	0.0641	0.0292	0.1399	0.0529*	0.1927**			
FRW				0.3263	0.7926*	0.4927*	0.3856*	0.1059	0.3486*	0.3106	0.1082*	0.0121	0.1787*	-0.0812	0.0289	0.0986*	0.1231*			
FSW					0.8350*	-0.6099*	0.2956*	0.6189*	0.4404*	-0.2394	0.1146*	-0.0702	0.1326	-0.0266	-0.039	0.0576*	-0.0023			
TFW						-0.1067	0.145*	0.4609*	0.4870*	0.0264	0.0109	-0.0382	0.1896*	-0.0644	-0.042	0.0946*	0.1344*			
FRSWR							0.0083	-0.4661*	-0.1432	0.4414*	0.1526**	0.0799	-0.0248	-0.0783	0.0344	0.0090	0.3122**			
DRW								0.4312*	0.9573*	0.6405*	0.0983*	-0.0371	0.2233*	-0.1344	0.0624	0.0094	-0.1002			
DSW									0.6735*	-0.3948*	0.0775	0.2295**	0.0303	-0.0781	0.0733	0.0414*	-0.1023			
TDW										0.3984*	0.1063*	0.1029*	0.1933*	-0.1357	0.0745	0.0200*	0.4123**			
DRSWR											-0.0103	0.1452*	0.1432*	-0.0286	0.0099	-0.0352	0.1102*			
Α												0.0273	0.2904*	0.2348*	0.2761*	-0.1776	0.2102*			
LT													0.0258	0.1395	0.2837*	0.1364*	0.0754			
Chl. C														-0.1270	-0.1085	-0.2107	0.1022			
Gs															0.1391	-0.2653	0.3211*			
E																0.0692	0.2612**			
Ci																	0.3912**			
44 G.	. 0	1.50/	1 1 1	a: .	C	1 10/1	1													

Table 2: Genotypic correlations of various morphological and physiological traits of maize seedlings

** = Significance at 5% level, * = Significance at 1% level

FRL = Fresh root length, FSL = Fresh shoot length, RSLR = Root-to-shoot length ratio, FRW = Fresh root weight, FSW = Fresh shoot weight, TFW = Total fresh weight (Fresh biomass per seedling), FRSWR = Fresh root-to-shoot weight ratio, DRW = Dry root weight, DSW = Dry shoot weight, TDW = Total dry weight (Dry biomass per seedling) DRSWR = Dry root-to-shoot weight ratio, A = Photosynthetic rate, LT = Leaf temperature, Chl. C = Chlorophyll contents, gs = Stomata conductance, E = Transpiration rate, Ci = Sub-stomata CO₂ concentration, WUE = Water use efficiency.

It was suggested from tables 2 and 2a that positive and significant genotypic and phenotypic correlation of fresh root length was found with fresh shoot length, fresh root/shoot length ratio, fresh and dry root and shoot weight, total fresh and dry weight and photosynthetic rate. Significant correlations with fresh and dry root and shoot weight indicated that selection on the basis of fresh root length for drought condition may be helpful to improve maize grain yield (Afarinesh et al. (2005); Ali et al. (2011a); Ali et al. (2011b); Fang et al. (2011) and Ali et al. (2012)). Fresh shoot length showed positive and significant genotypic and phenotypic correlation with fresh shoot length, fresh and dry shoot weight, dry root weight, total dry weight and leaf temperature while fresh root/shoot length ratio was positively and significantly correlated with fresh

root length, sub-stomata CO₂ concentration and water use efficiency at genotypic and phenotypic levels. Similar results were obtained by Ali et al. (2011a); Ali et al. (2011b); Fang et al. (2011) and Ali et al. (2012). Fresh root weight was positively and significantly correlated with fresh root length, total fresh and dry weight, photosynthetic rate, fresh root/shoot weight chlorophyll contents. sub-stomata CO₂ ratio. concentration and water use efficiency at genotypic and phenotypic levels while dry root weight was correlated with fresh root and shoot length, fresh root and shoot weight, dry shoot weight, total fresh and dry weight, photosynthetic rate, dry root/shoot weight ratio and chlorophyll contents (Afarinesh et al. (2005); Fang et al. (2011) and Ali et al. (2012)).

Traits	FSL	RSLR	FRW	FSW	TFW	FRSWR	DRW	DSW	TDW	DRSWR	A	LT	Chl. C	gs	E	Ci	WUE
FRL	0.3948**	0.7148**	0.2868**	0.3994**	0.4249**	-0.0722	0.2727**	0.2527**	0.3080**	0.0766	0.0586	-0.0755	-0.0132	0.1295	0.0778	-0.1558	-0.1021
FSL		-0.3319**	0.0078	0.3948**	0.2590**	-0.3332**	0.2215**	0.3671**	0.3026**	-0.0912	0.0594	-0.1097	-0.0738	0.1381	-0.0881	-0.1437	-0.1102
RSLR			0.2851**	0.0895	0.2242**	0.1992*	0.1161	-0.0341	0.0850	0.1814*	-0.0086	0.0300	0.0639	0.0308	0.1391	0.0527	0.0782
FRW				0.3237**	0.7925**	0.4967**	0.3760**	0.0992	0.3400**	0.2896**	0.1074*	0.0117	0.1774*	-0.0723	-0.0279	0.0977	0.2311*
FSW					0.8335**	-0.6088**	0.2904**	0.5909**	0.4338**	-0.2296**	0.1141*	-0.0688	0.1320	-0.0229	-0.0382	0.0574	0.0987
TFW						-0.1023	0.4067**	0.4386**	0.4781**	0.0211	0.0108	-0.0375	0.1887*	-0.0570	-0.0409	0.0941	0.0954
FRSWR							0.0071	-0.4454**	-0.1423	0.4182**	0.1517*	0.0784	-0.0245	-0.0722	0.0345	0.0088	0.3215**
DRW								0.4041**	0.9530**	0.6228**	0.0970	-0.0376	0.2206**	-0.1335	0.0626	0.0097	0.0663
DSW									0.6620**	-0.428**	0.0739	-0.2206**	0.0294	-0.0777	0.0651	0.0403	0.0781
TDW										0.3687**	0.1049*	-0.1028	0.1911*	-0.1352	0.0728	0.0203	0.4211**
DRSWR											-0.0097	0.1359	0.1346	-0.0415	0.0133	-0.0333	-0.0654
A												0.0273	0.2904**	0.2132**	0.2750**	-0.2775**	0.1123*
LT													0.0256	0.1297	0.2828**	0.1362	0.0971
Chl. C														-0.1160	-0.1081	-0.2106**	0.0621
Gs															0.1301	-0.2405**	0.2316*
E																0.0689	0.2132*
Ci																	0.3421**

Table 2a: Phenotypic correlations of various morphological and physiological traits of maize seedlings

** = Significance at 5% level, * = Significance at 1% level

FRL = Fresh root length, FSL = Fresh shoot length, RSLR = Root-to-shoot length ratio, FRW = Fresh root weight, FSW = Fresh shoot weight, TFW = Total fresh weight (Fresh biomass per seedling), FRSWR = Fresh root-to-shoot weight ratio, DRW = Dry root weight, DSW = Dry shoot weight, TDW = Total dry weight (Dry biomass per seedling) DRSWR = Dry root-to-shoot weight ratio, A = Photosynthetic rate, LT = Leaf temperature, Chl. C = Chlorophyll contents, gs = Stomata conductance, E = Transpiration rate, Ci = Sub-stomata CO₂ concentration, WUE = Water use efficiency.

Fresh shoot weight was positively and significantly correlated with fresh root and shoot length,

total fresh and dry weight, dry root and shoot weight, photosynthetic rate and sub-stomata CO₂ concentration

while dry shoot weight was correlated with fresh root length, fresh shoot length, root-to-shoot length ratio, fresh root weight, fresh shoot weight, total fresh weight, fresh root-to-shoot weight ratio, dry root weight, dry shoot weight, total dry weight and dry root-to-shoot weight ratio, stomata conductance, transpiration rate, photosynthetic rate and water use efficiency. Significant correlations suggested that photosynthetic rate was higher that leads towards the accumulation of organic compounds in the plant body and helped to improve grain and fodder yield of maize. Similar results were obtained by Afarinesh et al. (2005); Grzesiak et al. (2007); Ali et al. (2011a); Ali et al. (2011b); Fang et al. (2011); Ali et al. (2012) and Ali et al. (2014). Fresh root-to-shoot weight ratio was positively and significantly correlated with fresh root weight, dry root-to-shoot weight ratio, photosynthetic rate and water use efficiency while was positive and significant correlation of dry root-to-shoot weight ratio was found with fresh root-to-shoot weight ratio, dry root weight, total dry weight, leaf temperature, chlorophyll contents and water use efficiency at genotypic and phenotypic level. Significant positive genotypic and phenotypic correlation of total fresh weight was found with fresh root length, fresh and dry root and shoot weight, total dry weight, sub-stomata CO₂ concentration and chlorophyll contents while total dry weight was positively and significantly correlated with fresh root length, leaf temperature, photosynthetic rate, dry root-to-shoot weight ratio, fresh and dry root and shoot weight, total dry weight, sub-stomata CO₂ concentration and chlorophyll contents. Similar results were obtained by Mehdi and Ahsan (2000); Ali et al. (2011a); Ali et al. (2011b); Fang et al. (2011); Ali et al. (2012) and Ali et al. (2014). Photosynthetic rate was positively and significantly correlated with fresh root length, fresh root-to-shoot weight ratio fresh and dry root and shoot weight, total dry weight, stomata conductance, transpiration rate, water use efficiency and chlorophyll contents while leaf temperature was positively and significantly correlated with transpiration rate, fresh shoot length, dry shoot weight, total dry weight, dry root-to-shoot weight ratio and sub-stomata CO₂ concentration at genotypic and phenotypic level. Similar results were obtained by Mehdi and Ahsan (2000); Ali et al. (2011a); Ali et al. (2011b); Fang et al. (2011) and Ali et al. (2013). Positive and significant genotypic and phenotypic correlation of chlorophyll contents was found with fresh and dry root weight, total fresh and dry weight, dry root-to-shoot weight ratio and photosynthetic rate while photosynthetic rate, leaf temperature and water use efficiency showed a significant positive genotypic and phenotypic correlation with stomata conductance and transpiration rate. Sub-stomata CO₂ concentration showed a significant positive genotypic and phenotypic

correlation with fresh root-to-shoot length ratio, fresh root and shoot weight, total fresh and dry weight and photosynthetic rate while water use efficiency showed a significant positive genotypic and phenotypic correlation with fresh root-to-shoot length ratio, fresh root weight, stomata conductance, transpiration rate, sub-stomata CO_2 concentration, total fresh and dry weight, fresh and dry root-to-shoot weight ratio and photosynthetic rate. Similar results were obtained by Mehdi and Ahsan (2000); Ali *et al.* (2011a); Ali *et al.* (2011b); Fang *et al.* (2011); Ali *et al.* (2012); Ali *et al.* (2013) and Ali *et al.* (2014).

Conclusion:

It was concluded from above study that significant genotypic and phenotypic correlations were shown by fresh root length, fresh shoot length, fresh root weight, fresh shoot weight, total fresh weight, dry root weight, dry shoot weight, total dry weight, photosynthetic rate, chlorophyll contents, leaf temperature and water use efficiency. Higher heritability, genetic advance and significant correlation indicated that selection on basis of these morphophysiological traits may be helpful to improve maize grain yield.

Correspondence to:

Dr. Qurban Ali Assistant Professor

National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan

PhD: Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Emails:saim1692@gmail.com,saim 1692@yahoo.com

References

- 1. Afarinesh A, E Farshadfar and R Choukan, 2005. Genetic analysis of drought tolerance in maize (*Zea mays* L.) using diallel method. Seed Plant, 20(4): 457-473.
- 2. Ahsan M, A Farooq, I Khaliq, Q Ali, M Aslam and M Kashif, 2013. Inheritance of various yield contributing traits in maize (*Zea mays* L.) at low moisture condition. African Journal of Agricultural Research, 8(4): 413-420.
- 3. Ali A, Muzaffar A, Awan MF, Din S, Nasir IA, Husnain T. (2014). Genetically Modified Foods: Engineered tomato with extra advantages. Adv. life sci., 1(3). pp. 139-152.
- 4. Ali Q, and M Ahsan, 2011. Estimation of Variability and correlation analysis for quantitative traits in chickpea (*Cicer arietinum* L.). International Journal for Agro Veterinary and Medical Sciences, 5(2): 194-200.
- 5. Ali Q, M Elahi, M Ahsan, MHN Tahir and SMA Basra, 2011. Genetic evaluation of maize (*Zea*

mays L.) genotypes at seedling stage under moisture stress. International Journal for Agro Veterinary and Medical Sciences, 5(2):184-193.

- Ali Q, M Ahsan, MHN Tahir and SMA Basra, 2012. Genetic evaluation of maize (*Zea mays* L.) accessions for growth related seedling traits. International Journal for Agro Veterinary and Medical Sciences, 6(3): 164-172.
- Ali Q, M Ahsan, MHN Tahir and SMA Basra. 2013. Genetic studies of Morpho-Physiological traits of maize (*Zea mays* L.) seedling. African journal of Agriculture Research, 8(28): 3668-3678.
- Ali, Q., M. Ahsan, M.H.N. Tahir and S.M.A. Basra. 2013d. Genetic studies of Morpho-Physiological traits of maize (*Zea mays L.*) Seedling. African J. Agri. Res. 8(28): 3668-3678.
- Ali Q, Ahsan M, Ali F, Aslam M, Khan NH, Munzoor M, Mustafa HSB, Muhammad S. 2013e. Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Adv. life sci., 1(1), pp. 52-63.
- Ali, Q., M. Ahsan, M.H.N. Tahir and S.M.A. Basra. 2014. Gene action and Correlation Studies for Various Grain and its Contributing Traits in Maize (Zea mays L). *Bothalia*, 44(2): 80-91.
- 11. Anonymous, 2011-12. Economic Survey of Pakistan. Govt. of Pakistan, Finance and Economic Affairs Division, Islamabad.
- Anwar M, Hasan E, Bibi T, Mustafa HSB, Mahmood T, Ali M, 2013. TH-6: a high yielding cultivar of sesame released for general cultivation in Punjab Adv. life sci., 1(1), pp. 44-57.
- 13. Bureau of Chemistry, U.S., Wiley, Harvey Washington, 2010. Composition of maize (Indian corn), including the grain, meal, stalks, pith, fodder, and cobs.__University of California Libraries, nrlf_ucb:GLAD-151223559.
- Burton, G.W. 1951. Quantitative inheritance in pearl millet (*Pennisetum glaucum* L.). Agron. J. 43: 409-417.
- Camacho, R.G. 1994. Evaluation of morhphophysiologiacl characteristics in Venezuelan maize (*Zea mays* L.) genotypes under drought stress. Sci. Agric., Piracicaba, 51(3):453-458.
- 16. Chaudhry AR, 1983. Maize in Pakistan. Punjab Agriculture Research Coordination Board, University of Agriculture Faisalabad.
- Falconer DS, 1989. Introduction to Quantitative Genetics. 3rd Ed. Logman Scientific & Technical, Logman House, Burnt Mill, Harlow, Essex, England.
- 18. Fang P, Q, Yao and F Chen, 2011. Morpho-

physiological characteristics of maize (*Zea mays* L.) landraces under water stress. The Philippine Agricultural Sciences, 94(4): 323-338.

- 19. Grzesiak MT, A Rzepka, T Hura, K Hura and A Skoczowski, 2007. Changes in response to drought stress of triticale and maize genotypes differing in drought tolerance. Photosynthesis, 45: 280-287.
- 20. Jahangir GZ, Nasir IA, Iqbal M. Disease free and rapid mass production of sugarcane cultivars. (2014). Adv. life sci., 1(3), pp. 171-180.
- 21. Kwon SH and JH Torrie, 1964. Heritability and interrelationship of two soybean (*Glycine max* L.) populations. Crop Science, 4: 196-198.
- 22. Jenison JR, DB Shank and LH Penny, 1981. Root characteristics of 44 maize inbred evaluated in four environments. Crop Science, 21:233-236.
- 23. Mehdi SS and M Ahsan, 2000. Coefficient of variation, inter-relationship and heritability: estimated for some seedling trails in Maize in recurrent selection cycle. Pakistan Journal of Biological Sciences, 3:181-182.
- 24. Moulin S, F Baret, N Bruguier and C Bataille, 2003. Assessing the vertical distribution of leaf Chlorophyll content in a maize crop. INRA Unite Climat, Soil Environment, 7803-7929.
- Muhammad S, Shahbaz M, Iqbal M, Wahla AS, Ali Q, Shahid MTS, Tariq MS. 2013. Prevalence of different foliar and tuber diseases on different varieties of potato. Adv. life sci., 1(1), pp. 64-70.
- 26. Qamar Z, Nasir IA, Jahangir GZ, Husnain T. 2014. In-vitro Production of Cabbage and Cauliflower. Adv. life sci., 1(2), pp. 112-118.
- 27. Qamar Z, Nasir IA, Husnain T. 2014. In-vitro development of Cauliflower synthetic seeds and conversion to plantlets. Adv. life sci., 1(2), pp. 104-111.
- Rehman N, AR Chaudhry, M Hussain, 1992. Heterosis and inter-relationship estimates in maize hybrids for fodder yield and quality. Pakistan Journal of Agriculture Research, 30(1):41-51.
- 29. Reeve ECR, 1955. The variance of the genetic correlation coefficients. Biometrics, 11: 351-374.
- 30. Steel RGD, JH Torrie and DA Dicky, 1997. Principles and procedures of Statistics. A Biometrical Approach 3rd Ed. McGraw Hill Book Co. Inc. New Yark, pp: 400-428.
- 31. Wang BQ, ZH Li, LS Duan and ZX Zhai, 2007. Effect of coronatine on photosynthesis parameters and endogenous hormone contents in maize (*Zea mays* L.) seedling under drought stress. Plant Physiological Communication, 43: 269-272.

^{7/11/2014}