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Abstract. Reason for interest in jet streams is their great importance for various branches of engineering. 
Liquid and gas jet streams occur in rockets, airplanes, heat engines, turbines, boilers, combustion 
chambers, furnaces, ovens, hydraulic facilities, chemical and technological devices, ventilation devices 
and fluidics. In particular, during the hydrosystem operation, environmental problems arise associated with the 
erosion pool formation in the tailrace at considerable velocities of the flow. Riverbed erosion in the tailrace leads to 
emergency situations by the loss of hydraulic structures stability. Development of the hydrosystem stability 
assessment is complicated by the lack of an integrated approach to the analysis of riverbed processes, agreed with 
the plane hydraulic jet theory. To solve the problem of the plane laminar hydraulic jet propagation, the vortex 
boundary model, based on the scheme of rolling vortices, is applied in this paper. It is found that the geometric locus 
of equilibrium centres of vortices rolling without sliding along the jet boundary is a catenary line. To assess the 
adequacy of the proposed vortex model, it is compared with known solutions of the problem of the infinitely thin 
jet-source motion based on the boundary layer theory. The proof of the hypothesis about the identity of 
dependencies for the kinematic characteristics of the plane laminar hydraulic jet, which are derived from the vortex 
theory and the boundary layer theory, is associated with the phased development of new hydromechanics 
propositions and the analysis of existing ones. First of all, an equation of the plane laminar hydraulic jet boundary, 
based on the scheme of rolling vortices, is formulated. Then we investigate the statement of the problem of the 
infinitely thin jet-source motion in terms of the boundary layer theory. The self-similarity (affine similarity) of the 
longitudinal jet velocity profiles, based on the law of conservation of momentum carried through the jet cross-
section, is proved. There is provided information on the application of the similarity and dimension theory to the 
formulation of partial differential boundary layer equations and a ordinary differential third-order equation for the 
boundary layer flow function in a dimensionless form. As a result of substitution, a dimensionless ordinary 
differential equation is formulated, based on the vortex jet boundary model. Conversion of the partial differential 
third-order equation into the ordinary differential equation for the flow function is generalized by calculating 
invariants. The partial differential boundary layer equation and the ordinary differential equation in regard to the 
flow function under the given vortex jet boundary nature are integrated in MathCad. Conditions of conversion of 
solutions of the dimensionless plane hydraulic jet equations, obtained by different authors, into a dimensional form 
are estimated. 
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Introduction 

Investigation of jet streams is sometimes 
either purely theoretical or experimental, but the 
most common works have semi-empirical 
character. 

In some works, the authors study only 
turbulent jets based on semi-empirical theories, 
in other works - mostly laminar jets based on 
strict hydrodynamic equations [1]. 

Turbulent jets are the most important for 
practice. However, mechanisms of laminar jet 
propagation can serve as the theoretical model of 
turbulent jets. It is assumed that a turbulent jet can 
be analysed mathematically similarly to a laminar one. 

Number of problems on the incompressible 
liquid motion, solution of which is possible on the 
basis of the accurate Navier-Stokes equations, is 

extremely limited. One of the most universal problems 
is L. D. Landau's problem [2] of a submerged laminar 
axisymmetric jet, flowing from a thin tube in an 
unlimited space, filled with the same liquid. However, 
the problem of the plane laminar jet-source 
propagation (analogue of L. D. Landau's problem) 
based on the Navier-Stokes equations is still not 
solved. 

In this regard, along with numerical solutions 
of specific problems in the laminar jet theory, general 
solution methods based on the boundary layer theory 
are important. 

Calculation methods currently used in the 
turbulent jet theory based on semi-empirical theories 
are not universal. 

Empirical constants, borrowed from the 
experiment, reflecting the influence of different, not 
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explicitly considered, factors, are also not universal. 
Many analytical solutions of the problems of 

the jet propagation are related to the motions created 
by the jet-source. It is so, for example, for a 
significant part of the so-called "self-similar" 
solutions. 

For a medium with the same physical 
properties as the liquid moving within the jet 
boundaries, the jet propagation is reduced 
substantially to the gradual equalization of initial 
velocity profile. Due to the viscosity, the jet involves 
the surrounding liquid in motion, passing part of the 
initial momentum to it. The velocity on axis and in 
cross-sections of the jet decreases. 

The difficulty of obtaining the strict 
analytical solutions of the Navier-Stokes equations 
necessitated the use of several rather general 
assumptions about the nature of liquid motion. 

The first assumption is considered to be the 
hypothesis about the existence of elementary 
geometric structures formed by the plane jet 
propagation. These hypotheses include the idea of the 
existence of the jet stream source pole, the linear 
nature of the core, the boundaries of the mixing layer 
and of the submerged hydraulic jet propagation, quite 
clearly reflected in the monograph by G. N. 
Abramovich [3]. 

Concerning kinematic characteristics, self-
similarity of the longitudinal velocity profile 
propagation is postulated, at least within the transition 
and the main areas of the jet.  

The assumption that there is no pressure 
gradient and therefore the independence of the 
longitudinal component of the momentum from the 
longitudinal coordinates of the jet is a very strong 
limitation of a dynamic nature. 

Methodologies for calculating the geometric, 
kinematic and dynamic parameters of the hydraulic 
jets have a finished analytical nature only for a limited 
class of problems. First of all, they include the 
problem of the infinitely thin plane laminar jet-source 
propagation in the motionless liquid. 

In the Cartesian coordinate system, 
coincident with the centre of the slit source and the 

axis 1x , situated in a symmetry plane, under the 

action of viscosity, the jet expands axially 1y  

downstream, while the average flow velocity 
decreases. Due to the viscosity, the jet captures part of 
the motionless liquid, and as the result the stream with 
threads appears. 

In this formulation, the problem of the plane 
laminar submerged jet was first solved by H. 
Schlichting [4]. 

According to L.G. Loitsyansky [5], despite 
the extremely thin cross-section of the source, the jet 

has a finite value of the total momentum J  due to the 
high outflow velocity. 

The practical value of the idea about the jet-
forming source is determined by self-similar nature of 
the induced jet stream. It allows greatly to simplify the 
mathematical formulation of the problem and to go 
from the partial differential second-order boundary-
layer equations to the ordinary differential third-order 
equation for the flow function. 

The problem is solved using methods of the 
boundary-layer theory and usually includes several 
main stages. 

In particular, in the monograph by N. A. 
Slezkin [6] there are the following methodological 
steps. 

1. Statement of problem of the infinitely thin 
jet-source motion in terms of the boundary layer 
theory. 

2. Application of the law of conservation of 
total momentum, carried through the jet cross-section, 
for justification of self-similarity (affine similarity) of 
longitudinal jet velocity profiles. 

3. Application of the similarity and 
dimension theory for the transition to a dimensionless 
form of the boundary layer equation. 

4. Transition from the boundary layer 
equations to the partial differential equation for the 
flow function. 

5. Integration of the partial differential 
equation by the method of characteristics. 

6. Derivation of the ordinary differential 
third-order equation for the flow function from the 
partial differential equation. 

7. Integration of the ordinary differential 
equation for the flow function. 

8. Expression of the solution obtained in a 
dimensional form. 

In general, methods of solving the problem of 
the thin laminar jet propagation by H. Schlichting [4], 
L. G. Loitsiansky [5] and N. А. Slezkin [6] are the 
same in number and composition of stages. An 
exception isintegration of the partial differential 
equation by the method of characteristics by N. А. 
Slezkin. 

For comparative analysis of these 
methodologies, including the shortened methodology 
by L. A. Vulis [1], uniform designations of the jet 
stream parameters are introduced. To reduce the 
comparative analysis of the mentioned works for each 
stage of the methodology, the summary variants of 
calculations, supplemented with commentaries by 
significant differences in the stage interpretation by 
various authors, are given below. 

The proposed method of calculating the 
parameters of the submerged plane laminar hydraulic 
jet propagation is based on the equation of the vortex 
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equilibrium on the curvilinear plane jet boundary [7]. 
In this regard, correspondence of the vortex jet 
boundary model to the solution of the jet propagation 
problem by methods of the boundary layer theory is 
analysed step-by-step. In the comparative analysis of 
methods, symbolic and numerical solutions in 
MathCad are used, which, in particular, refers to 
theintegration of the ordinary differential equations. 

Derivation of the ordinary differential third-
order equation for the flow function from the partial 
differential equation is based on an invariant 
transformation, similar to that in [8], for the equations 
of the boundary layer momentum and continuity. 
Main part 

1. We consider the planar motion of a 
material point n  (Fig. 1), which position is 

determined by the radius vector   and the polar 

angle  , with velocity u . Vector of tangent to the 

motion path )x(fy   of the velocity u  at the 

point n  in the Cartesian coordinate system xoy  has 

vectors of projections on the axis x  and y  equal to 

 cosuu   and  sinuv   respectively. 

The tangent   to the curve )x(fy   has the 

inclination angle   relative to the abscissa axis xО  

[9]. Acceleration a  of the point n  is the desired 
vector. 

 
Fig.1. Motion of the point along the plane curve 
 

)x(fy   - equation of the curve s ; R  - radius 

of the curvature; 

  - tangent to the curve; n  - normal to the curve; 

nk
ds

d
s 


  - derivative of the tangent vector 

  along the arc length s  
 

For the parameter dependence of the radius 

vector of the point   on the arc length s  of the 

curve )x(fy  , we write  s  . 

Derivative 
ds

d
 is denoted by   and is the unit 

vector of the tangent to the path, so  




 u
dt

ds

ds

d

dt

d
u  ,      (1) 

where  uu   – modulus of velocity. 

Differential of the arc in Cartesian 
coordinates can be written for the point n  in the form 
[10] 

dxydydxjdyidxdds 222 1   ,   (2) 

where y  denotes the time differentiation. 

Since   1s , the vector 
ds

d
 is 

perpendicular to the vector  , so the straight line   

(Fig. 1) is tangent to the path  xfy   and the 

straight line   parallel to the direction of the 

derivative vector s
ds

d



  is normal to the curve at 

the point n . The length of the vector 
ds

d
s


   is the 

curvature of the curve k , defined in the form [10] 

k
ds

d



, nk

ds

d



,                  (3) 

where n  – unit normal vector. 
Having differentiated the expression 

 uu   with respect to time, we obtain  

nku
dt

du

dt

ds

ds

d
u

dt

du

dt

d
a 2

2

2





 





 .  (4) 

Having substituted the acceleration vector 

value a  in the formula of Newton's second law, we 
write 

nkmu
dt

du
mF 2


   .         (5) 

This implies that the active force has the 
tangential component 

 


dt

du
mFF               (6) 
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and the normal nkmunFF nn
2
  

component.                                                     (7) 
From the formula for the tangential 

component, we obtain  

dt

dTmu

dt

d

dt

du
muFu 












2

2



,     (8) 

so the loss of kinetic energy by the material point for 
overcoming the motion resistance is 

 
2

1

2

1

21

t

t

t

t

dsFdtFuTT  .        (9) 

Consequently, the work is produced only by 
the tangential component. 

Preservation of the material point momentum 

along the curve constmudJ  2
  is equivalent 

to the absence of the kinetic energy loss, which allows 
to rewrite (8) and (9) in the form of 

0
2

2













 Fu
mu

dt

d
 and 

0
2

1

2

1

21  
t

t

t

t

dsFdtFuTT   

respectively. 
The normal component of the force produces 

trajectory bending with the curvature  

2
mu

F
k n .                       (10) 

Derivation of the last formula is produced in 
accordance with known guides to higher mathematics 
[10] and applied mechanics [11]. 

Based on the definition of the curve arc 
differential (2), dependences are derived to calculate 
the curvature  

  2321
/

y

y
k




 ,                   (11) 

the radius of curvature 
k

R
1

 , and inclination angle 

cosine  of the tangent to the curve at the point n  

21

1

y
cos


 .                (12) 

We place a layer of circular vortices of 

constant radius r  over the plane curve  xfy   

so that each of the vortices will roll without sliding 

along the curve  mm xfy   of the equidistant 

initial curve. Centres of the vortex rotation in a 

composite motion form the curve  bb xfy  , 

equally spaced in the normals direction to the curves 

  from the curves  xfy   and 

 mm xfy   (Fig. 1). Thus, the curve 

 mm xfy   is the boundary of the motionless 

liquid, separated from the boundary thread 

 xfy   of the jet propagation area by the vortex 

layer. Scheme of the rolling vortices introduced in 
hydromechanics by M. D. Millionshchikov [12] 
showed sufficient efficiency during the simulation of 
flow around solid curved surfaces in the 
incompressible liquid [13]. 

Circulation along the boundary circle of the 

vortex is С22Г    ru , where 
2

Г
C   – 

vortex strength (Fig. 2). 

 
Fig. 2. Scheme of the vortices rolling along the 

plane curve  mm xfy   

 
Kinematic characteristics of the vortex have 

the following dimensions: Г , [m2/s]; 
2

Г
C , 

[m2/s]; u , [m/s]; r , [m]. Dimension of volume 

values is determined by the conditions of the plane 

problem and is 
2L , [m2], so the vortex mass is 

2Rm  , [kg/m]. 

The relative velocity of the vortex centre 

отнu  is modulo equal to projection of tangent to the 

velocity motion path u  at the point n , but of 

opposite sign  
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 cos
u

uu
2

 .               (13) 

The magnitude of the force acting on a 
rolling vortex, in view of (13) is determined according 
to Zhukovsky's [14] formula 

  cosuruuruF 22Г  .   (14) 

In this case, the vortex moves relative to the 

liquid with the velocity отнu , so, according to 

Zhukovsky's formula, the force F  is directed along 
the ordinate axis (Fig. 2). 

Projection of the force F  on the direction of 

the unit normal n  is 

 
22 cosurcosFFn 

.         (15) 
The trajectory curvature (10) after the 

substitution of the force nF  from the equation (15) 

takes the form 

r

cos

ur

cosur

mu

F
k n 











2

22

22

2
 .  (16) 

Using the definition of the curvature (11) and 
the expression for the inclination angle cosine   of 

the tangent to the curve (12), we obtain from the 
equality (16) the differential second-order equation 

ry

y 1

1 2





.                   (17) 

Having replaced the derivative py   and 

separated the variables, we find [15] 

rp

dx

dp
1

1 2



.                 (18) 

Separation of the variables and integration 

 
 r

dx

p

dp
21

 gives  

  1
21 C

r

x
ppln  .       (19) 

With regard to the expression 

   pArshppln  21  [15] the solution 

of the equation (19) has the form  









 1C

r

x
shp .             (20) 

Since yp  , the last equation is the 

ordinary differential equation relative to the desired 

function  xy  









 1C

r

x
shy .            (21) 

After its integration, we obtain the equation 
of catenary 

21 CC
a

x
chry 








 .       (22) 

Under 0x , the derivative 0y  and 

  01 Csh , so 01 C . Under the condition 

  ry 0 , we obtain rC
r

chr 







 2

0
 or 

02 C . 

Thus, the desired boundary equation has the 
form 











r

x
chry .             (23, а) 

If under 0x , the derivative 0y  and 

simultaneously   00 y , then under 01 C  we 

obtain 0
0

2 







 C

r
chr  or rC 2 . 

In this case, the boundary will start from the 
origin, its equation becomes  

r
r

x
chry 








 .        (23, б) 

In addition, the derivative (21) takes the form  











a

x
shy .                    (24) 

Having replaced the derivative in the 
expression (12) in accordance with (24), we obtain  



































a

x
hsec

a

x
ch

a

x
sh

yds

dx
cos

1

1

1

1

1

2
2



 

   (25) 
Since from the definition of the derivative for 

the tangent to the curve )x(fy   it follows that 

tgy  , then 
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

































a

x
th

a

x
ch

a

x
sh

y

y
cosysin

21


.    (26) 

The velocity components u  in the 

projection on the axis of the Cartesian coordinate 
system x  and y  are, respectively: 





















a

x
hsecu

a

x
ch

ucosuu  
1 ;     (27) 











a

x
thusinuv   .       (28) 

Curve of the vortex boundary equation can be 
constructed by numerical solution of the differential 
second-order equation in MathCad (Fig. 3). 

The velocity components, derived from the 

vortex propagation boundary model, u  in the 

projection on the coordinate axes (27) and (28), satisfy 
the equations of the boundary layer momentum and 
continuity, as illustrated by the symbolic solution in 
MathCad (Fig. 4). Direct substitution of the jet 
boundary equations leads to the satisfaction of the 
boundary layer equations for both forms of the vortex 
boundary equations (23, а) and (23, б). 
A n a ly ti c  d e pe n d e n c e  o f  th e  v o r t e x  b o u n d a r y  w it h  1r   

r 1

y x( ) r cosh
x

r









 r
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0

1

2

3

4

y x( )

x
 

Solution of the differential second-order equation 

Given

2
x

y x( )
d

d

2

1
x
y x( )

d

d









2



1

r

boundary conditions 

y 0( ) 0.01 y' 0( ) 0

Y Odesolve x 10( ) x 0 0.01 5  

0 1 2 3 4 5
0

1

2

3

4

Y x( )

x
 

Fig. 3. Comparison of the analytic dependence of 
the vortex boundary (23, b) with the results of 
numerical solution of the differential equation (17) 

 
Equation of the vortex boundary, axial and transverse velocities of the jet

r 1 y r cosh
x

r









 r
xx

u
1

cosh
x

r









xx

v

sinh
x

r








cosh
x

r










xx

Continuity and momentum equation

x
u

d

d x
v

1

x
y

d

d











d

d
 0

u
x
u

d

d
 v

x
u

d

d


1

x
y

d

d


x x

u
d

d

1

x
y

d

d













d

d
 0

 
Fig. 4. Substitution of the jet velocity components 
in the boundary layer equations 

 
From the physical formulation of the problem 

it follows that in the initial section under 0x  

0  and 1cos . Consequently, the vortex 

strength can be defined as  

0
00

2

2

2

Г
ru

ru
Co 






,          (29) 

А. Ya. Milovich reports [16] that application 
of the plain vortex layer theory to the flow around a 
circular cylinder based on the assumption of a 

constant vortex strength C  led to insolubility of the 
problem in a finite form. In this regard, the problem 
was solved by introducing the alternating voltage 
proportional to the sine of the polar angle of the 
incoming flow. 

In this case, the vortex strength along the 

curve  xfy   can be accepted inversely 

proportional to the cosine of the angle   of the 

incoming flow, directed along the jet axis. 
In this formulation, the equation of the jet 

boundary curve becomes  
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C
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ch

u

xu
ch

u
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


    (30) 

and vanishes under 0x . 
In the following analysis, the dimensional 

geometric and kinematic parameters of the jet are 
marked by subscript "1", the dimensionless functions 

of one independent variable   – by lower-case 

subscript, and the dimensionless functions of two 
variables x  and y  – by upper-case subscript. 

2. The jet, flowing from the nozzle of the 
final diameter with limited initial velocity for the 
motion area remote from the jet source, in all 
mentioned calculation methods [1, 2, 4, 5, 6] is 
modelled by the source extremely thin in cross-section 

with a finite momentum J  [2]. 

 
Fig. 5. Scheme of the plane jet 

 
The thin plane jet has the source at the 

beginning of the Cartesian coordinate system (Fig. 5). 

The axis 1x  lies in the plane of symmetry, and the 

axis 1y  – perpendicular to this plane. The passing jet 

mass 11dyu  creates the elementary momentum 

111 udyu  through the segment 1dy , so the total 

jet momentum through the straight line parallel to the 

axis 1y , is represented as 






 1
2
1 dyuJ  ,                (31) 

where   – density of the liquid; 1u  – longitudinal 

velocity of the jet. 
Flow of the momentum caused by the jet is 

assumed to be given with a known velocity 
distribution in the initial section. 

Dimensional form of the boundary layer 
momentum equation has the form  

2
1

1
2

1

1
1

1

1
1

1

1
1

y

u

x

U
U

y

u
v

x

u
u



















 .   (32) 

In case of the plane submerged jet flowing 
into the motionless liquid, the flow velocity at infinity 

is zero 01 U , and the pressure in the space 

surrounding the jet constp  , so the equation 

(32) takes the form 

2
1

1
2

1

1

1

1
1

y

u

y

u
v

x

u
u














 .         (33) 

The momentum equation (33) is 
supplemented by the continuity equation  

0
1

1

1

1 









y

v

x

u
.                   (34) 

On the line of symmetry, the longitudinal 
component of the velocity vector must be the greatest, 
and the transverse component must vanish. Thus, for 

the line 01 y  we have the following boundary 

conditions: 

0
1

1 




y

u
 and 01 v  under 01 y .      (35) 

Assuming that the jet propagates into infinity, 
we write the additional condition  

01 u  under 1y .          (36) 

3. Zero boundary conditions (35) and (36) in 

1y  direction and the absence of the boundary 

condition in 1x  direction lead to the physically 

unjustified solution 01 u , 01 v  in the entire 

flow area. To eliminate contradictions, L. G. 
Loitsyansky [5] writes the boundary layer momentum 
equation, using the continuity equation, as 

   
2
1

1
2

1

11

1

2
1

y

u

y

vu

x

u














 ,           (37) 

and then integrates both its parts in 1y  direction 

within   to   














 y

u
vudyu

dx

d
111

2
1

1

.         (38) 

It is assumed that the integral exists in the 
infinite limits of the first summand and that change of 
the order of differentiation and integration operations 
is possible. 
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Substituting in the left side of the equality 
(38) vanishes as a result of passage to the limit. The 
right side of the equality (38) also vanishes on the 
assumption of smoothness of the transition 

( 011  y/u  under y ), so 

01
2
1

1






dyu
dx

d
  is followed by 

constudyuJ  




2
01

2
1  .     (39) 

The equation (39) reflects the theorem of 
change of the liquid momentum in the area between 

two lines parallel to the axis 1y , provided the 

constant pressure, and means that the total 
momentum, carried through the jet cross-section, is 
the same for all sections. Assigning of the 

characteristic constant J  makes the problem of the 
jet propagation concrete. 

Thus, the study of the liquid motion in the 
plane jet is reduced to solving the equations (33) and 
(34) under the boundary conditions (35) and (36) and 
the integral invariant (39). 

However, by the solution of the differential 
boundary layer equations, the integral condition (39) 
is not used directly by the authors studying the plane 
jet [1, 4, 5, 6], but a similarity transformation is 
applied instead of the condition (39). 

4. In our opinion, some of the assumptions 
made by L. G. Loitsiansky can be improved on the 
basis of the generalized function theory, in particular, 
as the result of the useof the delta function. 

Delta function (Dirac delta function) is 
defined as a generalized singular function, i.e. as a 
linear continuous functional  on the functional space 
of the main functions [11, 17]. 

Formally, delta function is defined by the 
relation 

     xfdxxfax
n




              (40) 

for any continuous function  xf . 

For one-variable delta-function, the following 
equalities are true: 

  0x , 0 ;  




1dxx .     (41) 

Dirac delta function is non-zero only at the 

point 0x , where it becomes infinite, so that its 

integral in each neighborhood 0x  is equal to one. 

Continuity means that if nf , then 

 ;f; n  . Where f;  – the 

functional value of the function f . For convenience, 

it is written as a formal equality  

   dxxfxf; 




  .           (42) 

Let the condition of the delta function 

normalization be satisfied  




1dxx , then the 

sequence    nxnfxf n   converges weakly to 

delta function. 
Using delta function, the spatial density of 

the physical quantity concentrated at the point can be 
determined. For example, the density of the point unit 

mass located at the point a  of Euclidean space 
n  

is recorded using delta function in the form 

 ax  . 

Satisfaction of condition of the total jet 
momentum constancy (39) is achieved not only with 

the infinite value of the initial jet velocity 0u  and the 

final mass density   in the initial section, but with a 

finite value of the initial velocity and infinite mass 
density. 

Due to the fact that the longitudinal 
component of the total momentum of the jet flowing 

from the point source at the origin J  should not 
depend on the coordinate of the longitudinal axis of 

the jet x  with constant pressure 
p

=const outside the 
jet boundaries in the liquid resting at infinity, the 

average density   is a function only of the 

coordinate y . 

We define the density created by the material 
mass point m , located at the origin, following V. S. 
Vladimirov [17]. 

Having distributed the density inside the two-

dimensional sphere U , we find the value of the 

average density 

 













.y,

;y,
m

y






0

2
              (43) 

Pointwise limit of the sequence of average 

densities  y  under 0  is equal to 
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   
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





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 .y,

;y,
ylimy

00

0

0



    (44) 

On the other hand, the area integral S  of a 
plane figure is equal to mass contained within its 
boundaries, or  

 









S
.S,

;S,m
dyy

00

0
               (45) 

It follows from (44) that the integral (45) 
must be zero. Consequently, the pointwise limit of the 

sequence  y  under 0  does not 

determine the density  y . 

The generalized function theory is applied to 
specify the representation of the density propagation 
created by the jet flowing from the point source at the 
origin, and, on this basis, to determine the physical 
meaning of the condition of the total jet momentum 
constancy (39). 

We introduce the dimensionless density   

from the relation  
 
m

y
y


  , where m  – 

dimensional mass of the liquid, kg. 
We calculate the weak limit of the functions 

sequence  y  under 0 . Moreover, for 

every continuous function  xf  we find the limit of 

the numerical sequence     dyyy   under 

0 . 
We show that  

      


0
0

fdyyfylim 


 .          (46) 

From the continuity of the function  yf  

for any number  >0 there is 0 >0 such that 

     0fyf  under 0y . 

Therefore for all 0  , we find 

     

         ,dy
m

dyfyf
m

dyfyf
m

fdyyfy

yyy






















222

00

0  

which proves the statement (46).  
Consequently, the weak limit of sequence of 

the functions  y  under 0  is the 

functional  0f , defined by the function value at the 

point 0y . The specified functional  0f  is 

taken for the density determination 

   ymy   , where  y  – Dirac delta 

function. 

For any continuous function  yf , the 

limit relation  

       f,dyyfy   is right under 

0 ,                        (47) 

where  f,  corresponds to the number  0f  – 

the value of the functional action  y  on the 

function  yf . 

In case of mass concentration m  at the point 

0x , the density will be equal to  ym . If the 

mass m  is concentrated at the point 0y , then the 

corresponding density is equal to  0yym  , 

therefore     00 xmff,xxm  . 

In the figure 6 there is MathCad document, in 
which delta function properties are software 

implemented. To denote  -function, the identifier 

  is used in the listing. 
Determination of the momentum under the 

given vortex boundary equation 









r

x
chry  is 

shown in the figure 7. 
5. If, based on the similarity and dimension 

theory, we express the longitudinal coordinate 1x  in 

the length scale L , and the transverse coordinate 1y  

– in scale 
U

L

Re

L
Y


 , where 



UL
Re   

Reynolds number, U  – scale of the longitudinal 

velocity 1u ,   – kinematic viscosity coefficient, 

then for the jet-source the boundary layer equations 
(33, 34) can be reduced to the ordinary differential 
equation. In this case, the only specified dimensional 
quantity is the jet momentum and consequently the 

length L  and velocity U  scales are related by  

Re

LU
J

2
 ,                    (48) 

where   – unspecified dimensionless number. Using 
this relation, the length scale can be expressed through 
the velocity scale 
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322

2

U

J
L


 ,                (49) 

and the velocity scale through the length scale, 
respectively, as 

3
22

2

L

J
U


 .               (50) 

With this choice of the length scale, the 
formulae of transition from dimensionless coordinates 
and velocities to dimensional ones are 
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    (51) 

 
The boundary layer equations (33, 34) during 

the transition to dimensionless coordinates and 
velocities take the form  
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            (52) 

 
From the definition of the longitudinal 

velocity as the derivative of the flow function in the 

transverse coordinate 

1

1
1

y
u







 and the given 

scale of Y  the transverse coordinate 1y  , we can 

conclude that the dimension of the flow function is 
defined by the dependence 

 

UL
U

L
UUYm 


  .       (53) 

 

Functional of delta function ?(x) equates a function f y( )

to the value of the function when the argument y=0:


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y y( ) f y( )
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d f 0( )
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 gets a similar importance 
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.

Filtering property of delta function for the function  xf  is defined by the equality 





x x x0  f x( )




d f x0  

Taking into account the property of delta function   0yx   with yx   the value of

this integral does not change, if the function  xf  is replaced by the function  xf
~ , 

which is equal to  xf  at the point yx  , and at the remaining points has arbitrary 

values. For example, we select    yfxf
~

 =const, then factor  yf  outside the integral 

sign, and using the condition in the definition of the delta function  




 1dxx , obtain 

the equality 

.





x x ó( ) f x( )




d f ó( ) .

Similarly, replacing the variables, we find 




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


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As a result of the density determination, we obtain 
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Fig. 6. Properties of delta function 

 
The momentum with the unit impulse function, which determines the density of mass
concentrated at the point     y=0  
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Fig. 7. The momentum when using the vortex 

boundary equation 









r

x
chry  

 
Therefore, we rewrite the integral condition 

(39) in the form  










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






Jdy

y
1

2

1

1
         (54) 

or, selecting the dimensionless components,  
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








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






Jdy

yY
m

22 
.          (55) 

Having assumed that 
V

LJ
m




 2

, we 

construct the condition (39, 54) in a dimensionless 
form 

1

2





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











dy
y


,                (56) 

where   – dimensionless flow function depending 

on two variables x  and y ,  y,x . 

Having compared the expressions for the 

length scales L , velocity scales U  and the 

momentum J , we find another expression for the 
scale of the flow function 

U

J
m


  .                  (57) 

6. Transition from the boundary layer 
equations to the partial differential equation for the 
flow function is proved by N. A. Slezkin [6] on the 
basis of the fact that by the very nature of the problem, 

the velocity scale U  should not be included in the 
solution result. 

It follows directly from (51) that the 
transition from dimensional coordinates to 
dimensionless ones is performed according to the 
formulae  
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 .                 (58) 

Derivative of the function 

    Uy,Ux 11   using the parameter U  

has the form 
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 .  (59) 

If we assume 

  







 1

2

1
3

2

22

y
J

U
,xU

J
y,x


 ,    (60) 

the requirement of independence of the dimensional 

velocity on the scale U  gives 

01

2

12

322























y

J

U
,x

J

U
U

dU

d 
 .  (61) 

Having differentiated, we find  

 
023 1

2

12

322













y

J

U

y
x

J

U

xdU

d
U

dU

Ud 





 .    

(62) 
Using the selected length scales (51), we 

obtain the equation 

023 








 y

y
x

x


 .              (63) 

7. Having introduced the flow function 
dependence, in consideration of broadening the jet 
half-width, resulting from the vortex jet boundary 
theory, along the direction of its motion in the form 











r

x
chry  and in consideration of the 

expression of the transition from dimensionless 
coordinates to dimensional ones (51), we write  

.
r

x
chr

U

J
y

U

J
y

Re

L
y

,x
U

J
Lxx













221

322

2

1



   (64) 

In consideration of the jet boundary 
function differential 

dx
r

x
shdy 








              (65) 

and the expression of the transition from the 
dimensional velocities to the dimensionless ones 

  







 1

2

12

322

y
J

U
,x

J

U
y,x


 , 

we perform differentiation of the function 

 y,xfu   on the velocity scale U  






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



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
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




r

x
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r

x
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x
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U

x

y
J

U

y
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J

U

xdU

d

2
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322

1

2

12
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







. 

The requirement of independence of the 

dimensional velocity on the scale U  in this case 
gives  

   023 


















xr

x
cthr

x
xy,xU

dU

d 


.  (66) 
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Hence, the ordinary differential equation 
follows  

023 

















dx

d

r

x
cthrx


 .  (67) 

Further solution is made in MathCad 
(Fig. 8). 

 

r 1

Given

1 x1  3 x1 2 coth
x1

r
















 x1

1 x1 d

d
 0 1 0.001( ) r

1 Odesolve x1 10 

x1 0 0.01 10 u1 x1  1 x1 
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0
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2
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u1 x1 

x1  
Fig. 8. Calculation of the longitudinal velocity 

of the jet  u  as a function of the 

dimensionless independent variable   under 

the jet boundary variation law 
 
8. N. А. Slezkin [6] solves the partial 

differential equation (63), using the method of 
characteristics, 

y

dy

x

dxd

23





. 

Integrals of these characteristics equations 
are the functions:  

1
31 Cx /  , 2

32 Cyx / 
, 

and the solution of the equation (63) is presented in 
the form  

   3231
1

// yxxy,xu   .     (68) 

Thus, a new independent dimensionless 
variable is  

32 /yx ,           (69) 

and for this variable we have: 

32 /x
dy

d 


, 


 135

3

2

3

2   xyx
dx

d /
.        (70) 

9. Introduction of the dimensional flow 

function, m2/s,  111 y,x  from the conditions 

1

1
1

y
u







 and 

1

1
1

x
v







 allows to combine 

the equations of the plane jet momentum and 
continuity into a single third-order equation 

3
1

1
3

2
1

1
2

1

1

11

1
2

1

1

yyxyxy 



















 



.    (71) 

with the boundary conditions 

0
2
1

1
2






y


, 01   under 01 y , 

0
1

1 




y


 under y .           (72) 

We write the general solution in the 

dimensionless coordinates  y,x   and the 

dimensional coordinates 











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



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U
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L

x
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


 

In order that the right side of this expression 

may not depend on U , the general form of the 
solution should be as follows: 

 3231 // x/yx   .          (73) 

Indeed, this is 


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

 

Having assumed 





32

1

1
3

232 // x

yJ

x

y
, 

we substitute the expression   from (73), rewritten 
in the form 

  31 /x ,                   (74) 

in (71), converted for the dimensionless coordinates 

3

3

2

22

yyxyxy 



















 
,       (75) 

where   – dimensionless flow function depending 
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on the variable  ,   . 

Preliminarily we calculate (primes denote 

derivatives of  ) 








  31 /x

y
u , 

 






  2

3

1 31 /x
x

v , 

 
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

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  2
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1 34
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/x
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u
,   (76) 












 1

2

2

x
yy

u
, 












  35

3

3

2

2
/x

yy

u
. 

When substituting the equalities (76) in the 
first equation (52), we arrive to the integration of 
ordinary differential third-order equation  

  0
3

1 2             (77) 

under the boundary conditions  

0 , 0 , under 0 ,   (78) 

0  under   

and the integral condition (5), which can be written as  

  12 




 d .                     (79) 

10. Derivation of the ordinary differential 
third-order equation for the flow function from the 
partial differential equations can be performed on the 
basis of invariant transformation. Moreover, in 
contrast to the use of the momentum and continuity 
equations for invariant transformations, as it is 
produced by L. A. Vulis [1], or is given in the guides 
for the solution of differential equations [8, 18], the 
following direct integral transformation of the partial 
third-order equation for the flow function in the 
ordinary differential equation is given below. 

On the conditions 

1

1
1

y
u







 and 

1

1
1

x
v







, we write the equations of momentum 

and continuity of the plane laminar jet (33, 34) in the 

form of the third-order equation for the flow function 
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. 

Having made the similarity transformation 
[8] 

11 xcx  , 11 ycy k  , 11   lc ,   (80) 

we obtain  

3
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or 

3
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1
3

3
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1
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1

1122
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1
2

1

1122

y
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c

yxy
c klklkl
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




  


   (81) 

Having divided all members of the equation 
122  klc  we obtain 01223  klkl . 

Consequently, for the invariance of the initial equation 
and the equation resulting from the similarity 

transformation, the equality kl 1  must be 
performed. 

Substitution of the similarity transformations 
gives  

11 xcx 
, 11 ycy k 

, 1
1

1   kc
.  (82) 

Having eliminated the parameter c  

(

1

1

x

x
c  ), we find: 

1
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1
1 y

x

x
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k



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
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x
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



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


    

2
1

11
1

11 Ixx kk    .                       (84) 

The solution is sought in the form 

 12 II  , i.e.   1
1
 kx . 

Consequently, 

    1
1
1111

kxy,x   and 
kxy  11 , 

where k  – arbitrary constant. 
Having calculated the derivatives of the flow 

function  11 y,x  by the flow function variables 

1x  and 1y , taking into account the expressions 
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
 1

1
1

 kx
dx

d
 and 

kx
dy

d  1
1


, we find 

sequentially: 
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2
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2
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1
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21 .  (85) 

By substituting the found derivative values in 
the differential third-order equation for the flow 
function, we obtain 

    0112 2   kk . (86) 

When the condition 
3

1
12 k  is 

fulfilled, we obtain for the arbitrary constant 
3

2
k . 

After substituting this value in the differential 
equation for the flow function, we find 

  0
3

1 2   .             (87) 

This special case of the equation coincides 
with the equations obtained by L. G. Loitsiansky [5] 
and N. А. Slezkin [6] as a result of transformation of 
the plane laminar boundary layer equations into the 
dimensionless form. 

The boundary conditions for determination of 
the flow function take the form: 

0 , 0  under 0 ,          (88) 

0  under   

and the integral condition (39), which can be written 
as 

  12 




 d .                   (89) 

Symbolic substitution of the flow function 

  









a
tga


  in the differential boundary 

layer equation in MathCad shows (Fig. 9) that the 
equation is satisfied identically. 

 
Differential third-order equation for the flow function 

y
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Substitution of the flow function for the given numerical values of the parameters a and k 
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Substitution of the flow function in the differential boundary layer equation in an 
invariant form 
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d
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Fig. 9. Symbolic substitution of the flow function 

  









a
tga


 in the differential third-

order equation for the flow function 
 

Using the invariant transformation shows that 

under the arbitrary constant values k , other 
numerical factors can be obtained in the momentum 
equation. 

11. Directly we find the first integral of the 
equation (77, 87) in the form 

C 
3

1
.               (90) 

On the basis of the boundary conditions (78, 

88), we assume the constant C  equal to zero 

0C . 
Having performed a further integration of the 

equation (90), we find: 

D 2

6

1
 .              (91) 

On the basis of the equations (76, 85) and 
(51), the dimensional longitudinal velocity component 
is 

   


 










32

31
11

/
/ J

xUuu .      (92) 

We choose the constant   so that 

  10  .                                           (93) 

Under this and the first condition (78, 88), 

the integration constant D  must be equal to one. 

Thus, we obtain for the function    the following 

first-order equation: 

1
6

1 2   .                (94) 
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Having solved this equation by separation of 
variables, and using the first condition (78, 88), we 
obtain the final expression for the required function in 
the form 

  









6
6


 th .         (95) 

On the basis of (95) and the first equalities 
(76), we obtain the following expressions for the 
dimensionless velocities: 
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

  (96) 

For the maximum velocity on the symmetry 
line, we have 

3/1
1

 xu m .                  (97) 
Relation between the longitudinal velocity and 

the maximum one is expressed as  

6

1

2 
ch

uu m .        (98) 

Calculation of the longitudinal velocity of the 

jet     u  as a function of the independent 

dimensionless variable   on the basis of the 

analytical solution of the partial differential boundary 
layer equation made in MathCad is shown in the 
figure 10. 
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Fig. 10. Dimensionless flow function and its 
derivative according to the analytical solution by 
N. A. Slezkin 

 
Due to the fact that the dimensionless 

parameter according to (69) is the function 

32 /yx , the figure 11 shows curves of the 

axial velocity  fu 1  under different 1x  

and the function  11 xfu   under the change 

of  . 

Then we give the curves (96) for the 

transverse jet velocity (inflow velocity)  fv   

under different 1x , as well as the 

functions  11 xfu   under different  . 
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Fig. 11. Axial jet velocity function of the 
dimensionless variable 

 
Calculation of the longitudinal jet velocity 

 u  as the function of the dimensionless 

independent variable  , based on the solution of the 

partial differential boundary layer equation by the 
characteristics method, is reduced to solving of the 
two-point boundary-value problem for the ordinary 
differential third-order equation with initial and 
boundary conditions. Solution in MathCad is shown in 
the figure 13. 
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Fig. 12. Transverse jet velocity function of the 
dimensionless variable 
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Fig. 13. Calculation of the longitudinal velocity of 

the jet  u  based on the solution of the 

differential boundary layer equation 
 

Comparison of the results of the analytical and 
numerical solutions of the differential boundary layer 
equation shows that they are identical (Fig. 10, 11 and 
13). 

In turn, comparison of the functions 

 u , given in the figures 8, 11 and 13, shows 

the coincidence of the solutions obtained on the 
basis of the analytical and numerical solutions of 
the differential boundary layer equations with the 
results of applying the vortex jet boundary 
model. 

12. Having passed in the equality (33) to 
dimensionless quantities on the basis of (51), (70) and 
(96), we obtain the following expression for the 
number   
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In conclusion, we calculate the flow rate 
through the infinite straight line parallel to the axis 
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Since the numerical value of the coefficient is 

equal to 3013
273

1
62

3

1

,
,









, then under 

1  the flow formula coincides with the 
dependencies by H. Schlichting and L. G. Loitsiansky. 

Thus, the flow through the initial section of 

the jet ( 0x ) is equal to zero, and then the flow 
increases due to the inflow from the sides of the jet. 
Nature of the threads is defined by the equation 

  constx / 31
1 .            (101) 

Discussion of results 
For the analytical solution of the jet-

source problem, L. А. Vulis and V. P. Kashkarov [1] 
considerthat it is sufficient to replace assignment of 
the initial conditionswith the determination of the total 
momentum in the projection on the jet symmetry axis 

 

s

x dsuJ 2

0
 , where   – density of the liquid, 

0xu  – axial velocity component in the initial section 

s  of the jet, which is replaced with the effective 
source. 

Combined equations of the liquid motion 
problem caused by the plane hydraulic jet (3, 4), on 
the basis of self-similarity transformation 

  
mu

u
, 

Axum  , 
 Byx  under 

the equality 6
2


B

A
 and the self-similarity 

constants   and   allow to reduce the problem to 

the ordinary differential equation 

  02 2  
                 (102) 

with the boundary conditions: 

0 , 1  under 0 , 

0  under  .                 (103) 

The solution of this equation has the form 

 th , 


 2

2
1

1
th

ch
 .   (104) 

Peculiarity of the solution b y  L .  А .  
V u l i s  a n d  V .  P .  K a s h k a r o v  [ 1 ]  i s  t h e  
c o n c l u s i o n  o n  t h e  b a s i s  o f  invariant 
transformation of self-similarity of the ordinary 

differential equation   02 2   , 

which differs from the similar equations by L. G. 
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Loitsiansky [5] and N. А. Slezkin [6] in a multiplier 
before the sum of terms up to the second order. H. 
Schlichting [4], as a result of applying the similarity 
and dimension theory, gets another form of the 

equation 02   , in which all 

the coefficients of the derivatives are equal to one. 
However then, H. Schlichting after a single integration 
of the ordinary differential third-order equation for the 
flow function uses the second similarity 

transformation   ,     2 , 

and after replacing the variable gets the second-order 

equation 02   . 

While the jet momentum 

constdyuJ  
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

2 , values of the constants 

A , B  and the self-similarity constants   and   

are equal to 
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3

2
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The figure 14 shows the results of numerical 
and analytical calculation of the flow function and the 
universal velocity profile in the plane jet cross-section 
in MathCad. 
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Fig. 14. The flow function and the universal 
velocity profile in the plane jet cross-sections, 
obtained on the basis of the analytical and 
numerical solutions of the Cauchy problem for the 
ordinary differential second-order equation 

 

Laws of change of the mass flow G  and the 

kinetic energy flux E  in the plane jet are defined, 
respectively: 
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Summary 

1. Analysis of the hydraulic jet theories 
shows that the most common concept of their 
formation is the idea that the jet surface is the vorticity 
concentration area in the form of a potential of the 
ordinary or double vortex layer. The jet boundary as a 
result of continuous expansion by the addition of 
transit flows takes a curved shape. A classic example 
of jet streams is the axisymmetric jet outflow from the 
jet-forming nozzle of the circular section in unlimited 
water space. 

2. Analysis of plane motion of a material 
point in the natural coordinates found that the normal 
component of the force produces motion trajectory 
bending. The force acting on the curved jet boundary 
can be defined as Zhukovsky force applied to the free 
vortex in a plane homogeneous flow of the ideal 
liquid. As a result, we obtained the vortex equilibrium 
centre locus, which has the form of a catenary 
equation. It is established that the vortex strength is 
inversely proportional to the cosine of the angle of 
rotation of the boundary of the flow flowing from the 
initial cross-section. Comparison of the analytic 
dependence of the vortex boundary with the results of 
the numerical solution of the ordinary differential 
second-order equation for the condition of the 
dynamic equilibrium of the vortex, rolling along a 
curved path, in MathCad showed their coincidence. 
The velocity components, derived from the vortex 
propagation boundary model, of the tangents to the 
thread in the projection on the coordinate axes satisfy 
the equations of the boundary layer momentum and 
continuity, as illustrated by the symbolic solution in 
MathCad. 

3. As the study of existing formulations of 
the problems showed, the law of conservation of 
momentum to the area between two straight lines 
parallel to the normal in the jet direction, with a 
constant pressure, leads to self-similarity (affine 
similarity) of the longitudinal jet velocity profiles. The 
fullper-second momentum, carried through the jet 
cross-section remainsthe same for all sections, 
whichmakes the jet propagation problem concrete. 

4. Dependencies for the boundary and 
kinematic characteristics of the plane jet, found on the 
basis of the vortex theory, are presented in the form of 
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hyperbolic functions of the longitudinal jet coordinate 
x . Kinematic characteristics of the jet, resulting from 
the application of the boundary layer theory, appear to 
be hyperbolic functions of independent variable 

kyx , expressed as the transverse coordinate 

relation y  to the power function of the longitudinal 

coordinate x  with fractional negative index k . 
Therefore, to assess the impact of the total jet 
momentum condition on the uniqueness of the 
obtained solutions, it is offered to use elements of the 
generalized function theory and, in particular, delta 
function. 

5. It is found that, due to the filtering 
properties of delta function, the functional effect of 
the generalized liquid density distribution within the 
boundaries of the plane jet, flowing from the point 
source at the origin, on the total jet momentum leads 
to the satisfaction of the conditions of momentum 
conservation regardless of the type of argument 
determining the kinematic characteristics of the jet. 
Filtering property of delta function and calculation of 
the momentum, when using the generalized 
distribution of the liquid density and the vortex 
boundary equation, confirming the main hypothesis 
about the identity of dependencies of the kinematic 
characteristics of the plane jet, derived from the vortex 
theory and the boundary layer theory, are illustrated in 
MathCad. This hypothesis is confirmed by 
consideration of interchangeability of expressions for 
the flow function differential 

xvyu  1111  assuming the existence 

of the integral equation 

dxvdyu   1111 , that allows 

replacement of the functions  11 y  and  11 x  

subject to the existence of explicit longitudinal 

velocity expressions in the form  11 yu , and 

transverse jet velocity expressions - in the form 

 11 xv . 

6. Pursuant to the known provisions of the 
similarity theory resulting from the expression of 
coordinates and kinematic characteristics of the jet in 
the scale associated with the Reynolds number for the 
jet-source, the boundary layer equations are reduced to 
a dimensionless form. 

7. Transition from the boundary layer 
equations to the partial third-order equation for the 
flow function, in well-known works on the plane 
laminar jet theory is performed by substituting the 
longitudinal and transverse velocities, expressed in 
terms of derivatives of the flow function. 

8. From the classic works on the subject of 
the study it is found that the conversion of the 
dimensionless partial differential third-order equation 
for the flow function into the ordinary differential 
equation is possible either because the jet momentum 
is assumed as a given dimensional quantity, or it is 
assumed that the longitudinal velocity scale is 
excluded from the solution result. 

9. Application of eliminating the longitudinal 
velocity scale from the solution results allowed, based 
on the vortex jet boundary model, to derive the 
dimensionless ordinary differential equation from the 
boundary layer equations for the flow function and 
thereby to establish a deep inner connection between 
the proposed vortex model and the classical approach 
to the plane laminar jet problem. 

10. It is found that derivation of the ordinary 
differential third-order equation for the flow function 
from the partial differential equations can be 
performed on the basis of invariant transformation. 
Symbolic substitution of the flow function in the 
differential third-order equation for the flow function 
in MathCad confirmed the made calculations. 

11. There are given data on the integration of 
the partial differential boundary layer equation by the 
characteristics method, using which the longitudinal 
jet velocity is calculated as a function of the 
dimensionless independent variable under the given 
vortex jet boundary law. In MathCad, a curve of the 
longitudinal jet velocity is created. 

12. Integration of the ordinary differential 
third-order equation with respect to the flow function 
is performed directly throughthe symbolic substitution 
of the analytical expression for the flow function in 
the boundary layer equations and in a numerical form 
in MathCad. Comparison of the results of the 
analytical and numerical solutions of the differential 
boundary layer equation showed that they are 
identical. In turn, comparison of the results of solving 
the boundary layer equations with the results of 
applying the vortex boundary model indicates the 
coincidence of the solutions for the kinematic 
characteristics of the plane jet. 

13. When expressing the obtained solution 
results in a dimensional form, the numerical value of 
the coefficient is found, with which the jet flow 
formulae obtained by various authors coincide. 

14. Validity of the obtained results is 
confirmed by obtaining identical dependencies as a 
result of applying the vortex model and the boundary 
layer theory to calculate the kinematic characteristics 
of the submerged plane laminar hydraulic jet-source. 

Thus, the hypothesis about the identity of 
dependencies for the kinematic characteristics of the 
plane laminar hydraulic jet-source derived from the 
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vortex theory and the boundary layer theory is 
considered to be proven. 
 
Corresponding Author: 
Dr. Kuznetsova Julia Anatolyevna 
Volga State University of Technology 
Lenin Square, 3, Ioshkar Ola, 424000, Russian 
Federation 
 
References 
1. Vulis, L. A., 1965. Theory of viscous liquid jets. 

Nauka, pp: 432. 
2. Landau, L. D. and E. M. Lifschitz, 2000. Course 

of theoretical Physics. V.6. Fluid Mechanics. 
Institute of Physical Problems, pp: 540. 

3. Abramovich, G. N., 2011. Theory of turbulent 
jets. Ekolit, pp: 720. 

4. Schlichting, H. K. and Gersten, 2003. Boundary 
Layer Theory. 8th Revised and Enlarged 
Edition. Springer, pp: 811. 

5. Loitsyansky, L. G., 2003. Fluid Mechanics: 
College textbook. Drofa, pp: 840. 

6. Slezkin, N.A., 1955. Dynamics of the viscous 
incompressible fluid. GITTL, pp: 520. 

7. Kuznetsova, Yu. А., 2007. Environmental 
substantiation of engineering protection of 
hydrosystem tailrace facilities (by example of 
the Cheboksary hydrostation), Abstract of the 
thesis by the candidate of engineering sciences 
03.00.16, Volga State University of Technology. 

8. Polyanin, A. D. and V.F. Zaitsev, 2003. 
Handbook of Exact Solutions for Ordinary 
Differential Equations (2nd edition). CRC Press, 
pp: 816. 

9. Becker, R. A., 1954. Introduction to Theoretical 
Mechanics. McGraw-Hill, pp: 420. 

10. Bers, L., 1967. Calculus. Vol. 2. Holt, Rinehart 
and Winston inc., pp: 794. 

11. Zel`dovich, Ya. B. and A. D. Myskis, 1976. 
Elements of Applied Mathematics. Mir 
Publishers, pp: 656. 

12. Millionshchikov, M. D., 1969. Turbulent flows 
in the boundary layer and pipes. Nauka, pp: 52.  

 
 
 
8/16/2014 


