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Abstract. A decomposed generalized piecewise-polynomial model of a digital predistorter designed for linearization 
of power amplifier characteristics is suggested. The digital predistorter model is designed in such a way that its non-
linear distortions compensate non-linear ones in the subsequent power amplifier. Decomposition of digital 
predistorter model is designed taking into account the dynamics of change of signal complex envelope module. This 
signal is transformed in power amplifier. The accuracy of the compensation of non-linear signal distortions in the 
power amplifier increases at decomposition of digital predistorter piecewise-polynomial model. The comparative 
analysis of different models of digital predistorters is performed under the conditions of linearization of the power 
amplifier Winner-Hammerstein model in GSM-signal class with four carriers. 
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Introduction 

Power amplifier (PA) is an integral part of 
many communication systems. PA is a non-linear 
device in which a transmitted signal is distorted, its 
spectrum broadens and moves beyond the 
transmission band of the used communication 
channel. As the result the distortions, created by the 
influence of the adjacent channels on each other, 
increases (we can observe the interchannel 
interference) [1]–[5].  

Linearization of power amplifier 
characteristics is performed in order to prevent PA 
output signal spectrum expansion and to maintain a 
high level of amplifier energetic effectiveness (high 
coefficient of efficiency). One of linearization 
universal methods is a digital predistortion 
(precompensation) for which such features as 
robustness, simplicity of hardware implementation, 
high level of non-linearity suppression are 
characteristic [3]. The task of a precompensator 
(digital predistorter, DPD) is to linearise PA by 
means of predistortion which is used for 
compensation of non-linear distortions in a power 
amplifier. In broad-band communication channels 
dynamic non-linearity is characteristic of PA with 
high coefficient of efficiency and PA is described by 
a non-linear memory model. Consequently, DPD is a 
digital non-linear dynamic device [3], [4].  

DPD models are different: non-recursive and 
recursive polynomial constructions, different types of 
neuron networks [3]. Precompensator model 
simplicity plays an important role in DPD hardware 
implementation, that's why the DPD synthesis on the 
basis of Volterra truncated series modifications, in 
particular the most simple of them: memory 

polynomial (MP) and generalized memory 
polynomial (GMP) remains promising [1]–[6]. The 
power amplifier linearization accuracy increases in 
the process of transfer from the MP model of DPD to 
the piecewise MP model (piecewise memory 
polynomial, PMP) [7]. The PMP input signal is a 
vector of complex signal which consists of sub-
signals formed by the division of a complex domain 
of DPD scalar excitation into regions with assigned 
thresholds (radius). 

In this paper the method of DPD synthesis 
on the basis of piecewise generalized memory 
polynomial (PGMP) is developed and the 
decomposition of the above mentioned model with 
regard to the dynamics of the change of a complex 
signal module transformed in PA with the purpose of 
increasing power amplifier linearization accuracy is 
suggested. 

 
Decomposition of generalized piecewise-
polynomial model of a digital predistorter  

In the process of DPD model synthesis there 

appears the number K  of areas (zones) of complex 

envelope )(nx  domain of DPD excitation. 

Thresholds (radius) of zones are set of values iR , 

)1(...,,2,1  Ki , where i  — is the number 

of the zone, 121 ...  KRRR  [7]. Let’s 

suppose 00 R , KR . 

Independent non-linear operators in different 
zones are introduced according to the conditions:  
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 )(nFi X  while ii RnxR  )(1 , 

Ki ...,,2,1 , (1) 

where n  is the normalized discrete time, 

)(nX  is the vector of DPD input signals which is 

formed, for example, by delay line with the length 

M , 

 )(...,),1(),()( Mnxnxnxn X .  

Every non-linear operator  )(nFi X  

from the set of zones (1) is approximated by 
polynomial model, in particular, by generalized 
memory polynomial (GMP) [1]–[3]. As a result, the 

output complex envelope )(ny  of the PGMP model 

is described by the equation 
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where i  is the number of the zone set at the 

time moment n  on the basis of conditions (1), P  

( 3P ) is the odd degree of polynomial, M  is 

the PGMP memory length, L  is the time delay of 

the input signal envelope, 
)(
,,

i
mlka  is the parameter 

of the model. 
Let us perform the PGMP model 

decomposition by dividing every area into two sub-
zones depending on the dynamics of change of the 

complex envelope )(nx  module. If the complex 

envelope )(nx  module in the area i  decreases, i.e.  

0)1()()(  nxnxnx , 

(3) 

the signal )(nx  relates to the 1st sub-zone 

( 1g ) of the area. In case of condition which is 

opposite to the inequation (3) the signal )(nx  

relates to the 2nd sub-zone ( 2g ) of the area i . 

In the result of this division of areas into 
sub-zones DPD independent non-linear operators are 
introduced according to the following conditions: 

 )(1, nFi X  while 

ii RnxR  )(1  and 0)(  nx , 

 )(2, nFi X  while 

ii RnxR  )(1  and 0)(  nx , 

Ki ...,,2,1 , (4) 

where 

 )(...,),1(),()( Mnxnxnxn X .  

The PGMP model decomposition gives the 
decomposed PGMP model (decomposed piecewise 
generalized memory polynomial, DPGMP) of the 
following type: 
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, (5) 

where i , g  are the numbers of the zone 

and the sub-zone set at the time moment n  on the 

basis of conditions (4), 
),(

,,
gi
mlka , P  ( 3P ), 

M , L  are the parameter, the odd degree, the 
DPGMP memory length and the signal envelope time 
delay respectively. 

Thus, the DPGMP model reflects the fact 
that signal complex envelopes with increasing and 
decreasing modules are transformed in PA by 
different non-linear operators. 

Parameters of PGMP (2) and DPGMP (5) 
models are resulted from training DPD which is 
performed according to direct or indirect structure 
[3]. The indirect structure is often used in practice. 

This structure is shown in Fig. 1, where G  is the PA 
gain. 
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Fig. 1. Indirect structure of DPD training 

 
In the DPGMP model (5) the optimal 

coefficient vector 

 TMm aaaaA ...,,...,,, 10 , where 

 Tgi
mlP

gi
ml

gi
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, is defined by the iterative procedure fulfilled in 
accordance with the structure shown in Fig. 1. At 
every iteration in the root-mean-square metric it is 
required to solve the approximation task  
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 1,0
min)()(




Nn

o nyny , 

where N  is the number of signal samples 
taking part in DPD training. 

Let us use the precompensator DPGMP 
model (5) for linearization of the power amplifier 
Winner-Hammerstein model [8]. 

 
Linearization of the power amplifier Winner-
Hammerstein model 

PA of AB class is described by the low-
frequency Winner-Hammerstein model which 
includes the following equations of cascade blocks 
[8]: 

— difference equation of the linear dynamic 
circuit 

)1(2,0)2(5,0)()(  nvnununv , 

where )(nu , )(nv  is the input and output 

signals of the circuit correspondingly;  
— equation of memory less nonlinearity 

4
5

2
31 )()()()()()( nvnvbnvnvbnvbnw 

, 

where jb 0858,00108,11  , 

jb 1583,00879,03  , 

jb 8891,00992,15  ; 

— difference equation of the linear dynamic 
circuit 

)1(4,0)2(1,0)()(  nrnwnwnr
, 

where )(nw  is the input signal of the 

linear circuit, and )(nr  is the PA output signal. 

The excitation )(nu  of the PA low-

frequency model is a complex envelope of GSM 

signal with four carriers in the frequency band of 20 
MHz, which is situated relative to the central 

frequency of 845,1  GHz. Sampling frequency of 

the GSM signal envelope is 32,184  MHz.  

Normalized non-linear amplitude 

characteristic of the described PA is )~(~
nn

ur , 

where 
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shown in Fig. 2. 
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Fig. 2 Normalized non-linear amplitude 
characteristic of the PA  

 
For described PA linearization by 

predistorter PMP, PGMP and DPGMP models with 

memory 4M , and degrees 3P  and 5P  
were used. 

Normalized mean-square error, dB (NMSE) 
of PA linearization was calculated using the 
following formula 
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where Gnrnx /)()(  , G  is the PA 

gain. Input signal )(nu  had the length 

339106N  of samples. 

NMSE error at the 6th iteration of PA 
linearization (errors were changing insignificantly on 

the following iterations), as well as the number K  

of areas and the number Q  of parameters of DPD 

models at different degree P  are represented in 
Table 1. 
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Table 1. PA linearization error, number of areas 
and parameters in DPD models 

 
 

Fig. 3 shows the PA normalized amplitude 
characteristic which corresponds to the one shown in 
Fig. 2 and get at the 6th iteration of the amplifier 
linearization with the help of precompensator 
DPGMP model.  

The comparative analysis of Fig. 2 and 
Fig. 3 shows that precompensator DPGMP model 
carries out PA linearization with a high accuracy. 
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Fig. 3 Normalized amplitude characteristic of the 
PA after its linearization with the help of DPGMP 
precompensator 

 
Conclusion 

Basing on the analysis of Table 1 and Fig. 3 
we can conclude that the precompensator DPGMP 
model provides higher precision of linearization of 
the PA Winner-Hammerstein model comparing to the 
similar DPDs.  

DPGMP and PGMP models have similar 
complexity at the similar time delay of the input 

signal envelope ( 1L ), however the decomposed 
model is more accurate than the PGMP model.  

The PMP model of DPD provides the least 
accuracy of PA linearization.  

 
Report 

The statement that non-linear power 
amplifiers transform signal complex envelopes by 
different ways according to increase or decrease of 

the envelope module was taken into account at 
synthesis of the precompensator DPGMP model. 
Taking into account the PA mentioned property in 
the DPGMP model contributes to increase in PA 
linearization precision in comparison to linearization 
fulfilled by PGMP and PMP models of DPD.  

The advantage of the DPGMP model over 
the PGMP model of DPD at suppression of non-
linearity of the AB class power amplifier Winner-
Hammerstein model is observed at similar 
complexity of the said DPD models (from Table 1 the 

number 672Q  of parameters in the model (2) 

and (5) at 1L , 3P ; the number 

1152Q  of parameters in the model (2) and (5) 

at 1L , 5P ).  

There is the fact that the bigger value L  
(time delay of the input signal envelope) in the 
predistorter DPGMP model, the higher precision of 
PA non-linearity compensation. 

The method of DPD piecewise-polynomial 
model decomposition is independent of the form of 
the inner polynomial, that's why it is possible to 
increase the accuracy of PA linearization by using 
more complicated mathematical construction [9]-[12] 
in the DPD decomposed model, than generalized 
memory polynomial (DPGMP) in the model (5). 
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