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1. Introduction 

Optimal portfolio selection is a key challenge in 
the activities of commercial banks, pension funds, 
insurance companies, etc. Today there exist many 
approaches to form investment portfolio’s structure. 
In this paper we make review of some quantitative 
approaches and present the results of experiments 
with portfolio selection models where that 
approaches were implemented. All experiments were 
made on the Russian stock exchange market. 

First, let us describe some portfolio investment 
models. For that we need a basic set of notations, 
which will be used in considered models. Let 

ni ,1  denotes the different risky assets where n  

is the amount of the assets in portfolio. Let x  

denotes the 1n  vector of portfolio weights and ix
 

is the share of the portfolio invested in asset i . Thus: 
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 and 
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Let i  denotes the expected return of asset i , 

ij  are the coefficients of the variance-covariance 

nn  matrix V  and constR
 is the determined by 

investor level of return for portfolio. Let Tt ,1  

denotes the time periods of historical data and it  is 

the return of asset i  at time t . Thus, expected 

portfolio’s return and portfolio’s return at time t  
look like: 
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H. Markowitz described own model in his 
famous paper [1]. The key idea of this model is to 
balance the expected return and risk. He offered to 
use the mean return as expected return and Variance 
as risk measure. There exist also several assumptions, 
which could be considered at large in original paper. 
The mathematical model is set out below. 
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(3) 

Here the objective function represents the 
Variance of portfolio. In practice, solving this 
problem one can get solution, which consists of 

negative weights ix
 in portfolio. Negative ix

 could 
be interpreted like call to complete «short sale» 
contract. However, we can observe in practice that 
sometimes we can’t or not allowed to complete 
«short sale» contract. For example, Russian Financial 
markets administration disallowed ability to complete 
«short sale» contracts at the period of World 
Financial Crisis 2008 [2]. That could be reclaimed 

very easy by adding positive constraint like 
0ix

, 
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but in this case the complexity of the optimization 
problem increases. Using the Variance as a risk 
measure is the other disadvantage of Markowitz 
model. Minimizing the Variance, we can lose 
portfolio, which periodically has high positive 
returns. 
 
2. Material and Methods. 

Consider the alternative risk measures, which 
could be used as objective function. One of them is 
Semivariance. It’s possible to eliminate the 
disadvantage of the Variance using this measure. 
Semivariance is the expected value of the squared 
negative deviations of possible outcomes from the 
expected return [3]. The definition is derived as 
follows: 

     0,min RERERSV 
, (4) 

where SV  is Semivariance, R  denotes the 

time series of portfolio’s returns, and 
 E

 denotes 
mean value. The statistical estimation of this measure 
looks like: 
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Thus, final model looks like: 
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(6) 

Other risk measure we used is Mean Absolute 
Deviation (MAD) [4]. This measure calculates the 
deviation from the expected return. As a result, user 
gets a linear programming problem. Some researches 

show that using MAD  measure is equal to using 
the Variance [5]. We are going to test this thesis on 
Russian stock exchange market. The definition is 
derived as follows: 

    RERERMAD 
. (7) 

The statistical estimation of this measure looks 
like: 
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Thus, model with MAD  risk measure looks 
like: 
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(9) 

Value-at-Risk is one of the actively practice-
used risk measure. The Value-at-Risk at confidence 

level 1  of a portfolio 
 VaR

 is calculated 
by 

    VaRRP
. (10) 

This formula could be interpreted like the 
minimum amount that investor can loose with a 

confidence interval of 1 . We should make some 
transformations to get the statistical estimation of this 
measure. First, let that portfolio’s return is normally 
distributed. Thus: 
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(11) 

where 
  is the portfolio’s mean return,   is 

portfolio’s standard deviation, z  is quantile of the 

standard normal distribution of order  . For 

example, VaR  with confidence level 0.95 (i.e. 

when 05.0 ) is calculated like 

 6449.105.0 VaR
. Thus, portfolio 

selection model with VaR  risk measure looks like: 
 





































  

  

T

t

T

t

n

i
iti

n

i
iti

n

i
iti

x
x

T
x

T
zx

T 1

2

1 111 1

1

1

1

1

1
min  

 

const

n

i
ii Rx 

1


, 

(12) 



 Life Science Journal 2014;11(11)       http://www.lifesciencesite.com 

 

775 

1
1




n

i
ix

, 
0ix

. 
In cases of alternative risk measures we don’t 

need to calculate covariance matrix. Also, in cases of 
Semivariance and Mean Absolute Deviation we can 
replace mean value by a specific return level. For 
example, we can use some index’s return as specific 
return level. In this case we get model related to 
index. We also made experiments using Moscow 
Interbank Currency Exchange Index (MICEX) 
index’s return as specific return level. The main result 
is that we can get portfolio with return close to 
index’s return but the risk of this portfolio sometimes 
can be lower. 

The Black-Litterman model was designed like a 
practice-oriented model. To do this, Black and 
Litterman proposed a theory, which they called 
«equilibrium» approach [6]. Equilibrium returns are 
calculated like: 

mktVx , (13) 

where   is vector of the equilibrium return, 

  is risk aversion coefficient, 
mktx  denotes market 

capitalization portfolio, where every weight 
mkt
ix

 is 

proportional to asset i  market capitalization. Risk 
aversion coefficient characterizes the investor’s 
willingness to sacrifice the value of the expected 
portfolio return for reducing the risk expressed by the 
dispersion of expected returns. 
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where fr
 denotes riskless rate and 
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 is the Variance of 

market capitalization portfolio 
mktx . Let k  denotes 

number of expert views. Consider the Black-
Litterman formula for aposterior expected return, 
which allows one to combine equilibrium returns and 
expert views with given confidence levels: 
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where 


 is new 1n  aposterior vector of 

expected returns,   is a scalar coefficient, P  is 

nk   matrix identifying the assets, on which the 

investor has a subjective opinion,   kk   is 
diagonal covariance matrix with the levels of trust for 

each of the subjective views, 
Q

 is 1k  vector of 
subjective views. The uncertainty of the subjective 

views is reflected in the error vector  , whose 
elements are normally distributed with zero mean, 

and the matrix  . Thus, the final values of 

subjective opinion are given as 
Q
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Variations of the elements of the error vector 

form   matrix, where   is a diagonal covariance 
matrix. The matrix is diagonal indeed, because, 
according to the prerequisites of the model, 
subjective opinions are independent of each other. 

Variations i  of the error vector   show measure 
of uncertainty of expert views: 
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There exist several approaches for determining 

the elements of   [6, 7]. Finally, model with Black-
Litterman approach and VaR risk measure looks like: 
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(18) 

where constVaR
 denotes the investor desired 

limit level of Value-at-Risk. 
To solve problems (3), (6), (9), (12) and (18) by 

classical methods is a quite time-consuming task. 
Sometimes it’s more convenient to use genetic 
algorithms [8] to solve a lot of optimization problems 
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with nonlinear goal function and complex constraints. 
Genetic algorithms are a class of the heuristic search 
algorithms based on the evolution of the 
approximations used for simulation and optimization 
problems [9]. Diagram of a base genetic algorithm we 
used is presented in Figure 1. 

 

 
Figure 1. Diagram of a base genetic algorithm 
 
Parameters of base genetic algorithm we used to 

solve portfolio optimization problems are presented 
in Table 1. One of the main advantages of genetic 
algorithms is universality. We just changed the 
fitness-function for each optimization problem when 
the core of program remained unchanged. We used 
standard barriers method in fitness-function to take 
constraints in optimization problems into account. 

 
Table 1. Parameters of the genetic algorithm 

# Parameter Value 
1 Number of chromosomes 7 
2 Number of specimens 1000 
3 Probability of crossover 0.8 
4 The probability of mutation 0.2 
5 Selection type Tournament selection 
6 Crossover type Two-point crossover 

7 
New generation formation 

type 
With descendants 

only 
 

3. Results. 
In our experiments we used data of Russian 

stock exchange market on the example of MICEX. 
Some information about the shares which were 
chosen is presented in Table 2. Most of those shares 
are included in MICEX index. The time interval of 
our experiments is between 01.11.2010 and 

01.06.2011. This interval contains all types of trends: 
growing, falling and sideways. 

 
Table 2. Shares traded at MICEX which were used in 
experiments 

# Enterprise 
Capitalization 
(billion rubles) 

Number of 
shares 

1 
Tatneft 
(TATN) 

416.57 
2 178 690 

700 

2 
Gazprom 
(GAZP) 

5 627.19 
23 673 512 

900 

3 
Rostelekom 

(RTKM) 
124.97 728 696 320 

4 VTB (VTB) 1 049.19 
10 460 541 

337 338 
5 Lukoil (LKOH) 1 752.08 850 563 255 

6 
Polus-Zoloto 

(PLZL) 
321.40 190 627 747 

7 Uralsib (URSI) 78.30 
292 575 808 

568 

8 MTS (MTSI) 519.06 
1 993 326 

138 

9 
Sberbank 
(SBER) 

2 340.67 
21 586 948 

000 

 
We used the Sharpe coefficient [10] to estimate 

the quality of the portfolios. This coefficient is also 

known as reward-to-variability ratio RVAR : 

 


frRE
RVAR




 , 

((19) 

where   is portfolio’s standard deviation and 

 frRE 
 is average risk premium. 

Let’s consider the results of the experiments on 
Russian market. First of all, pay heed to profitability 
dynamic charts. We compare profitability dynamics 
of Semivariance model (Figure 2), MAD model 
(Figure 3), VaR model (Figure 4) and Black-
Litterman model (Figure 5) with MICEX index and 
Markowitz model’s profitability dynamics. 

 
Figure 2. Semivariance model’s profitability dynamic 
comparison 

 



 Life Science Journal 2014;11(11)       http://www.lifesciencesite.com 

 

777 

4. Discussions 
As we can see, one of the best results is 

demonstrated by Black-Litterman model. The result 
of the Black-Litterman model depends on expert 
views. For this reason this model is more useful for 
professional investors. In negative situations models 
with alternative risk measures (Semivariance, MAD, 
VaR) demonstrate results better than MICEX index 
and Markowitz portfolio. In many cases the model 
with MAD risk measure demonstrates results equal to 
Markowitz model. The Sharpe ratio shows, that use 
of alternative risk measures increases the quality of 
portfolio. In cases of growing trend all portfolios 
regardless of the structure increase almost identically. 
In cases of falling and sideways trends the portfolio’s 
structure plays key role. Also we should notice that 
all models (excluding model with Black-Litterman 
approach) are optimized historically. It means, that 
portfolio’s structure will be correct if current situation 
retains in the future. As practice shows, current 
situation continues not so long. Therefore the 
structure of portfolio should be periodically 
recalculated using actual data. 

 

 
Figure 3. MAD model’s profitability dynamic 
comparison 

 

 
Figure 4. VaR model’s profitability dynamic 
comparison 

 

 
Figure 5. Black-Litterman model’s profitability 
dynamic comparison 

 
Portfolio structures for each model are presented 

below (Figure 6). 
 
 

 
Figure 6. Structure for each model 

 
And the Sharpe ratios for each model are 

presented in Table 3. 
 

Table 3. Sharpe ratios for each model 

# Model 
Average 

risk 
premium 

Sharpe 
ratio 

1 Markowitz 0.051 1.125 
2 Semivariance 0.059 1.188 
3 MAD 0.058 1.196 
4 VaR 0.091 1.701 
5 Black-Litterman 0.113 2.060 
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