
Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 506

Simulation of concurrent process with Petri-Markov nets

Alexey Nikolaevich Ivutin, Eugene Vasilevich Larkin, Yuri Ivanovich Lutskov, Aleksander Sergeevich Novikov

Tula State University, Lenin av. 92, Tula, 300012, Russia

Abstract. Mathematical apparatus of Petri-Markov nets is described. Petri-Markov simple subnets are introduced.
Structures for the simulation of parallelism based on the simple subnets are proposed. Mathematical relationships for
the evaluation of the time characteristics of algorithms for a wide class of concurrent computing systems are
described.
[Ivutin A.N., Larkin E.V., Lutskov Y.I., Novikov A.S. Simulation of concurrent process with Petri-Markov nets.
Life Sci J 2014;11(11):506-511] (ISSN:1097-8135). http://www.lifesciencesite.com. 86

Keywords: Petri net, semi-Markov process, Petri-Markov net, algorithm, parallelism, concurrency, computer
system

Introduction

Currently, a parallelism is a prevailing
paradigm of computational processes organisation. In
the specialised computer sphere, the idea of
parallelism has been used in practice for more than
fifty years (CDC-6600 1964 [1] consists of ten
independent functional devices operated in parallel),
with up-to-date concurrent computations being used
in practice in both multi-core processors and
computer networks [2]. To organise computational
process in such structures, programmers face the
problem of non-optimal parallel hardware utilisation,
which is associated with such problems as low
processors load coefficients and conflicts of access to
shared resources [3].

In [4], on the basis of the investigation of the
instruction interpretation process using a Von-
Neumann computer, it was shown that the number of
machine cycles that a processor spends on the
execution of a deterministic instruction is a random
one. This distribution of the number of machine
cycles depends on the hardware speed and the
distribution of the processed data. Additionally, in
[5], the characteristics of the transitions between
algorithm operators for the external observer were
classified as quasi-stochastic. As a result, the theory
of random processes, particularly Markov (generally
semi-Markov) process, should be applied for
evaluation of time complexity. A major contribution
to the theory was produced by U.K. Belyaev, B.V.
Gnedenko, D.R. Koks, D. Lloyd, V.L. Smith, B.
Harris, and A.M. Shirokov. Their work potentially
may be put on a basis of the mathematical apparatus
of time complexity evaluation of sequential
algorithms; however, without modifications, and in
particular, in the parallelism and/or concurrency area,
the use of such a theory is extremely difficult.

The methodology of the modelling of
concurrent processes was elaborated in the works by
C. Petri, W. Reisig, J. Peterson, and V.E. Kotov [6 -

10], where the apparatus of Petri nets was applied in
the research of parallelism. The situational (causal)
character of switches in Petri nets [6, 11]
predetermine the application of such apparatus for the
modelling of algorithm structures and the logic of the
events occurring. However, the asynchronous nature
of Petri nets theory permits the answering of the
question about the principal accessibility of states,
but they cannot be used to predict the event
occurrence physical time.

Broadening of the classical Petri nets theory
leads to a time-extended Petri nets theory [12-14].
Counters for the control of local or global time are
included in such models. The time responses of token
sojourns in positions, the generation/death of tokens
after certain time, etc. are also determined in the
model. Models in which the time responses are
connected with transitions, notably the Ramchandani-
Starke discrete-time model and the Merlin time-
continuous model are the most popular [15].
However, even in an improved version, the timed
Petri nets do not allow the consideration of the entire
variety of interactions in concurrent systems. This
fact is connected particularly with the restriction of
the logical conditions of net switching with
elementary conjunction.

In a model focused on the evaluation of the
algorithm time complexity in concurrent computer
systems must provide the following features:

a certain and specific strategy of the use of
resources for data processing in every parallel
system;

a dynamic approach of the release/involving
of the computational resources in the process of
algorithm execution;

the necessity of data exchange (intermediate
results) between computation units and, connected
with this phenomenon, the necessity of the
synchronisation of the operation of processors;

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 507

an availability of the “competition” effect
between components functioning concurrently. Such
demands were most completely taken into account in
the apparatus of Petri-Markov nets (PMN) described
below, in which both the aspects relevant to random
processes in computational units and the logic aspects
of the modulus interaction [16-17] are combined. The
models under investigation consider the structures,
described parallelism, time-stochastic parameters of
semi-Markov processes, and logic of an interaction of
the computational units.

Mathematical apparatus of Petri-Markov nets
(PMN)

The most general description of the PMN
approach is based on the construction of a system of
sets that comprises the PMN. The Petri-Markov net is
a structural parametric model determined by the set:
 = {, М}, (1)

where  = {A, Z, R
~

, R̂ } - is a set that describes a
structure of a directed bichromatic graph, which
describes a Petri net; A = {a1(a), ..., aj(a), ..., aJ(a)} - is a
finite set of positions; Z = {z1(z), ..., zj(z), ..., zJ(z)} - is a
finite set of transitions; J(a) - is the size of a set of
positions; J(z) - is the size of a set of transactions;

    zjajr~
~
R - is an adjacency matrix of size

J(a)  J(z), which represents the positions of set A to

the transactions of set Z;     ajzjr̂ˆ R - is an

adjacency matrix of size J(z)  J(a), which represents
the transactions of set Z to the positions of set A; M =
{q, h(t), } - is a set of parameters, being applied to
structure П; q = (q1(z), ..., qj(z), ..., qJ(z)) - is a vector
that determines the probabilities of beginning a
process in one of the transitions of set Z; h(t) =
[hj(a)j(z)(t)] - is a semi-Markov matrix of size J(a) 
J(z); t - is time;  = [i(z)i(a)] - is a matrix of the
logical conditions of size J(a)  J(z);

  
  









;if,0

;if,1
ˆ

)(

)(
)()(

zjAaj

zjAaj
ajzj zOa

zOa
r

OA(Z) = {ОA(z1(z)), ..., ОA(zj(z)), ..., ОA(zJ(z))} - is an
output of the functions of the transitions;
                   thtfptt zjajzjajzjaj  fph

 (2)

 









);(if,0

);(if)],([

)()(

)()()(
)(

zjAaj

zjAajzjA
ajzj zOa

zOazI

 (3)
IA(Z) = {IA(z1(z)), ..., IA(zj(z)), ..., IA(zJ(z))} - are the input

functions of the transitions;     zjajpp - is

the stochastic matrix of a semi-Markov process;

       tft zjajf - is the matrix of the time

densities of a semi-Markov process;  - is the
symbol of a matrix direct multiplication.

The positions of the PMN simulate the
operators of the concurrent algorithm. The transitions
simulate the interactions of the operators.

Regarding the probabilities and densities, the
following constraints apply:

1
)(

1)(
)(



zJ

zj
zjq ;

1
)(

1)(
)()(



zJ

zj
zjajp ;

0,0)()(),( tiftf zjaj ;





0

)(),(1)(dttf zjaj .

For a numerical analysis of the processes in
parallel computing systems, the following parameters
may be determined:

the matrix of expectations

     



0

)(dtttT zjaj fT T (4)

the matrix of dispersions D = (Dj(a)j(z)) in the
form

TTfD  


0

2)(dttt . (5)

We will differentiate between the connected
and the disconnected PMN. Let us change the arcs

    zjaj za , ,     ,, ajzj az ,   Aa aj  ,

  Zz zj  onto the edges     zjaj za , . The

modified net may be called feebly connected if one of
the following paths can be built between its different
objects:

aj(a)  ak(a), 1(a)  j(a), k(a)  J(a);
zj(z)  zk(z), 1(z)  j(z), k(z)  J(z); (6)

aj(a)  zj(z), 1(a)  j(a)  J(a); 1(z)  j(z)  J(z).
The initial net may be called strongly

connected if the modified net is a feebly connected
one, and the paths
aj(a)  ak(a), 1(a)  j(a), k(a)  J(a);
zj(z)  zk(z), 1(z)  j(z), k(z)  J(z); (7)
aj(a)  zj(z), 1(a)  j(a), k(a)  J(a); 1(z)  j(z), k(z) 
J(z);

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 508

zj(z)  aj(a), 1(a)  j(a), k(a)  J(a); 1(z)  j(z), k(z) 
J(z)
are retained after the restoration of the arcs

    zjaj za , ,     ,, ajzj az instead of the

edges     zjaj za , .

Set Z = {z1(z), ..., zj(z), ..., zJ(z)} is divided into
four disjoint subsets: the subsets of the beginning
transitions ZB, the subsets of the ending transitions
ZE, the subsets of the primitive transitions ZP and the
subset of the synchronisation transitions ZS:
Z = ZB  ZE  ZP  ZS, (8)
ZB  ZE = ; ZB  ZР = ; ZB  ZS = ; ZE  ZP =

; ZE  ZS = ; ZP  ZS = ;
For the mentioned types of transitions, the

following conditions are true:
if zj(z)  ZB, then |IA(zj(z))| = 0 and |OA(zj(z))|  1;
if zj(z)  ZЕ, then |IA(zj(z))|  1 and |OA(zj(z))| = 0;
if zj(z)  ZР, then |IA(zj(z))| = 1 and |OA(zj(z))| = 1;
if zj(z)  ZS, then |IA(zj(z))|  1 and |OA(zj(z))|  1,

where |...| denotes the size of a set.
The beginning, ending, and synchronisation

transitions form the subset of the so-called non-
primitive ones:
ZNP = ZB  ZE  ZS. (9)

One of the elements of PMN as a
mathematical apparatus for the simulation of
concurrent algorithms is the notion of a token as a
certain pointer. If a token is placed at position aj(a),
this indicates that the named position at the present
time t is in the active state. This, in turn, means that
at the present time t, the operator that is simulated by
position aj(a) is executed by a pre-defined
computation unit.

The functional similarity of the
interpretation of algorithm operators in a parallel
computing system is a sequence of state exchanges
that is realised as a sequence of half-steps j(a),j(z) =
(aj(a), z, j(z)), i.e., executed from positions into
transitions, or j(z),j(a) = (aj(a), z, j(z)), i.e., executed
from transitions into positions. Two consecutive half-
steps form a step. While executing a half-step j(a),j(z),
the token is withdrawn from the position aj(a)  IA(z,
j(z)) and placed into the transition z, j(z)  OZ(a, j(a)).
While executing a half-step j(z),j(a), the token is
withdrawn from the transition z, j(z) and placed into
the position aj(a)  OA(z, j(z)).

The half-step j(a),j(z) is executed if a decision
about the execution of a certain half-step is made
with probability pj(a)j(z) and the time of half-step
execution, which is defined with density fj(a)j(z)(t), has
elapsed. The half-step j(z)j(a) is executed if logical
condition (3) is fulfilled, i.e., if j(z)j(a) is equal to
j(z)j(a) = 1.

Petri-Markov simple subnets

A Petri-Markov net (1) may be divided into
subnets, whose structure is described as follows:

k = {Ak, Zk,
kR

~
;

kR̂ }, (10)

where Ak  A; Zk
  Z. RR

~~
k

; RR ˆˆ k
.

The matrix
kR

~
can be determined from

matrix R
~

 by means of the deletion of the rows
corresponding to positions А\Ak and the columns
corresponding to the transitions Z\Zk, where \ is a
symbol designating the set difference operation. The

matrix
kR̂ is determined from matrix R̂ by means

of the deletion of the rows corresponding to
transitions Z\Zk and the columns corresponding to the
positions А\Ak. The subnet k is also a directed
bichromatic graph.

Let us assume that a PMN is broken up into
subnets in the following manner:


K

k

k

1

 , (11)

where k = {k, Мk} - is a Petri-Markov simple

subnet (PMSS); k = {Ak, Zk,
kR

~
,

kR̂ } - is the
structure of a PMSS; Ak = {ak

1(a, k), ..., a
k
j(a, k), ..., a

k
J(a,

k)}  A; Zk = {zk
1(z, k), ..., zk

j(z, k), ..., zk
J(z, k)}  A;

    k
kzjkaj

k r
,,

~~
R ;

    k
kajkzj

k r
,,

ˆˆ R ; Mk = {qk, hk(t), k} - are

the characteristics of a PMSS; qk = (qk
1(z, k), ..., q

k
j(z, k),

..., qk
J(z, k)); hk(t) = (hk

j(a, k)j(z, k)(t)); 
k = (k

i(z, k)i(a, k));
hk(t) = pk  fk(t); pk = (pk

j(a, k)j(z, k)); fk(t) = (fk
j(a, k)j(z,

k)(t)).
The Petri-Markov simple subnets k

intersect on non-primitive transitions, i.e.,

NP

K

kl
l

lk Z











































,1

,

Kk 1 . (12)

All other transitions of a PMSS are the

primitive ones, i.e., if  
k

kzj Zz , and

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 509

 























K

kl
l

l
kzjz

,1
, , then   k

kjA AzI , ,

  k
kjA AzO , and

    1,,  kjAkjA zOzI .

Every PMSS k includes at least one
transition of a subset ZB  ZS and one transition of a

subset ZE  ZS. If   kk
BA AZO  , then the

transitions of subset   k
BSB

k ZZZZ 

form a subset
k
BZ of the initial transitions of PMSS

k. If   kk
EA AZI  , then the transitions of

subset   k
ESE

k ZZZZ  form a subset

k
EZ of the ending transitions of PMSS k.

The positions and primitive transitions

inside of PMSS
k form typical structures, which

are shown in fig. 1.

...

...

aj(a,k)

zj(a,k) zl(a,k)

zm(a,k) zn(a,k)

b aj(a,k)

zj(a,k)

zl(a,k)

a

Fig. 1. Typical structures inside a PMSS

Structure

       












































...

...

...

...

...
0
1
...

...

...

...

...

,
...
...
...

...
1
...

...
0
...

...

...

...
,...,,,..., ,,, kzlkzjkaj zza

, (13)
which is shown in fig. 1 a, simulates the linear part of
a sequential algorithm, which is executed by one
computation unit (i.e., of Von-Neumann type).

Structure

            ,...,,,,,..., ,,,,, kzlkzjkzlkzjkaj zzzza
















































.........
...0...
...0...
...1...
...1...
.........

,
...
...
...

...
1
...

...
1
...

...
0
...

...
0
...

...

...

... , (14)

which is shown in fig. 1 b, simulates the ramified part
of an algorithm, which is interpreted using one
computation unit.

The typical structures, which are shown in
fig. 2, are intended for the simulation of parallelism
as follows:

“fork” (fig. 2 a) -

         , , ,

...

... 1
, , , ... , , ... , ... 0 ... , ... 0 1 1 ...

... 0

...

j a k j a l j a m j za a a z

  
     

    
     
    

;

(15)

...

b

aj(a,m)

zj(z)

a

aj(a,l)

aj(a,k)

k

l m

...

zj(z)

k l

m

aj(a,k) aj(a,l)

aj(a,m)

...
aj(a,n)

zj(z)

c

aj(a,m)

k

m n

...

l

aj(a,k) al(a,l)

Fig. 2. Structures for the simulation of parallelism

“joint” (fig. 2 b) -

         , , ,

...

... 1
, , , ... , , ... , ... 1 ... , ... 0 0 1 ...

... 0

...

j a k j a l j a m j za a a z

  
     

    
     
    

;

(16)
“sync” (fig. 3 c) -

            , , , ,, , , , ... , , ... ,j a k j a l j a m j a n j za a a a z

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 510

...

... 1

... 1 ... , ... 0 0 1 1 ...

... 0

... 0 ...

...

 
 

  
      

   
. (17)

In (15) and (16) transition

 
k l m

j zz Z Z Z   . In (17), transition

 
k l m n

j zz Z Z Z Z    .

Let us consider the transitions

  S
k

kzj ZZz , , which have on one

position belonging to subset Ak both input and output

functions (fig. 3), i.e.,    1,  k
kzjA AzI ,

   1,  k
kzjA AzO .



aj(a,k)

aj(a,k)

al(a,k)

al(a,k)

zj(z,k)

zj(z,k) zl(z,k)

k

k

a

b

Fig. 3. Disintegration of the synchronising
transition

The structure

       












































...

...

...

...
0
...

...
1
...

...

...

...
,

...

...

...

...

...
1
0
...

...

...

...

...

,...,,...,, ,,, kzjkalkaj zaa

(18)
may be transformed to the structure

         
















































............

...00...

...01...

............

,

............

...10...

...00...

............

,...,,,...,, ,,,, kzjkzjkalkaj zzaa

(19)

by means of splitting the transition  kzjz , into the

transitions  kzjz , and  kzlz , . The transition

 kzjz , has no positions in the input function

belonging to subset
kA , i.e.,

   0,  k
kzjA AzI and

   1,  k
kzjA AzO , and it can be

classified as the initial transition of PNSS
k . The

common output function of this transition does not
change, and from the input function, a position

belonging to subset
kA is excluded.

Transition  kzlz , has no positions in the

output function belonging to subset
kA , i.e.,

   1,  k
kzlA AzI and

   0,  k
kzlA AzO . Thus, the transition

can be classed as the final transition of PNSS
k .

The common input function of this transition is equal

to the input function of transition  kzjz , before

splitting. The output function of  kzlz , may be

formed by excluding from the output function of

 kzjz , a position belonging to the subset
kA that

does not change and excluding from the input

function a position belonging to subset
kA .

Thus, instead of set
kZ , due to the splitting

during every synchronisation transition of set
kZ on

the beginning and ending transitions, subset
kẐ

may be formed, in which the elements may be
clustered onto three groups:

the subset of beginning transitions
k
BẐ ,

which includes transitions of subset
k
BZ and the

corresponding parts of the disintegrated
synchronisation transitions, with numbers 1  j(z, k) 
M(z, k);

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 511

the subset of primitive transitions
k
PZ with

numbers M(z, k) + 1  j(z, k)  N(z, k);

the subset of ending transitions
k
EẐ , which

includes transitions of subset
k
EZ and the

corresponding parts of the disintegrated
synchronisation transitions, with numbers N(z, k) + 1

 j(z, k)   kzJ ,ˆ .

Conclusions

An effective and rather straightforward
mathematical apparatus was developed for modelling
concurrent computing systems. The apparatus is
oriented towards the evaluation of the time
complexity algorithm implemented in such systems.
In models along with the structural and time aspects
of the functioning computer units the logics if
interaction of units is taken into account.

Acknowledgements

The authors thank the anonymous reviewers
for their helpful suggestions. The Ministry of
Education and Science of the Russian Federation
supported this research.

Corresponding Author:
Dr. Ivutin Alexey Nikolaevich
Tula State University
Lenin av. 92, Tula, 300012, Russia

References
1. Bell, C., 1985. A new class of multiprocessor

computers. Science, 228(April): 462-467.
2. Culler, В., О. Singh and A. Gupta, 1999.

Parallel computer architecture: a
hardware/software approach. San Francisco:
Morgan Kaufmann Publishers, Inc.

3. Lewis, T., 1997. Foundations of Parallel
Programming: A Machine-Indepedent
Approach. Los Alamitos, CA: IEEE Computer
Society Press.

4. Beizer, B., 1978. Micro-Analysis of Computer
System Performance. New York, NY: John
Wiley & Sons, Inc.

5. Ferrari, В., 1978. Computer Systems
Performance Evaluation. Englewood Cliffs, NJ:
Prentice-Hall.

6. Petri, С.A., 1996. Nets, time and space.
Theoretical Computer Science, 153(1-2): 3–48.

7. Reisig, W., 1998. Elements Of Distributed
Algorithms: Modeling and Analysis with Petri
Nets. Springer-Verlag.

8. Reisig, W., 1994. Correctness proofs of
distributed algorithms. Theory and Practice in
Distributed Systems. International Workshop,
Dagstuhl Castle, Germany, pp: 164–177.

9. Peterson, J.L., 1981. Petri Net Theory and the
Modeling of Systems. Prentice Hall.

10. Kotov, V.E., 1984. Petri Nets. Moscow: Nauka.
11. Murata, T., 1989. Petri nets: Properties, analysis

and applications. Proceedings of the IEEE,
77(4): 541–580.

12. Balsamo, S., P.G. Harrison and A. Marin, 2012.
Methodological construction of product-form
stochastic Petri nets for performance evaluation.
Journal of Systems and Software, 85(7): 1520–
1539.

13. Choi, H., V. Kulkarni and K. Trivedi, 1994.
Markov regenerative stochastic Petri nets.
Performance Evaluation, 5316(94): 337–357.

14. Kristensen, L.M., J.B. Jorgensen and K. Jensen,
2004. Application of coloured petri nets in
system development. Lectures on Concurrency
and Petri Nets, 3098: 19–27.

15. Jensen, K., 1992. Coloured Petri Nets - Basic
Concepts, Analysis Methods and Practical Use.
- Volume 1: Basic Concepts. Springer-Verlag.

16. Ramaswamy, S. and K.P. Valavanis, 1996.
Hierarchical Time-Extended Petri Nets (H-
EPN) Based Error Identification and Recovery
for Hierarchical System. IEEE Trans. on
Systems, Man, and Cybernetics- Part B:
Cybernetics, 26(1): 164 -175.

17. Ignatiev, V.M. and У.М. Larkin, 1997. Patri-
Markov Nets (In Russian). Tula: Tula State
University.

7/4/2014

