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Abstract. In the presented study a method of a calculation of effective elasticity modules of isotropic matrix 
composites with isolated spherical inclusions is proposed. The feature of the method is a calculation of a 
concentration of R.Hill model's average deformations coefficients through effective averaging volumes of 
deformation phases. In terms of quantity, those volumes are a ratio of a sum of deformations in a volume of a phase 
to a sum of deformation in a volume of a composite. Analytical relationships for a calculation of effective Young 
modulus and Poisson ratio of a composite are presented. The equation for a calculation of Young modulus is 
presented in a form of Voigt ratio. In contrast to Voigt model, instead of volume fractions of phases, fractions of 
effective averaging volumes are used. Effective averaging volumes can be found by means of solving boundary-
value problem of elastic deformations of a representative cell of a two-phase composite using a basic discretization 
scheme and mathematical apparatus. For a solution, a boundary variant of porous composite with zero values of 
elastic constants of inclusions is implemented. Using experimental data for two-phase composites with different 
combinations of elasticity modules of phases, the proposed method's adequacy verification is conducted. The 
proposed model, in terms of Young modulus's calculation accuracy, is equal to fundamental models of Christensen 
(MCr) and Mori-Tanaka (MM-T). In comparison to MCr and MM-T, results of a calculation of Poisson ratio 
correlate with experimental data better. It was demonstrated, that formal zeroing of inclusion’s elasticity modules in 
MCr and MM-T models does not allow to adequately describe elastic properties of porous materials. The proposed 
approach considers a boundary case of a composite with a porous matrix and, thus, covers a wider range of changes 
of components elastic constants. 
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Introduction 

During a design of objects made from 
composite materials, a problem of elastic properties' 
prediction of a composite using components' known 
qualities and their content. Nowadays, various 
methods of a calculation of composites' effective 
elasticity modules are developed [1-7]. However, an 
accurate description of properties of composites with 
unconditioned content of components, which 
elasticity modules seriously vary, is not always 
possible.  

During a description of composites' 
properties, a procedure of statistical averaging is 
conducted and a material starts to be considered as 
continuum [1]. In continuum model, effective 
properties are determined by solving boundary-value 
problem of integral representative cell's elastic 
deformation. In a case of a contact of elastic bodies 
with different modules, a concentration of stresses 
and deformations occurs in an interphase boundary. 
A validity of continuum model depends on a method 
of an estimation of mode of deformation's (MD) 
heterogeneity of a cell during averaging process. In 
the method of R. Hill heterogeneity of MD is taken 
into account through concentration coefficients of 

average deformation phases [8]. However, accurate 
estimates of concentration coefficients are obtained 
only for a particular case when shear modules of 
isotropic phases are equal [8].  

A problem of elastic properties' prediction is 
also characteristic for porous materials, which have a 
maximum possible difference of phase 
characteristics. Often, during a description of porous 
materials properties calculated relationships of two-
phase composites are used, in which elastic constants 
of one of phases are equal to zero. However, results 
of such a calculation do not correlate with 
experimental data [9]. In that case, an opposite 
approach, in which, during a creation of deformation 
model of two-phase composite, a porous matrix's 
case will be taken into consideration in advance. In 
the presented paper an application of porous 
materials' deformation model in a calculation of 
effective elasticity modules of matrix composites 
using the method of R. Hill is discussed.  

 
Materials and methods  

Two-phase matrix composites with isolated 
inclusions are discussed. Each of phases and a 
composite in a whole are homogeneous and isotropic.  
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Effective elasticity modules' tensor C ijmn of a 
two-phase composite is defined as follows [8]:  

22
2

11
1 klmnijklklmnijklijnm KCcKCcC  .  

where k
klmnK – concentration coefficients of average 

deformation of phase k (k = 1, 2); ck – volumetric 
fractions of a composite's phases. Concentration 

coefficients k
ijmnK  are related with average 

deformations in phases 
kV

ij  and in a composite 

Vij  by the relationship: 

Vnm
k
ijmn

V
ij K

k

 .   (1) 

Elastic properties of isotropic materials are 
characterized by two independent constants. As basic 
ones, accepting Young modulus and Poisson ratio. 
Effective Young modulus Е of an isotropic composite 
can be determined as follows:  

222111 KЕcKЕcЕ  ,   (2) 

here Е1, Е2 – Young modules of isotropic phases; K1, 
K2 – concentration coefficients of average 
deformations of uniaxial tension εx, which are, 
according to (1), will be equal:  

Vх

V
х

k
kK




 ;    (3) 

where 
kV

х  – average tensile deformations in 

volumes of phases Vk; Vх  – average tensile 

deformations in a volume of a composite V:  
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Concentration coefficients satisfy following 
ratios [8]:  

12211  KcKc .      (5) 

Each phase in average deformation of a 
composite has its effective fraction and 
corresponding effective volume. Single-valuedness 
condition of total deformations in a volume of a 
phase results in a fact, that sum of average 

deformation of composite's tension 
Vх  in effective 

averaging volumes of phase Vαk will be equal to a 

sum of average tension deformations 
k

х  in 

volumes of phases Vk: 

k
V

хkVх VV
k

  .   (6) 

From (7) obtaining:  
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where VV kk /  – volume fraction of effective 

averaging volume of deformation of phase k. From a 
comparison of (3) and (7) it follows, that 
concentration coefficients K k will be equal to:  

k

k
k

c
K


 .    (8) 

From (7), considering (4), obtaining:  
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   (9) 

Thus, fractions of effective averaging 
volumes of deformations constitute a ratio of a sum 
of tensile deformations in a volume of a 
corresponding component to a sum of tensile 
deformations in a volume of a composite.  

Considering (8), the ratio (5) takes the 
following form:  

121  .   (10) 

After a substitution of (8) into (2) obtaining:  

2211 ЕЕЕ  ,    (11) 

The relationship (11), in terms of a structure, 
corresponds with known Voigt ratio. In contrast to 
Voigt model, in the proposed model, instead of 
volume fractions of phases, fractions of effective 
averaging volumes are used. 

Effective Poisson ratio ν is equal to a ratio of 

an average transverse deformation 
Vу  to average 

longitudinal deformation 
Vх  of a composite:  

Vx

Vy




 .  

By definition, deformations in effective 
averaging volumes are equal to corresponding 
average deformations of a composite:  

Vxxx  21 ; 
Vyyy  21 . 

  (12) 
From (12) and (10) expressing average 

deformations through fractions of effective averaging 
volumes:  

2211  xxVx ; 2211 yyyyVy    

and for Poisson ratio obtaining:  
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where 1у , 2у – fractions of effective averaging 

volumes of transversal deformations. Transverse εky 
and longitudinal εkх deformations of phase k are 
related by Poisson law: kxkkу  . Expressing ε kx 
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through ε ky , after transformations, considering (11) 
obtaining:  

1221

21




 .  

Using known values of Young modulus and 
Poisson ratio, shear modulus and triaxial compression 
modulus are calculated.  
 
Effective averaging volumes of deformation  

Relationships between effective averaging 
volumes of deformation and elasticity modules of 
phases and their content can be found by solving 
boundary-value problem of elastic deformation of 
representative cell of a two-phase composite. A 
representative cell is accepted in a form of cube with 
side b and spherical inclusion of radius R. Because of 
symmetry, 1/8 volume of the cell (fig.1) is 
considered.  
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Fig.1. Representative cell of a composite  
 

At a top face of the cell setting tension 
deformation εx. Accepting an approximation of 
homogeneous mode of deformation on the cell’s 
faces. Then, faces of the cells will remain mutually 
parallel and will be justified to use flat cross-sections 
hypothesis. With a condition of homogeneity, total 

tension deformation  х  in a cell with volume V = b3 

is equal to:  
3bdV х

V
хх      (14) 

In a framework of flat cross-section 
hypothesis volume V01 of matrix 1 around inclusion2 
will deform uniformly, and tension deformation in 
that volume will be equal to εx. Finding total tension 
deformation in volume V01 :  
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  (15) 
Deformation of central area of the cell, 

which includes interphase boundary, is occurring 

non-uniformly. Dividing that area on N parallel 
connected elementary cylindrical cells with a 
thickness dy. Each cylindrical cell represents 
successively connected two-phase elements with a 
varied concentration of phases. Cells independently 
from each other are subjected to a specified tension 
deformation with value εх. Determining geometrical 
parameters of elementary cells:  

- thickness of an elementary cell: 

 dRdy sin ;  

- phases' concentration in an elementary cell:  
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  (16) 
- volume of phases in an elementary cell: 
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Finding total deformations in two-phase area 
of matrix 1  
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and inclusion 2:  
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  (18) 
Fractions of effective averaging volumes of 

deformation k , according to (9) and considering 

(14), (15), (17), (18) will be equal to: 
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  (19) 
Ratio of sizes R/b can be found using a 

model of elastic deformation of porous materials. 
Presuming, that inclusion 2 is a pore. Then, Young 
modulus Е2 = 0 and from (11) obtaining: 

00 ЕЕ  ,    (20) 

where 0 – ratio of effective averaging volumes of a 
solid phase with elasticity modulus Е0. If inclusion 2 
is a pore, then, in a case of a successive connection of 
elementary cells, deformation of matrix 1 in a central 

area is zero ( 0)(
1  n

x ), and effective averaging 

volume 1  is equal to effective averaging volume of 

a solid phase of porous matrix01:  
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Considering (21), relationships (20) take the 
following form:  
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For a numerical integration, breaking angle 
π/2 into N parts and then obtaining relationships for a 
calculation of effective averaging volumes:  
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where 
N

n
n 2

  - angle that defines a position of 

elementary cell n.  
Ratio of characteristic sizes R/b in (16) for 

concentrations of phases in cell n expressing through 
volume fraction of inclusions с2. Volume of body is 
proportional to 3rd power of a linear dimension and 
for с2 obtaining:  
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Then, ratio R/b will be equal to:  

3
2ck
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R
 ,   (23) 

where k - constant, which is dependent on a type of 
packing of spherical inclusions. 

The discussed structural model of a matrix 
composite is correct as long as inclusions are isolated 
and are not in contact with each other. Limiting 

fraction volume of isolated inclusions 
2с  corresponds 

to an occurrence of contacts and a formation of 
bounded packaging. In a case of a contact of spheres, 
R/b = 1 and volume fractions of inclusions с2 will be 

equal to limiting:  22 сс . From (23) for constant k 

obtaining:  
 2/1 ck .   (24) 

Considering (24), ratio R/b will be equal to: 

3
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.   

Limiting fraction volume of inclusions 
2с  is 

determined by spheres packaging characteristics. In a 
case of composites production by mixing of 
components, a formation of statistically loose 
packaging is the most possible scenario. Preliminary 

calculations also showed that a better correlation with 
experimental data is achieved for a model with 

statistically loose packaging, when 
2с = 0.601 [10]. 

With the accepted assumption about a structure of a 
composite, relationships (16) will take following 
form:  

n
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Phases’ deformation )(n
xk  in (22) are 

obtained by solving uniaxial elastic tension problem 
of elementary cell with a designated value of 

deformation x . From a condition of equality of 

stresses in components of tensioned cell n )(
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and an equation for a relationship of phases’ 
deformation, obtaining:  
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Accuracy of a calculation using the proposed 

method depends on number of elementary cells N . 
Studies on a convergence of numerical solutions have 
shown that increase of N over 100 virtually doesn't 
influence results of a calculation, so, N = 100 can be 
accepted.  

Connecting obtained relationships with 
elastic characteristics of porous materials. Shear 
modules μ and triaxial compression modules K are 
the most oftenly determined. Similarly with (20) for 
shear module of porous material obtaining:  

00  s ,  

where 0 – shear modulus of solid phase; s0 – 

effective averaging volume of a solid phase in a case 
of shear. Elastic properties of powders and sintered 
porous materials can be described with high accuracy 
using following relationships [11]:  
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  (25) 
where ρ- relative density; ρ0 – initial (bulk) relative 
density of a powder.  

Expressing a fraction of effective averaging 
volume in tension0 through a fraction of effective 
averaging volume in shear s0. For that using a 
relationship for macroscopic module of triaxial 
compression K for a porous material [11]  
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and equations for relationships of Young modulus 
Jung with shear and triaxial compression modules:  
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After simple transformations obtaining:  
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where ν0 – Poisson ratio for a solid phase of a porous 
body. For a composite a role of a solid phase is 
performed by matrix 1. Function 01 for a calculation 
of effective averaging volumes k is obtained by a 
replacement of relative density ρ in (25) for a volume 
fraction of matrix с1.For a composite with isolated 
inclusions it should be presumed that с10 = 0, and 
(25) is expressed as follows:  

13

10

с

s с


 .     

    
Results and discussion  

Verification of an adequacy of the proposed 
method was performed using experimental data for 
elastic properties of two-phase composites. For the 
comparison the most accurate models of elastic 
properties of isotropic composites were considered: 
three phase model of Christensen (MCr) and model 
Mori-Tanaka (MM-T). Calculated relationships of 
MCr model are listed in [1, 2], for model MM – in 
[4]. Compositions of two-phase composites and 
elastic constants of their components are presented in 
the table. 1. The first component of a composite 
serves as a matrix 1, the second component – as 
inclusion 2.  

 
Table 1. Elastic constants of components  
 

Composite Component Young 
modulus, GPa 

Poisson 
ratio 

NiAl-
Al2O3 
[12] 

NiAl 
Al2O3 

Е1 = 186 
Е2 = 401 

ν1 = 0.31 
ν2 = 0.24 

Al-SiC 
[13] 

Al 
SiC 

Е1 = 70 
Е2 = 450 

ν1 = 0.34 
ν2 = 0.22 

Со-WC 
[13] 

Co 
WC 

Е1 = 207 
Е2 = 700 

ν1 = 0.31 
ν2 = 0.19 

W-glass 
[14]) 

W 
Glass 

Е1 = 355 
Е2 = 81 

ν1 = 0.20 
ν2 = 0.24 

 
 
Calculations are limited by maximum 

volume fraction matrix composites inclusions, which 

is 601,02 с . In a case, when inclusions' content is 

more than 
2с , it is necessary to use a model with 

interpenetrating components.  
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○ – NiAl-Al2O3

● – Al-SiC

▲– W-glass 

∆ – Co-Wc

 
Fig.2. Relationships between reduced Young 
modulus of composites and their fraction volume 
of inclusions:  
1 – The proposed model; 2 – MCr model; 3 – 
MM-T model.  
 

 
Calculated relationships of Young modulus 

of a composite E , reduced to Young modulus of 
matrix E1:Er = Е/E1, are presented in fig.2. Results of 
calculations for all models are in a good correlation 
with the experimental data. A calculation using MCr 
and MM-T models leads to almost identical results. 
The proposed model, in terms of accuracy, is equal to 
fundamental MCr and MM-T models.  

In fig.3 calculated data for Poisson ratio of 
WC-Co and Ni Al-Al2O 3 composites with different 
volume content of inclusions – Co and Al2O 3 is 
presented. In comparison with MCr and MM-T, 
results of a calculation correlate better with 
experimental data.  
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Fig.3. Relationships between Poisson ratio of 
composites and their fraction volume of 
inclusions:  
1 – The proposed model; 2 – MCr model; 3 – 
MM-T model. 
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The maximum difference of elastic modules 
of phases is being realized in a case of porous 
materials, when one of phases (pores) has zero elastic 
constants. A valid description of elastic properties of 
porous materials indirectly indicates a universal 
nature of the model. In fig.4 calculated relationships 
between porosity q effective Young modulus E and 
Young modulus of a solid phase E0 for sintered iron 
is presented. In calculations with an implementation 
of the proposed model, relationships (20) and (25) 
were used. Bulk relative density argue ρ0 in (25) was 
ρ0=0.227 [15]. In a case of calculations with MCr and 
MM-T models, zero values of elastic constants of 
inclusions were accepted.  

An implementation of MCr and MM-T 
models leads to a substantial overstatement of 
calculated values of porous iron's Young modulus. 
These models, as well as all of known continuum 
models of composites' effective properties, are 
obtained using an object with nonzero elastic 
modules of components. Our calculations (fig.4) and 
the results of the work [9] show, that formal zeroing 
of elasticity modules of inclusions does not you to 
adequately describe elastic properties of porous 
materials. The proposed model considers a case of a 
composite with porous matrix. Therefore, results of a 
calculation correlate well with experimental data. As 
a result, the proposed approach covers a wider range 
of changes of components' elastic constants. 
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Fig.4. Relationships between relative Young 
modulus of sintered iron and porosity:  
1 – The proposed model; 2 – MCr model; 3 – 
MM-T model.  ○ – experiment [15]. 

 
Thus, in spite of an approximate method of a 

solution of boundary-value problem of elastic 
deformation of a representative cell, obtained 
calculated relationships allow to describe with a 
sufficient accuracy, elastic properties of matrix 
composites in a case of a different combination of 

elasticity modules and an unconditioned content of 
isolated inclusion.  
 
Conclusion 

On the basis of elastic deformation model of 
porous materials a method for a calculation of 
effective elastic constants of matrix composites with 
isolated inclusion is developed. The feature of the 
method is a calculation of a concentration of R.Hill 
model's average deformations coefficients through 
effective averaging volumes of deformation phases. 
In terms of quantity, effective averaging volumes of 
deformations constitute a ratio of a sum of 
deformations in a volume of a corresponding 
component to a sum of deformations in a volume of a 
composite. In the proposed method instead of 
analytical equations, a numerical solution of 
boundary-value problem of elastic deformation of 
two-phase composites' representative, using a basic 
discretization scheme and calculating algorithm. That 
complicates the calculation procedure. However, only 
by a change of inclusion's shape, the proposed model 
allows to carry out an evaluation of effective 
properties of matrix composites with non-spherical 
shape of inclusions.  

For isotropic matrix composites, results of a 
calculation of effective elastic Young modulus and 
Poisson ratio are in good correlation with 
experimental data in a case of different combinations 
material constants and an unconditioned volume 
concentration of isolated inclusions. In contrast to the 
known continuum models, the proposed model takes 
into account a case of a composite with porous matrix 
and covers a wider range of changes of components 
elastic constants.  

Further development of the approach, which 
was discussed in the presented paper, consists of 
modeling of elastic properties of isotropic wire-frame 
composites with interpenetrating components. 
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