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Abstract: This paper is aimed as a comparative study the main styles of applicative computations. This is a kind of 
computations where the objects could symmetrically act each other using the only metaoperation of application. The 
application, when done, results in a value which can be used as the object which can act with other objects on equal 
rights. This evaluation is considered in three main directions: 1) in mathematics, 2) in programming, and 3) in 
computing. It is shown that the evolution of the methods of evaluation the symbolic objects is moved to the 
modeling the interaction of objects as the interaction of corresponding information processes of reductions and/or 
expansions. 
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1. Introduction 

This paper is aimed as a comparative study 
the main styles of applicative computations [1-3]. 
This is a kind of computations where the objects 
could symmetrically act each other using the only 
metaoperation of application. In symbolic notations 
this means that the pairwise combinations of objects 
are used, each pair resulting in a new object, which in 
turn could act on other objects. This is one of the 
dominant ideas in modern theoretical computer 
science [4]. In such a pair, the leftmost object is 
assumed as a function while the right neighboring 
object is the argument for this function. A result of 
applying the right object-function to left object-
argument is assumed as a value of function on this 
argument. The mathematical study of symmetrical 
interaction of objects has a durable history [5-6]. 

We illustrate by example, what is the style 
and way of computing -- depending on the area of 
knowledge in which they are used. Consider three 
directions of evaluation: 1) in mathematics, 2) in 
programming, and 3) in computing. The first 
direction is discussed in details in [6], the second -- in 
[7-8], and the third -- in [4], [9].  

As can be seen, in each case will be applied 
its own explanatory system and method of the 
graphic representation. However, it will be shown for 
example how, using the source combinator constants 
K and S to analyze the usual mathematical operations 
-- operations of the composition. As it turns out in 
terms of applicative computation, this operation is 
not elementary, i.e. non-atomic, and its “device” is 
defined by combining of the primary constants. Such 
an occurrence of “deep” structure of the composition 
operation, which is considered as atomic and 

indivisible from the viewpoint of algebra and 
mathematical analysis, emphasizes the expressive 
power of applicative computational systems. Of 
course, such methods can analyze the structure of 
other operations, but it is beyond the scope of this 
article, but the interested reader can find it in [8, 10] 
and other listed references. 
 
2. Applicative computations 

In information technologies (IT), we can 
rely on the information processes, but their diversity 
almost defies attempts at classification. However, in 
the 20-ies of the last century there was one discovery 
or invention, and this much depends on the position. 
It was discovered a few mathematical constants, 
using which you can construct or reconstruct all our 
accumulated mathematical knowledge [1]. 

These initial constants were called 
“combinators” that could be used as “building 
blocks”, a kind of “bricks”, of which the building of 
mathematics is constructed. The process of 
combining these special constants called “application 
operation” and a result of applying led to the 
formation of larger “building blocks”, and the 
process of this enlargement could be iterated. For the 
development of mathematics and logic, it was not all 
just fun and instructive, but also rewarding, 
promoting the formation of the “mathematical 
constructivism”. Arising from this mathematical 
calculus became known as “applicative 
computational systems” (ACS) [7], [8], [9]. 
 
2.1. Computation in mathematics 

In mathematics and logic we operate with 
abstract objects, which for neutrality and giving the 
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greatest generality called “obs” with corresponding 
ob-systems. 

Computational environment of 
combinatorial logic (see [2]) is a highly symmetric in 
the sense that if you take two objects, M and N, then 
we can talk about the result of computation or 
evaluation, when M is applied to N, which is written 
by (M N). In this record, M plays the role of the left 
object, and N – of the right one. Such an object (M N) 
is binary in nature, by construction, and inductive 
classes of objects can be topologically represented by 
binary trees. In this computation, the first object M is 
observed as a function which is applied to the N as 
the argument and, in relation to the images of 
ordinary mathematics, it is about the formation of 
evaluation of M at the “point” N. But if in classical 
mathematics swap M and N, then construction “N 
from M” in understanding of the value of “N at M” is 
meaningless.  

Within applicative system this computation 
is not only forbidden, but also has a definite meaning, 
since from the computational viewpoint the objects 
are absolutely symmetrical. 

We are to introduce the computational 
characteristics of generic constant combinators S and 
K. When the characteristics are written equationally, 
using equality, we get 

S a b c = a c (b c), 
K a b = a. 

We can show the process of “growing” tree 
computations for the composition operator in 
Figure 1. The composition of two functions a and b is 
defined by 

a º b (c) = a (b (c)), 
and in an applicative notation this is the conversion 

a (b (c)) = a (b c) = B a b c. 

In the original set of combinators there is no 
combinator B with these properties. But, as it turns 
out, such a combinator can be derived. The 
generation process is as follows in Figure 1.  

Construct the tree computations associated 
with the composition (unit 1). The resultant tree is 
shown in the computing unit 7. If it has existed in the 
ob-system, the transition can be made to it 
counterclockwise. See if we can create a virtual track, 
giving it a tree computing which is constructed by 
combining the known tree computations. This tree 
can grow in stages, moving from tree to tree in a 
clockwise direction. Transition 1-2 is simply the 
application of the definition of the composition. 
Transition 2-3 corresponds to the conversion 

a (b c) = K a c (b c), 
which carried out in accordance with the 
computational, or combinatory characteristic of 
combinator K. Transition 3-4 corresponds to the 
conversion 

K a c (b c) = S (K a) b c. 
Similarly, the transitions 4-5 and 5-6 correspond to 
conversion 

S (K a) b c = K S a (K a) b c,  
K S a (K a) b c = S (K S) K a b c. 

However, object S (K S) K a b c, arranged last in the 
chain of the virtual objects, corresponds to tree 
computations with a “canonical”  serial arrangement 
of a, b and c along the branches (indicated by a single 
line in the figure). However, virtual object S (K S) K 
was in the “top” of the computation tree crown, 
forming it “trunk” (shown by double line). In other 
words, this virtual object has exactly the 
computational characteristics that required of object 
B, representing the composition (unit 7). This 
completes the round contour conversion clockwise: 

 
 

Figure 1. Characteristics of the composition combinator B and growing of tree computations for B, using trees 
for the combinators S and K. (Explanation. A transition from composition a  b (unit 1) to representing 
combinator B (unit 7) is obtained by the counter-clockwise. This will require six steps, if there are only trees for 
computing S and K. 



Life Science Journal 2014;11(11)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  179

the path from object a (b c) to object S (K S) K is 
found. 

This method can be used in building the 
computation trees for many other mathematical 
objects, presenting them to the appropriate virtual 
objects and their corresponding properties of 
computational trees. 
 
2.2. Computations in programming. 

Let us now try to penetrate deep into the 
structure of the objects that at first glance appear 
substantially atomic and indivisible with respect to 
the transformations in which they participate. In 
particular, try to “split” -- of course, not materially 
but relative to the selected computational system -- 
the well-known operation of composition. 

Suppose that there are objects a, b and c, in 
which, for example, the following meaning is 
embedded: a, b are operations add1 of adding one, or 
“successors” add1 z = z + 1, and object c is equal to 
3. For composition of a and b using the argument c, 
we obtain 

(a  b) c  (add1  add1) 3 
 = add1 (add1 3) 
 = add1 (4) 
 = 5. 

This is a well-known meaning given to the operation 
of the composition and its internal structure is usually 
not concerned at all. The computational technology 
in use allows looking differently at normal 
operations, distinguishing their details of the internal 
structure. Try, for example, to answer the question 
whether the composition is the unit operation, or is 
generated as a derived object in the system of the 
generic objects-combinators. For this we take the 
object S (KS) K, which is composed of objects 
already known as combinators and computationally 
are understood. Use them to learn how this object can 
interact with other objects, i.e. determine its 
combinatory characterization. Initial configuration of 
the objects uses the first argument a, where the 
additional two arguments being analyzed are 
temporarily in parentheses: (b), (c). Reasons for this 
are as follows: S as in combinatorial computations 
showing arity equal to 3, the arguments b, c, in 
parentheses, do not act on S-computation directly. 

Step 1-1: transition from S (K S) K a to K S 
a (K a). So combinator S is able to interact with three 
of his arguments – K S, K and a. Computation is 
distributed, and the first branch of the generated 
application is K S a, and the second branch -- K a. 
This is the S-reduction. 

Step 1-2: transition from K S a (K a) to S (K 
a). Located in the first branch object K S a can be K-
reduced, as the left-most object K has the object 
arguments S and a, which are necessary for 

transformation. Now a result of the interaction of 
objects is generated. 

Step 2-1: transition from S (K a) b c to K a c 
(b c). Start with the generated object configuration. 
Interaction of object was performed as follows. As a 
result of K-reduction of the previous step, S is 
formed. It is known that distributor S forms its result 
by applying its left branch object to the right branch 
object. The result of this application S (K a) cannot 
be reduced further, as the left-most object S has the 
only first argument of K a. 

Step 2-2: transition from K a c (b c) to a (b 
c). Object of the first branch of K a c as the left-most 
object contains combinator K, which has the 
necessary pair of arguments a and c, and performing 
K-reduction results in a.  

The object of second branch is not reducible 
as there is no information about the structure of the 
corresponding leftmost object b, so now we have to 
perform applying the result of computation in the 
first branch to the result of computation in the second 
branch, i.e. applying a to bc. This is exactly a (b c), 
or commonly used infix notation (a º b) c. 

This shows that S (K S) K is a virtual 
representation of the composition operation. 

Step 3: forming composition combinator B, 
which allows obtaining a (b c). Now we need to fix 
this semantic structure as a characterization, the 
elements of which have already been prepared. A 
representation of the composition is found and this is 
object S (K S) K. It remains to reduce references to 
this virtual object S (K S) K determining B = S (K S) 
K, which completes the process of reduction and 
leads to the needed characterization. 

Briefly summarize the computational 
process in the direction of reduction for object B, 
which corresponds to perform the analysis of its 
potential internal structure. Computational analysis of 
the behavior of combinator S (K S) K gives the 
following: 

S (K S) K  a b c = K S a (K a) b c 
 = S (K a) b c 
 = K a c (b c) 
 = a (b c) 

The reduction above raises the question, but 
where was known in advance that object composition 
B has its virtual representation of S (K S) K in the 
world of interacting objects, generated by the objects-
combinators S and K? In order to overcome this 
doubt, try starting from a result of composing objects 
a and b, denoted by (a º b) c = a (b c), to generate the 
composer B. This means precisely that B interacts 
with a sequence of objects a, b and c, reducing in 
their composition a (b c). 

Solving the problem of synthesis of an 
object with a predetermined characteristic of the 
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interaction requires not a reduction, but expansion. 
The symbolization process allows jotting down the 
entire chain of expansions, leading to a desired result. 

The synthesis of combinator B, having a 
characteristic of composition is as follows: 

a (b c) = K a c (b c) 
 = S (K a) b c 
 = K S a (K a) b c 
 = S (K S) K a b c 
  B a b c. 

This computation is in the direction of 
expansion. Looking ahead, we note that it is enough 
to read the steps of analysis above in reverse order 
and each of the separate steps in reverse order as 
well, reading the equalities from right to left. In order 
to trace the expansion chain, the computations are 
dropped down by steps. 

Step 1: the transition from a (b c) to K a c (b 
c). Use the result of the composition of objects a and 
b which is written as a (b c) for any argument c. This 
is the initial configuration of objects, and the target to 
be achieved as a result of expansion, is (a º b) c, or, 
equally, B a b c. For purely formal reasons it is 
necessary simply to “disclose the parentheses”, in 
which objects b and c are enclosed. The only way to 
do this is in using the S-expansion, but we need to 
pre-arrange a duplicate object c. And it is not difficult 
to ensure, using the K-expansion of the object a. This 
K-expansion process prepares the subsequent 
implementation of the S-expansion in accordance to 
its rule. 

Step 2: transition from K ac (b c) to S (K a) 
b c. For disclosing parentheses we had to pay a 
duplicate object c. But this duplicate can be deleted, 
and for this we need to perform S-expansion. 

Step 3: the transition from S (K a) b c to K S 
a (K a) b c. Again we need to open the parentheses, 
and they are significant in that enclosed application K 
a. This is done by K-expansion. 

Step 4: transition from K S a (K a) b c to S 
(K S) K a b c. The result of the previous step was a 
duplicate of the object a, which need to be removed. 
This is done by S-expansion. 

In the last step the target configuration 
objects is achieved. The object S (KS) K is 
synthesized and this object in its structure is a 
composer B. 
 
2.3. Computation in computing 

We show that the combinatorial B can be 
directly obtained by combining the K and S. 

First of all, fix the object a (b c). The idea is 
that we need to release object c from the direct 
influence of the object b. Mathematically, this means 
that the need to open the parentheses. To do this we 
synthesize this distributed computation, creating 

another instance of c, which is achieved by the 
advent instance of combinator K. In symbols, this is 
as follows: 

a (b c) = K a c (b c). 
Further, one of the instances of c is to be eliminated, 
which requires the instance combinator S, but in the 
process the remaining instance of c is derived out of 
dependence on b: 

K a c (b c) = S (K a) b c. 
The same method is used to derive object a out of 
dependence on the object K. It is done in two steps. 
First, a second instance of object a is generated, 
distributing computation and generating the instance 
combinator K: 

S (K a) b c = K S a (K a) b c. 
The entire output chain is as follows: 
a (b c) = K a c (b c) = S (K a) b c = K S a (K a) b c. 

Now one of the two instances of object a is to be 
eliminated using the generated object S: 

K S a (K a) b c = S (K S) K a b c. 
Thus, the target object is synthesized, it remains only 
to put 

S (K S) K a b c ≡ B a b c. 
Thus, in a total, output chain looks as follows: 
a (b c) = K a c (b c) = S (K a) b c = K S a (K a) b c = 

= S (K S) K a b c ≡ B a b c. 
 
3. Conclusions and Future Work 

1. The applicative interaction of objects in 
mathematics usually is not symmetric leading to 
“ordinary” functions with known number of their 
arguments before the evaluation. This restricts the 
real usage of arbitrary given functions. 

2. The demands on arity of functions in 
applicative interaction of objects in programming are 
less restrictive. The functions can be used with 
partially known arguments which become actual ones 
on later stages of computation. This enables the 
bidirectional “information process” of 
analysis/synthesis of objects in computations “on 
fly”. 

3. Most of interacting symmetry is in 
general computation model, used in pure computing, 
where objects-actors can capture other objects along 
their applicative ability. This means that only the 
partially evaluated objects-processes can exist and 
interact with other partially evaluated ones. 

This preliminary study gives rise to further 
study of the kinds of interaction environments. This 
could be done by restricting the applicative pre-
structure of some, but not all the objects. 
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