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Abstract: This paper introduces a simple feedback control strategy for chaotic systems is investigated using the 
Noval system as an example. Based on the theory of nonlinear differential equations and Gerschgorin theorem, a 
control scheme is proposed for global stabilizing the unstable equilibria of Noval chaotic dynamical system. Using a 
suitable designing to the feedback gain matrix which depends on a few algebraic inequalities, chaotic orbits are 
suppressed and dragged to the target (system's equilibria). Numerical simulation results are presented to verify our 
control method. 
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1. Introduction 

     Chaos, is an interesting phenomenon in 
nonlinear dynamical systems, in the last three 
decades, chaos has been extensively studied within 
the scientific, engineering and mathematical 
communities [1- 6]. 

    A chaotic system is a nonlinear 
deterministic system that displays complex, noisy-
like and unpredictable behavior. where one usually 
expects the system to behave in a predictable way. 
However, some properties of chaotic sets favor 
applications where the desired behavior is a periodic 
oscillation. The sensitive dependence on initial 
conditions and the presence of a dense set of 
unstable periodic orbits embedded in chaotic sets 
leads to the concept of chaos control, where small 
perturbations are sufficient to stabilize one of the 
many unstable periodic states. Moreover, since 
trajectories on chaotic attractors come arbitrarily 
close to any of the embedded unstable periodic 
orbits due to ergodicity, there is no need to apply 
external forces to drive the system to the proximity 
of the desired state and the control effort from then 
on is ideally very low, constrained by the noise 
level. A wealth of numerical and experimental 
applications of chaos control have been conducted 
since the introduction of the concept by Ott et al. [1]. 
In these troublesome cases chaos should be 
suppressed as much as possible or totally eliminated. 
Therefore controlling chaos has become one of the 
most considerable research area in the nonlinear 
problems ranging from biology, physics and 
chemistry to economics. 

    Various control algorithms have been 
proposed in recent years to control chaotic systems 

including OGY method [1], linear feedback [1-16], 
nonfeedback method [17-19], adaptive control [20-
24] backstepping method [25-28] and sliding mode 
control [29-32],. These control algorithms can be 
used to stabilize a desired unstable periodic orbit 
(UPO) embedded within a chaotic attractor. 

 
    Our aim in this study is to design a 

suitable feedback control depending on Gerschgorin 
theorem [33]. This control scheme capable to 
stabilize chaotic systems globally to the desired 
equilibrium points. 

 
    The rest of the paper is organized as 

follows. In Section 2, a mathematical description of 
the control method. In Section 3, the stabilization 
problem of Noval chaotic dynamical system is 
investigated and numerical simulation results are 
also given in Section 4. Finally, in Section 5 the 
conclusion of the paper is given.  

 
2. Simple global stabilization criterion of chaotic 
systems: 
    Simple global stabilization criterion, based on 
Lyapunov stability theory and Gerschgorin's 
Theorem [33] is used to design a successful scheme 
to control chaos. The proposed control method is 
designed to achieve global stabilization of the 
unstable equilibria of some dynamical systems. This 
control technique is efficient and ease of 
implementation in most real systems. In order to 
apply this technique to a chaotic system, we rewrite 
the dynamical system in the form: 
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)1()( uxgAxx   

 

    where 
nRx is the state vector, 

nRu is a 

control input controller vector, 
nnRA  is a 

constant matrix, and )(xg is a continuous 

differential nonlinear function. Let ex  be unstable 

equilibrium solution of the uncontrolled system (1) 

( 0u ), then ex  satisfies 

)2(0)(  ee xgAx  

     

Our object is to design a controller )( xxku e   

such that the solutions of (1) are converged to ex . If 

we define the error vector as exxe  then by 

subtracting ( 2) from (1 ) we obtain the corresponding 
error dynamical system: 
 

 )3()()()( exgxgeKAe   

 

    where ),...,,( 21 nkkkdiagK  with 

,...,,2,1, niRki  is a feedback gain matrix. 

Let's assume that the function g  satisfies 

 

 )4(,)()( , eMxgxg
exxe    

    where 
exxM , is a bounded matrix and its elements 

depend on exx, . Hence the system (3) can be put in 

the simple form 
 

 )5()( , eMKAe
exx  

 
    In order to apply the control scheme we need the 
following essential theorem to derive the conditions 
of stabilizing the zero solution of the system (4) and 
its linear part: 
 
  
   Theorem 1: If the feedback gain matrix K  is 
chosen such that  

nii ...,,2,10         (6) 

where  is a negative constant and i  are the 

eigenvalues of the matrix 

)()( ,, ee xx
T

xx MKAPPMKA  with a 

positive definite symmetric constant matrix  P, then 

the error dynamical system (5) is globally 

exponentially stable about the origin. [34, 35] 

     
   Our object is to design a suitable feedback gain 
matrix K  such that Theorem 1 is satisfied. Based on 
the well known Gerschgorin's Theorem [33] in matrix 
theory we get the following result: 
 

   Remark 1: Choose  ),...,,( 21 npppdiagP   

and let ][)()( ,, ij
T

xxxx aPMAMAP
ee

  

and let 



n

ijj
iji aR

,1

. If a suitable feedback 

matrix K is chosen such that 

)7(,...,,2,1,)(
2

1
niRa

p
k iij

i

i    

then (6) is satisfied which implies that the zero 
solution of (4) is globally stable. 
 
Remark 2: We can simplify the inequalities (7) by 
taking  IP  , which implies  

)8(...,,2,1,)(
2

1
niRak iiji        

     
     Thus the inequalities (7) are sufficient to design a 
control scheme that makes chaotic orbits of the 
system (1) converges asymptotically to one of the 
unstable equilibria of the uncontrolled system 

( 0u ). Hence by choosing a suitable feedback 

matrix K  the inequalities (8) are satisfied. To show 
the benefit of the proposed control scheme we apply 
it to Noval chaotic dynamical systems. 
 
3. Stabilizing unstable equilibria of Noval system: 

 
    Now we will apply the previous criterion of chaos 
control to stabilize the unstable equilibria of Noval 
chaotic dynamical system [36] which is given by the 
autonomous differential equations: 

 

bxyz
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
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

)9(  

 where 
3),,( Rzyx  and a and b are real 

constant parameters. 
    The divergence of the flow (9) is given by.  
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where 

 ).,,(),,( 321 byxzxyaxyFFFF   

 
Hence the system is dissipative under the 

condition .1a  
     
    The system of differential equations (9) has two 
equilibrium points: 
 

     
).,,(),,(

),,(),,(

2222

1111

abbzyxE

andabbzyxE




   (10) 

  
    At the values a=0.5 and b=0.5, chaotic behaviour 
of the Noval system (9) can be observed (see Fig. 1). 
  
  

 
Figure 1: The chaotic attractor of Noval dynamical 

system at a=b=0.5 in 3-dimensional. 
  
    Since Noval system (9) is a dissipative system thus 
the solutions of the system of equations (9) are 

bounded as t  for .1a  Consequently, there 

exist a positive constants S  such that 

 StzandStyStx )()(,)(  

hold for all 0t . 
     
The controlled Noval system is described by the 
following equations: 
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    Let ),,( eee zyx  be unstable equilibrium of (8) 

which we are going to drage the solutions of (8) to it 

),,( eee zyx  satisfies the system (8) i. e. 

 

 

byx

zxay

xy

ee

eee

ee







0

)12(0

0

 

 
    Subtracting (12) from (11), we get : 
 

.

)13(,

,

3

2

1

zeez
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    where ,,, ezeyex zzeyyexxe   

., 332211 zyx ekuandekueku   By 

using the form (3), the system (13) can be rewritten 
as 
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    Then the condition (ii) of Theorem 1 is satisfied 
while the condition (i) comes from choosing K  as 
follows 
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    according to Theorems 1 and 2 , the equilibrium 

ex of the controlled Noval system is asymptotically 

stable if the following inequalities hold: 
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    then the zero solution of linear system 
 

 ,)( , eMKAe
exx  

 
    is asymptotically stable, it follows that the 

equilibrium ex  of the controlled system (11) is 

globally asymptotically stable. Since the trajectories 
of the chaotic dynamos systems are bounded, then the 
inequality (14) holds for large enough values of 

321, kandkk . According to Theorem 1 and remark 

1 the two coupled dynamical systems (11) and (12) 
are globally asymptotically stabilized. 
 
4. Numerical Results 
     By using MAPLE 15, to solve the  

systems of differential equations (11) and (12). The 

parameters are chosen to a=0.5 and b=0.5 in all 

simulations so that the Noval system exhibits a 

chaotic behavior if no control is applied (see Figure 

1). From the Fig. 1 it can be seen that the solutions 

)()(),( tzandtytx  are bounded and satisfy the 

inequalities: 

.5233,33  zandyx  

    Choosing 1.0 . If we take the control 

parameters 12,3 321  kandkk  then the 

Noval system convergence to ),,(1 abbE   see 

Figure 2 and if 12,3 321  kandkk  then the 

Noval system convergence to ),,(2 abbE   
see Figure 3. 

 
 

 
Figure 2: The time response of states for the Noval system 

convergence to E₁ when k₁=3,k₂=2 and k₃=1. 

 
 

 
Figure 3: The time response of states for the Noval system 

convergence to E2 when k₁=3,k₂=2 and k₃=1. 

 
 
5. Conclusion 

In this paper, by using feedback linearizing 

technique, and Gerschgorin theorem, the Noval 

chaotic dynamical system is successfully globally 

stabilized. This method can be applied to similar 

chaotic systems by a suitable choice of the feedback 

gain matrix. Numerical simulations are used to verify 

the effectiveness of the proposed control techniques. 
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