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Abstract: The research on geometric probability began as a turning point of the Buffon’s needle problem. In this 
paper, based on the idea of the geometric probability, we first describe two methods in the Buffon needle problem to 
determine the probability that the needle intersects the parallel lines in the Buffon needle problem. Next, in the case 
of a convex curve arc [a curve of a needle] instead of a needle, we consider a problem of determining the 
expectation value that a convex curve arc intersects the parallel lines, and later we prove Barbier’s theorem applying 
our results. 
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1. Introduction 

The concept of geometric probability is that 
when all events are represented by a set Ω on a plane 
and the event of interest is represented by a fractional 

set A of Ω, the probability of the occurrence of the 
event of interest is determined by the relation「area 

of A ÷ area of Ω」 . The idea of the geometric 
probability began as a turning point of the Buffon 

needle problem. "You drop a needle of length l on a 
flat plane on which are drawn countless number of 

parallel lines at intervals of d , and find the 
probability of the needle crossing the parallel lines." 
It is a so-called Buffon’s needle problem. 

 
Figure-1 Buffon’s needle problem 

 

Assuming that X is the number of lines the 

convex curve of length l crosses the parallel lines, 

using constant that does not depend on the convex 

curve shows that the expected value E (X) of X 

becomes E (X) =  l . 

Lastly, as an application of this theorem, we 
prove the theorem of Barbier which states that the 
length of the circumference of the convex set of 

constant width d in the plane becomes πd. 
 
2. Material and Methods 
Buffon’s Needle Problem: Using the concept of 
geometric probability of Buffon needle described 
previously, it is usually interpreted as when X is the 
distance from M parallel lines closest to the center A, 
and θ is the angle of the needle making with parallel 
lines, then 

0 ≤ θ ≤ π, 0 ≤ x ≤
d

2
  because θ and X are 

independent, the all events Ω is (0, ) x (0, 2

d

). If l <

d , the needle crosses the parallel lines at most at one 
point, and the condition for the intersection 

is 

1
sin

2

≧ x . That is, when the needle intersects the 

parallel lines the event C, shown by the shaded 
portion in Figure-2, is expressed by the relation given 
below. 

C = �(θ, x)  ∊  Ω│
l

2
sinθ ≧ x� 

The concept of geometric probability is that the 
probability of occurrence of event C of interest out of 

all events is obtained by the simple relation [area 

of C ÷ area of  ]. In other words, if P is the 
probability of occurrence of event C and l < d, then P 
is obtained by 

p = 
2

πd
∫

l

2

π

0
sinθdθ = 

2l

πd
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Figure-2 Event C when l< d  
 

Next, consider the case of l ≥ d. Here, 
1

2
sinθ ≥ x 

is the condition for the needle to cross the parallel 
lines, which is the same as when l < d. The needle, 
however, may intersect a plural number of parallel 
lines. In Figure-3, the shaded portion shows the event 

C when the needle crosses the parallel lines. 
 

 
Figure-3 C event for l ≥ d 

 

Let’s compute the probability p when l ≥ d and 

the needle and parallel lines intersect. If a , in 0 < θ 

≦π/2, is the value of θ satisfying l sinθ = d , then p

becomes 

p =
2l

πd
�2 �

1

2

a

0

sinθdθ +
d

2
(π − 2a)� 

= 1 +
2lcosa

πd
−

2a

πa
−

2lcosa

πd
 

Let N be the number of parallel lines 

intersecting with a needle. When l < d , either N = 1 

or N = 0. As calculated above, since 
2l

πd
 was the 

probability of N to be 1, and if we write E (N) the 

expected value of N , then E (N) = 
2l

πd
 is established. 

When l ≥ d, we consider the length of the needle 
divided into several segments that are shorter in 

length than d. Using the linearity of the expectation 

value, it can be seen that E ( N ) = 
2l

πd 
 still holds. 

Consider d≦l < 2d, and take any value 0, 1, 2 

of N . Let kp
(k = 0, 1, 2) be the probability of N = 

k. Then the probability p the needle crosses the 
parallel lines is 

p = p1 + p2; E (N) = p1 +2p2 = p + p2. 
It follows that 

p2 =
2l

πd
− p  = 

2a

π
 + 

2lcosa

πd
 – 1 

From here we obtain, 

p1 = p – p2 = 2 + 
2l

πd
 – 

4a

π
 – 

4lcosa

πd
 

Buffon’s Needle Problem (Another solution): Let 
Y  be the distance of parallel lines just below the 
center M of the needle from M. Here, θ has the same 
meaning as in the previous section. Considering (θ, y) 
uniformly distributed over (0, π) x (0, d) let us 
investigate the probability of the needle intersecting 
the parallel lines. 

Let E1 be the event the needle crosses the 
straight line just below M (Figure-4a). The condition 

for event E1 to occur is 
l

2
sinθ ≥ y. Again, let E2 be the 

event the needle crosses the straight line just above M 
(Figure-4b). The condition for event E2 to occur is 
l

2
sinθ ≥ d - y. 

 
Figure-4a The straight line is just below M 

 
Figure-4b The straight line is Just above M 
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Figure-5a Event E1                                                Figure-5b Event E2 

 
In Figure-5a and Figure-5b, events E1 and E2 are 

shown by their respective regions in plane (θ, y). The 
probability of occurrence of E1 and E2 is given by, 
respectively 

P(E1) = 
1

πd
∫

l

2

π

0
sinθdθ = 

l

πd
 

P(E2) = 
1

πd
 ∫ �d − �d −

l

2
sinθ��

π

0
dθ = 

l

πd
 

An event of the needle intersecting the parallel 
lines is expressed by E. In case l < d, because the 
needle crosses the straight lines at most once, E1 ∩ E2 

= φ. Therefore, the probability P (E) of the 
occurrence of event E is obtained by the equation 
below. 

P(E) = P(E1) + P(E2) = 
2l

πd
 

Also, in the case of d ≤ l < 2d, since event E1 ∩ 
E2 in which the needle intersects two parallel lines is 
represented by the shaded area in Figure-6, its 
probability P (E1 ∩ E2) is calculated as follows: 

 

 
Figure-6 Event (E1 ∩ E2) when d ≦ l <2d 
 

P (E1 ∩ E2) = 

0

1 1 1
sin sin

2 2

a

d d
d


  



   
   
  


 

= 

1 1
( 2 ) (cos cos( ))a a a

d
 

 
    

 

= 

2 2 cos
1

a l a

d 
 

 
This is consistent with the results of the 

previous one. 
Curved Needle: Here, we discuss a case when the 
needle is a convex curve arc. In preparation, first 
think of it as if needle L is a polygonal line. Let L1, 
L2….Ln be short line segments that make up the line. 
And let Xk be the number of parallel lines intersecting 
with Lk (l ≦ k ≦n). 

Let X be the number of parallel lines that 
intersect L, then X = ∑ Xn

k�1 k. From the discussion in 
Section 2, if length lk of the line segment Lk is 
smaller than d, the expected value E (Xk) of Xk was E 
(Xk) = αlk. Here, a is a constant which is independent 

of k (specifically, α=

2

d ). The following 
relationship can be established from the linearity of 
the expected value4. 

E(X) = ∑ E � kX �n
k�1 = ∑ α � kl �n

k�1  = αl 

Here, l is the length of the line L. 
Even if L is a general convex curve arc, it shows 

that similar results for the expectation value for X can 
be obtained. 
 
3. Results and Discussion 
Theorem 1: Let L be a convex curve arc. The 
expectation value E(X) of the number X of parallel 

.
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lines intersecting L is equal to the product of constant 
a, which does not depend on L, and length l of L. 
That is, it establishes the relation E (X) = αl. 
Proof: Let A, and B, respectively, be the start and 
end points on L. From the property of the length of 
the curve, there exist L ': P0 P1 … Pm (however, P0 = 
A, Pm = B) that inscribes L, and L″: Q0,  Q1 , … Qｎ 

(however, Q0 = A、Qｎ = B) that circumscribe L for a 
given positive number ε, so as to establish the 
following equations [8]: 

l - ε≦
1

1

m

i i
i

P P



≦l 

l≦
1

1

n

i i
i

Q Q



≦l + ε 
Let Yε be the number of parallel lines that 

intersect L ', and Zε be the number of parallel lines 
that intersect L". From the convexity of the L curve, 

Y ≦ X ≦
Z  is established. On the other hand, 

considering the case of a polygonal line, the 
following equation is established: 

E(Yε) = α
1

1

m

i i
i

P P



E(Zε) = α
1

1

n

i i
i

Q Q



 

Therefore, α(l- ) ≦ E(Yε) ≦ E(X) ≦ E(Zε) ≦ 

α(l+ ). 

Since was larger than zero that is,  > 0, we 
get E (X) = αl.   (Proven) 

If we especially take circumference of diameter 

d as L , and since X = 2 always, then from Theorem 1 
we get 2 = E (X) =α. πd. From this, a must be equal to 

2

πd
 that is, α=

2

d . 

Using Theorem 1, we can show Barbier's 
theorem on the length of the curve of constant width 
such as the Reuleaux triangle (Rouleau). 

Theorem 2: In the plane, πd is the length of the 
circumference of a convex set whose width is of 
constant value d. 
Proof: Let L be a convex closed curve formed of the 
boundary of a convex set, and l its length. Since L is 
a curve of constant width, X = 2 always. Hence, 2 = 

E(X) = αl = 

2l

d  and, consequently, it is established 

that l d .  (Proven). 
 
Conclusion 

The results obtained from Buffon’s needle 
problem is consistent with the results obtained by 
another way i.e., Buffon’s needle (Another solution). 
It is also shown with the help of theorem 1 the 
Barbier’s theorem on the length of the curve of 
constant width such as the Reuleaux Triangle 
(Rouleau). 

The expectation value E(X) [Mean of X] of the 
number X of parallel lines intersecting, will be equal 
to αl, here α is defined as any constant value and l, 
which is independent of α, is defined as the length of 
L. It is also proved by theorem 1 and Theorem 2. 
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