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1. Introduction 

One of the research topic in recent years is the 
development of the algorithms to construct an 
isomorphism between the natural representation and 
an arbitrary representation of a classical group. 

In Kantor and Seress (2001), they present an 
algorithm that, given as input an arbitrary 
permutation or matrix representation � of an almost 
simple classical group �  of Lie type of known 
characteristic, constructs an isomorphism between � 
and the natural projective representation of �. 

Magaard et al. (2008) provide efficient 
algorithms to construct such an isomorphism for a 
projective matrix representation of degree at most �� 
of the general lineer groups having natural module of 
dimension �. 

In this paper, we present an algorithm dealing 
with irreducible representations ��,�,�,… , ��,�,�,…,�,�  and 
��,�,…,�,�  dimension of � (�� ≤ � ≤ ��). 

An effective algorithm in Beals et al. (2003) is 
given for representations of �� and ��, and in Beals 
et al. (2005) a specialised algorithm does the same 
for the small degree case. 

Babai, (1991) presents a black-box Monte Carlo 
algorithm that produces nearly uniformly distributed 
random elements of �. Also the product replacement 
algorithm produces random elements in a matrix 
group. For a general discussion of the product 
replacement algorithm you can see Pak (2000). We 
use the notation of Seress (2003) in our algorithm to 
construct random elements of a finite group �. 
 
2. Background and Main Results 

Let ��(�, �) ≤ � ≤ ��(�, �)  with � = � � . 
Suppose that � has the natural module � . Let � be 
an irreducible ���-module of dimension between �� 

and �� and � acts on �. 

We now briefly give some informations about 
irreducible representations of dimension between �� 
and ��. 

The irreducible representation appears as a 
subspace of 
������⨂��� ��(⋀�(�))⨂ …⨂��� ����(⋀���(�)) 

or equivalently as a subspace of the �-th tensor 
power �⨂�  of �. 

The general irreducible representation ���,…,� ���
 

with highest weight 
(�� + ⋯+ � ���)�� + (�� + ⋯+ � ���)�� + ⋯

+ � ������� 
occurs in the tensor product of symmetric 

powers 
������⨂…⨂��� ����⋀���(�) →

��������⨂…⨂��� ������⋀���(�). 
Irreducible representations of dimension 

between �� and �� can be obtained as follows. 
i. ��,�,�,…  is the irreducible representation with 

highest weight 2�� + � �  and its dimension 
�(� − 1)(� + 1) 3⁄ , 

ii. ��,�,�,…,�,�  is the irreducible representation 
with highest weight �� + � ���  and its dimension 
�(� − 2)(� + 1) 2⁄ , 

iii. ��,�,…,�,�  is the irreducible representation 
with highest weight 2�� + � ���  and its dimension 
�(� + 2)(� − 1) 2⁄ , 

iv. ����� = ��,�,…,�  and ⋀�� = ��,�,�,�,…,�  are 
the irreducible representations with highest weights 
3��  and �� + � � + � �  and their dimensions 
(� + 2)(� + 1)� 6⁄  and �(� − 1)(� − 2) 6⁄  
respectively. 

For further details about such irreducible 
representations look Fulton and Harris (1999). 

In this paper, we consider ��,�,�,… , ��,�,�,…,�,�  and 
��,�,…,�,�  irreducible representations. 

We will use an algorithm to find random 
elements in black-box groups. The algorithm outputs 
an ε-uniformly distributed random element � of � if 
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(1 − �) |�|<⁄ Prob (� = � ) < (1 + �) |�|⁄  for all 
� ∈ � . 'Nearly uniform' means ε-uniform for some 
� < 1 2⁄  (Seress, 2003). 

Let �� be the cost of choosing a random element 
of � and let ��  be the cost of a field operation in a 

finite field ��. In Magaard et al. (2008, Lemma 4.1), 

they set up a Las Vegas algorithm which constructs 
���, in �(���

� log� � log�) time. 

Let � is isomorphic to �. Assume that � ∈ �, � 
is a ppd(�;�) and that � ∣|�|. Therefore, � is a power 
of a singer cycle and there are �  one-dimensional 
eigenspaces in � ⊗ � �

�. Let � = � � be the Frobenius 

map of ��(�, ��)  whose fixed points contain � . 
Thus, �  centralizes 〈�〉 and �  transitively permutes 
the eigenspaces of � acting on � ⊗ � ��. 

As a result, we can list the eigenspaces 〈��〉 of � 
and choose the eigenvectors �� within the eigenspaces 
in such a way that ��

� = � ���  where the index is 
computed modulo �. 

Our main results are stated in the following 
theorem: 
Theorem 2.1. Let � = � �  be a prime power and � be 
the natural module of �. Suppose that � is given as 
� = 〈�〉 acting irreducibly on �. For the input � and 
�, there is a polynomial-time Las Vegas algorithm 
which, with probability at least 1 − � , sets up a data 
structure for rewriting �  as a � -dimensional 
projective representation in time 

���� log �
� log � log ��� +

���
� log �� log� � log ��� +

��� �
� log� � log(��)log �� log � log ��� +

����
�� �og ��. 

The procedure which finds the image of � in a 
representation of degree �  costs �((�� +
����

� log �)log ���). 

Algorithm 2.2. Here we give a summary for 
recognition algorithm which construct a matrix 
representation dimension of �. 

i. Find a random element � ∈ � which satisfies 
the following: 

ii. � has �  one-dimensional eigenspaces and � 
divides |�| where � is a ppd(�;�). 

iii. Label the eigenvalues and produce �� , a 
basis of �-eigenvectors on � ⊗ � ��. 

iv. Compute the vector corresponding to 
�� ⊗ � � ⊗ � �  from the eigenspace labelled with 

(�, �, �). 
v. The data structure described in Theorem 2.1 

consists of steps 1 to 3 and the image of � ∈ �  is 
obtained with the following step. 

vi. First write � in the basis ��; then compute 
the action of �  on  �⨂���  in the basis � =

{��, ��,… , � �} ; finally rewrite with respect to the 
basis � = {��, ��,… , � �} for the natural module �. 
 
3. Finding the special element 

Step 1 is common for all representations, so we 
discuss it in this section. 

We now consider whether or not a random 
element � ∈ � with conditions given in Step 1 has 
order divisible by a �  primitive prime divisor of 
�� − 1 . We know that if (�, �) = (2,6), then define 
� ≔ 21. If (�, �) = (�, 2) with � a Mersenne prime, 
then define � ≔ � − 1 . Otherwise 

� ≔ �
�

�
 (�� − 1)

�∣�,���

. 

Order of � is the factor of a ppd(�;�) prime if 
and only if �� ≠ 1. Then, we say that we can decide 
this by taking �th powers of �-eigenvalues. 

As given in Step 1 of Algorithm 2.2, with 
probability at least 1 − � , there is an element � ∈ �  
which satisfies the following: 

Set � ≔ �
�

�
 log (���)�, where � is given as the 

proportion of special elements in G. � is upper bound 
of random elements of �. Compute 

i. the characteristic polynomial �(�)  of a 
random element � ∈ � , 

ii. the square-free factorisation of �(�), 
iii. the distinct-degree factorisation of �(�), 
iv. the distinct linear factors of �(�) over ���, 

hence, compute the eigenvalues of � over ��� . 

For a zero � ∈ ��� of one of the irreducible divisors 

of �(�) largest degree, compute ��. If the value is 1 
or if the computation of linear factors returns FAIL, 
then discard � and return computing �(�). Return � 
and its eigenvalues over ��� (Corr, 2014). 

Lemma 3.1: There is a Las Vegas algorithm which 
finds a suitable � ∈ �  in 

�((�� + ���
� + ���

� log �

+ � �� �
� log� � log(��)) log �� log � log ���) 

time. 

Proof: We have the bound � >
�

��� ��� �
 (proportion 

of special elements in � ) and we obtain 
�

�
<

6�� log�. The characteristic polynomial �(�) of � is 
computed by using the algorithm of Dumas et al. 
(2005) in �(�� + ���

�)  time. Step (ii) costs 

�(���
� log �) and (iii) runs faster than (ii). The 

distinct linear factors of �(�)  in ���  are obtained 

using a Las Vegas algorithm of Beals et al. (2005) in 

������ log � log(��
�)log log � log����

= � �����
� log� � log(��) log���� 

time. Taking �th powers of the eigenvalues of � 

requires ����� d
� �⁄ log ��  time. And then the Las 
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Vegas algorithm for finding special element has 
complexity 

��(�� + ���
� + ���

� log �

+ � �� �
� log� � log(��)) �� log � log ����. 

In the last step of our algorithm, we find the 
image of �  which is a matrix in ��(�, ���) . 

Hovewer, aim of the final stage of our algorithm is to 
rewrite the output as a � × � matrix over �. How to 
be done this is showed in Magaard et al. (2008, 
Lemma 4.6). 
Lemma 3.2: Let ℎ ∈ �  and let � = (� ��)  be the 

matrix of ℎ in the basis �. For �, � ∈ {1, … , � }, 
����,��� = � ��

�
 

where the index � + 1  is interpreted as 1 
(Magaard et al., 2008, Lemma 4.7). 
Lemma 3.3: Let ℎ ∈ �  and let � = (� ��)  be the 

matrix of ℎ in the basis �. 

i. For �, � ∈ {1, … , � }, Prob���� = 0 � < 4 � �⁄ . 

If � ≥ 3 then Prob���� = 0 � < 2 � �⁄ . 

ii. Prob(all ��� ≠ 0) > 5 8⁄  
For proof, see Magaard et al. (2008, Lemma 

4.8). 
One of the common steps is also avoiding 

division by zero. For details about this, see Magaard 
et al. (2008) 
 
4. Labelling the Eigenvalues ���� 

In this section, we aim to produce a suitable 
labelling of orbits of eigenvalues under the Frobenius 
map � and to find a basis for � of �-eigenvectors. 

Let �� = �
����, for 1 ≤ � ≤ �, be �- eigenvalues in its 

action on � ⊗ � ��. Its eigenspaces on � are 〈��,�,�〉 

for 1 ≤ �, �, � ≤ � . We know the set by 
���,�,�: = � ������1 ≤ �, �, � ≤ �� for the eigenvalues of 

� in its action on � . We identify the indices as 

(�, �, �) ↦ ��,�,�  and choose a basis �� = ���,�,�� , 

��,�,� ∈ 〈��,�,�〉. 

Some properties about �  can be given as 
follows: 

Let �  be ��,�,�,… ,��,�,�,…,� ,��,�,�,…  irreducible 
representations. We consider the sets for the 
eigenvalues of � in its action on � by 
���,�,�: = � ������1 ≤ � < � < � ≤ �, i = j �� � = ��, 

���,�,�: = � �����
���1 ≤ �, �, � ≤ �, � ≠ � ≠ � ��� � < ��, 

���,�,� : = � �
���

���1 ≤ �, � ≤ �, � ≠ ��, 

respectively. Their eigenspaces on �  are 
〈��,�,� = � �⨂(� � ∧ ��)〉 ,  〈��,�,� =

(�� ∧ ��)⨂� �
∗〉, 〈��,�,� = � �

�⨂� �
∗〉. 

Lemma 4.1. Let �� = �
���� , for 1 ≤ � ≤ � , be 

eigenvalues of s on �⨂� �� and let � be irreducible 

representations as given above. There are suitable 

labellings ��,�,� of the eigenvalues of s on � with a 

basis �� = ���,�,��.  The cost of this labelling 

procedure is �(����
�� �og�) where ��� is the cost of 

a field operation in ���. 

Proof 4.1. We can give the proof for each of W 
respectively as the following. 

If � is �(�,�,�,…)  irreducible representation then 
we construct the orbits of eigenvalues under the 
Frobenius map �  and choose an orbıt and label an 
element of this orbit as ������. Taking � − �ℎ  powers 

determines ������, ������ . We compute ����
���

= � ���
����

, 

so ���� is determined and we compute ���� = � ���
���

����
�

 

and ���� = � ���
���

���� . For 4 ≤ � ≤ � , we determine 
the general terms as 
������ = (� �������)

��� (��������)
�⁄  and ���� =

(����������)
��� (����������)

�⁄ . We choose an 
arbitrary ��,�,� , ��,�,�  ∈Ω  from each orbit Ω  and 
compute its eigenspace 〈��,�,�〉. For other eigenvalues 

��,�,�
�� , we compute ����,���,���: = ��,�,�

�� . 

If �  is �(�,�,�,…,�,�)  irreducible representation 

then we choose an orbit and label an element of this 
orbit as ��,�,�  and taking � − �ℎ  powers, determine 

����, ����,�,� . We have equalities ������
����

=

��������,�,�
�

 and ������ = � �������  where we have 

�� = � �
�

, so ���� is obtained by these equalities. Then, 

we obtain ���� using equality ����
���

= � �������
��

. 
For � ∈ {5, … , � } , 

��,�,� = ���,�,����
���

���,�,����
�

�  is determined. For 

� ∈ {4, … , � − 1 } , 
��,�,��� = (� �,���,�)

��� (��,���,���)
�⁄ . For � ∈

{3, … , � − 2 } and � ∈ {2, … , � − � }, 
��,�,��� = (� �,�,�����)

��� (��,�,�����)
�⁄ . For 

� ∈ {2, … , � − � − � } , � ∈ {1, … , � − � − � } and 
� ∈ {1, … , � − � },  we determine ��,���,�����: =

����,�����,�������
�

 and then we determine 

��������,�����,�: = � �����,���,�
�

. We choose an 

arbitrary ��,�,� ∈ Ω from each orbit Ω and compute its 

eigenspace 〈��,�,�〉. For other eigenvalues ��,�,�
�� , we 

compute ����,���,���: = ��,�,�
�� . 

If � is �(�,�,�,…)  irreducible representation then 
we choose one of this orbits and label the first 
element as ��,�,� . For � ∈ {2, … , � − 1 } , ��,�,��� =

����,���,�
�

, and ��,�,� = � ���,���,�
�

. For � ∈

{1, … , � − 1 }, we perform the followings: 

i. we have ������
����

= � �����,�,�  and ������ =

�������� where we have �� = � �
�
, so ���� is obtained by 

these equalities. 
ii. For � ∉ {1,2,3} , we determine ��,�,� =

��,�,���
���

��,�,���
�� . 
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iii. For � ∈ {2, … , � − � } , we determine 
��,�,���: = ����,���,�����

�
 and then we determine 

������,�����,�: = � ���,���,�
�

. 

iv. For � ∈ {� + 2 − �, … , � } , we determine 
��,�,�����: = ����,���,�������

�
. 

We choose an arbitrary ��,�,� ∈ Ω from each orbit 

Ω and compute its eigenspace 〈��,�,�〉. 

Proposition 4.2 Since we can assume that the first 
coordinate of each ��  is 1 , the vector ��,�,� 

corresponds precisely to ��⨂� �⨂� �, and so it needs 
not to a scalar multiple (Magaard et al.,2008). 
5. Finding images 

This section's goal is to construct the image of 
an arbitrary � ∈ � . We describe the procedure for 
constructing the matrix ���  representing an arbitrary 

� ∈ � . Firstly, we compute � = (� ���,���) , the 

matrix representation defined with the action of � on 
� . We then compute the ���  since we know � =

(����,���). 

Lemma 5.1. Let � = (� ���,���)  be the matrix 

representation defined with the action of � on � with 

respect to the basis �� = ���,�,��. The matrix ���  of � 

is determined with the cost �((�� + � ��(�
� +

�� log �)) log ���) where �� is the cost of choosing a 
random element of �, and ���  is the cost of a field 

operation in �. 
Proof. The basic equation for ����,���  is ����,��� =

��������� . We choose an arbitrary nonzero entry 
�������,������

 in � . The matrix with (�, �)  entry 

������,�����
= � �������

(�����) is a projective image 

of �. 
If �  is �(�,�,�,…,�,�)  irreducible representation, 

the basic equation for ����,��� is 

����,��� = � ����� ���
∗      (2.1) 

We may use (2.1) for � ≠ � ≠ � and � ≠ � ≠ � 
and so we find ���

∗ ������ for any �, �, �, � by using 

the following equations: 
����,��� = � ����� ���

∗  for � ≠ � ≠ 1, � ≠ � ≠ 1, 

����,��� = � ����� ���
∗  for � ≠ � ≠ 2, � ≠ � ≠ 2, 

����,��� = � ����� ���
∗  for � ≠ � ≠ 3, � ≠ � ≠ 3, 

���
∗ ���

∗⁄ = � ���,��� ����,���⁄  for distinct �, �  and 

�, �  �, �, �, � ∉ {1,2}, 
���
∗ ���

∗⁄ = � ���,��� ����,���⁄  for distinct �, �  and 

�, �  �, �, �, � ∉ {1,3}, 
����,��� = � ����� ���

∗        for �, � ∉ {1,2} 
����,��� = � ����� ���

∗       for �, � ∉ {1,3} 
����,��� = � ����� ���

∗       for �, � ∉ {1,4} 
����,��� = ������ ���

∗        for � ∉ {2,3} 
����,��� = � ����� ���

∗      for � ∉ {2,3} 
����,��� = ������ ���

∗  
����,��� = � ����� ���

∗  

��� ���⁄ = � ���,��� ����,���⁄  for �, � ∉ {1,2,3}, 
��� ���⁄ = � ���,��� ����,���⁄  for �, � ∉ {1,2,4}. 
If �  is �(�,�,…,�,�)  irreducible representation we 

may use (2.1) for � = � ≠ �  and � = � ≠ �  and so 
we find ���

∗ ������ for any �, �  by using the following 
equations: 

����,��� = � ��
� ���

∗       for � ≠ 1, � ≠ 1, 

����,��� = ���
����

∗       for � ≠ 2, � ≠ 2, 

����,��� = ���
����

∗       for � ≠ 3, � ≠ 3, 

����,��� = ���
�  ���

∗    for � ≠ 2, 

����,��� = � ��
�  ���

∗   for � ≠ 2, 
����,��� = ���

�  ���
∗  

����,��� = � ��
�  ���

∗  
���
∗ ���

∗⁄ = � ���,��� ����,���⁄  for �, � ∉ {1,2}, 
���
∗ ���

∗⁄ = � ���,��� ����,���⁄  for �, � ∉ {1,3} 

If �  is �(�,�,�,…)  irreducible representation, we 

choose an arbitrary nonzero entry �������,������
 in �. 

The matrix with (�, �)  entry ������,�����
=

���(�����
)(�����)  is image of � . In this case, we 

apply a procedure as above. 
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