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Abstract: The task of text categorization is to assign one or more classes to a document. The simplest machine 
learning approach to such domains, simply induces a binary classifier separately for each class, and then uses these 
classifiers in parallel. An example of motivating application is a digital library collection that used to be classified 
into classes and sub-classes in a hierarchical order. Another important issue that we are considering is the document 
might belong to more than one class, in this case we will be working on a high performance multi-class label 
classifier. The study we are intending to do herein is going to show how much we can gain from machine learning. 
This mean, if we need something like 10 to 15% of the data for training, and testing or do we need > 50% of the data 
set for training and testing. In the latter case, the machine learning may don’t contribute that much. However, if 10 
to 15% of the data set is needed, then, machine learning has a great contribution. The last issue we are working on in 
this research is the inter-class relation. Which means, if the example is classified to belong to a class C, does this 
mean, the example belong to parents and grandparents classes of the class C, and on the opposite way too? We will 
use a framework to classify documents automatically and this can indeed answer these questions. 
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1. Introduction 

The main goal of a classification induction 
process is to find the mechanism (rules) able to place 
an example or a stream of examples into sets of 
categories called classes. In the case of multi-label 
classification induction, an example is allowed to 
belong to more than one class at a time, and the 
classes are hierarchically ordered. This is referred to 
as Hierarchical Multi label Classification (HMC). 
The classification of a library collection (where book 
titles represent the examples and each of the scientific 
field represents a class) is an example of an HMC 
problem. The class-to-class relations are defined by a 
Directed Acyclic Graph (DAG) (Figure1.1) which 
indicates that there are no cycles. The nodes and the 
edges define the structure of the network, and the 
conditional probabilities are the parameters to give 
the structure to the graph [1]. 

The focus of this research is on the HMC 
problem, with emphasis on several case studies used 
for drawing observations and reaching general 
conclusions. Aiming to build a proper induction 
system for these problems, the top down approach 
was preferred. It started by inducing a classifier for 
each class of the highest level of the DAG and 
continued downward by employing the higher-level 
classifiers when creating the training sets for lower-
level classifiers. 

 
Figure 1.1: An example of a DAG-structured class hierarchy as 

presented in [2] 

 
The scope was to develop a proprietary 

methodology and algorithm and compare it with a 
couple of many popular algorithms including Support 
Vector Machines (SVM) [3-5], K-Nearest Neighbor 
(KNN) [6] and Naïve Bays [7]. The comparative 
study consisted in: i) classifying examples into 
hierarchically ordered classes and ii) finding their 
inter-class relation. 

As the work in this research progressed and as 
recommended by [2], we realized that HMC’s 
performance has to be evaluated along somewhat 
different criteria than those used in classical machine 
learning. For example, let C be a set of classes to 
which an example X belongs to. A perfect classifier 
will label X with all classes from C, never suggesting 
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any class from outside C; moreover, an HMC usually 
requires that any X that has been labeled with Ci 
should also be labeled with all ancestors of Ci in the 
class hierarchy. To be able to reflect these 
requirements in performance evaluation, we used an 
adequate extensions of precision and recall 
introduced by Clare et al. [8]. 
 
1.1. Problem Statement 

A graph mainly consists of a set of nodes, N, 
and a set of edges, E, where an edge is an ordered 

pair of nodes, ( , )  E  {N × N }. in this 
pair, is known as a parent, and Nc as a child. A path 
(Na → Nc) from an ancestor (Na) to a child (Nc) is 

referred to be a series of edges, {( , ), ( , ), 

. . . , ( , )} in a way that  = Na and Nn = 
Nc. The existence of a path in a DAG, is Na → Nc, 
guarantees the non-existence of the opposite-direction 
path, Nc → Na. A leaf node is known to be a node 
without any child, and a root node is known to be a 
node without any parent.  

In this research, this problem is addressed by 
considering a set of class labels, C, whose mutual 
relations are specified by a class hierarchy, H, which 
has the form of a DAG in which each node represents 
only one class.  

X  is a finite set of examples, each 
described by a set of p numeric attributes. We assume 

that each   X is assigned a set of class labels, L = 

{  , ...,  }  H (all classes belong to the given 

class hierarchy). An example belonging to class  is 

assumed to also belong to all ’s ancestor classes, 

. This property is called “hierarchical constraint”. 
There are two versions of the hierarchical 

classification task: i) the Mandatory Leaf-Node 
Problem (MLNP), where only the leaf-node classes 
are used and; ii) the Non-Mandatory Leaf Node 
Problem (NMLNP), where an example can be labeled 
with any class from the given class hierarchy. 
Considering the class hierarchy from Figure 1.1, 
MLNP permits an example to be labeled only with a 
subset of {C1.1, C2.1, C2.2.1, C2.2.2}, but NMLNP 
allows also the other class labels (e.g., C1 or C2.2). 
This research focuses on the general NMLNP, 
because we assign examples to any node in the 
hierarchy. 
 
1.2. Two main questions were addressed in this 
research: 

Suppose that a machine learning algorithm has 
already induced classifiers for some highest-level 
classes. Does this facilitate any future attempts at the 
induction of lower-level classes? For instance, if an 
example was classified to a lower level class, can this 
example belong to the parent and grandparent 
classes? 

Turning this upside down, suppose we know the 
lowest-level classes. Can this be exploited in the 
induction of the parents of these classes? For 
instance, if an example was classified in the upper 
level class, can this example be a parent of the lower 
level classes? 

Aiming to answer these questions, a proprietary 
algorithm will be built. It will test whether an 
example is classified into its corresponding child and 
grandchild, as well as if the grandchild is belonged to 
its accurate parent and grandparent. The focus is on 
the inter-class relations and we want to look at the 
parent-child and child-parent relations, this aspect 
representing the main contribution of this study.  

The significance of the research is the 
motivation for the use of machine learning in digital 
libraries which can be defined as follow: The digital 
library needs to be able to identify all documents 
relevant to a user’s query. This function is sometimes 
supported by an indexing system in which each 
document is tagged with the labels of all the topics it 
represents. The indexing system is relatively easy to 
create in a small collection: an expert reads each 
single document, and then decides which topics it 
represents. In large collections, this might be 
expensive and clearly impossible if hundreds of 
thousands of documents are added to the library 
every week, or even on a daily basis. In this latter 
case, one solution is to classify manually only a 
subset of the documents, and then employ the training 
set, to obtain the induction of a classifier. The 
induced classifier then labels those documents that 
have not been classified manually. The principle can 
be applied to other domains, not just digital libraries.  

The main research question is the following: 
how many documents should we classify manually if 
we want to induce a high-performance classifier? To 
put the question in another format: How much can be 
gained from the use of machine learning? For 
example, suppose we have 106 documents. If we 
manually classify only a few, the induced classifier 
will over fit the training examples, and thus perform 
poorly on the remaining documents. The situation 
will improve if the training set consists of about 10% 
of the collection or more; but then, the price of 
manual classification will become prohibitive. This 
motivates an experimental study whose goal is to 
identify the right size of the training set, and this is 
what we want to do in this research.   
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1.3. Possible conclusions: 
It may turn out that only a small percentage of 

all examples are enough for the induction of a 
relatively high-performance classifier. In this case, 
the use of machine learning is justified. Conversely, it 
may turn out that even using 50% of the examples for 
training is not enough. In this case, machine learning 
does not seem to help. Most likely, the observed 
result will be somewhere between these two 
extremes. We might want to verify if the observation 
is the same in each of the studied experimental 
domains. This means, we want to repeat this 
experiment for several different domains.  
 
2. Background 

Over the past few years, studies of induction 
from multi-label examples have targeted two specific 
strategies: induction of sets of binary classifiers, and 
induction of one large multi-label classifier. For the 
induction of sets of binary classifiers, mechanisms 
based on Bayesian theory were studied by Friedman 
et al. [7], and McCallum and Nigam [9]. The latter 
was investigated by Baoli et al. [6], and the currently 
popular SVM were discussed by Joachimis [4] and 
Kwok [10]. Unfortunately, binary classifiers ignore 
inter-class relations, which sometimes lead to 
performance degradation. In this study, the focus is 
on these inter-class relations.  

 
2.1. Bayesian Networks: 

The Naïve Bays, classifier learns from training 

data the conditional probability of each attribute  
given the class label C. Classification is then done by 
applying Bayes rule to compute the probability of C 

given the particular instance of  , . . . ,  , and 
then predicting the class with the highest posterior 
probability. This computation is rendered feasible by 
making a strong independence assumption: all the 

attributes  are conditionally independent given the 
value of the class C. By independence means the 
probabilistic independence, that is, A is independent 
of B.  

A naive Bayesian classifier has the simple 
structure shown in Figure 2.1. This network captures 
the main assumption behind the naive Bayesian 
classifier, namely, that every attribute (every leaf in 
the network) is independent from the rest of the 
attributes, given the state of the class variable (the 
root in the network). Thus, it is said that the 
performance of naive Bayes is somewhat surprising 
due its dependency [9]. 

 
Figure 2.1: The structure of the naive Bayes network. 

  
2.2. K-Nearest Neighbor: 

In a text categorization system based on the K-
Nearest Neighbor algorithm (KNN), k is the most 
important parameter. To classify a new document, the 
k-nearest documents in the training set are 
determined first. The prediction of categories for this 
document can then be made according to the category 
distribution among the k nearest neighbors. Generally 
speaking, the class distribution in a training set is not 
even; some classes may have more samples than 
others. The system's performance is very sensitive to 
the choice of the parameter k. And it is very likely 
that a fixed k value will result in a bias for large 
categories, and will not make full use of the 
information in the training set [6]. Baoli et al. [6] 
studied a text categorization system based on the 
KNN, and an improved KNN strategy (in which 
different numbers of nearest neighbors for different 
categories are used instead of a fixed number across 
all categories) was proposed. 

  
2.3. Support Vector Machine: 

SVM aims to fit an Optimal Separating 
Hyperplane (OSH) between classes by focusing on 
the training samples that lie at the edge of the class 
distributions, the support vectors. The OSH is 
oriented such that it is placed at the maximum 
distance between the sets of support vectors, which 
leads to generalize more accurately and aims to 
minimize the training error such as neural networks 
[26]. Joachims [4] introduced the Support Vector 
Machine (SVM) for text categorization from 
examples by analyzing particular properties of 
learning with text data. Practical results showed that 
SVM's achieved good performance on text 
categorization tasks, substantial improvements over 
the currently best performing methods being 
observed. In addition, SVMs are fully automatic, and 
they eliminate the need for manual parameter tuning 
making the text categorization process much easier.  
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2.4. Hierarchical Multi-label Classification 
Strategies 

Silla and Freitas [29] explored the solutions to 
the HMC problems and presented three fundamental 
strategies: 1) flat classification, 2) top-down approach 
“local classification”, 3) the “big-bang” approach or 
global classification. 
 
2.5.1 Flat classification  

The advantage of this strategy is that it enables 
the use of traditional machine-learning techniques 
such as neural networks, decision trees, or SVM to be 
implemented in the HMC as reported by [30-32]. 
Basically it ignores the class hierarchy and deals only 
with the leaf-node classes (as if the problem were 
MLNP), whether by a single multi-label classifier or 
by a set of binary classifiers (a separate one for each 
leaf node). If the leaf-node class label is known for 
each example, this strategy is possible. Besides, if the 
nature of the application seems to allow the user to 
afford the inability to identify non-terminal classes.  
 
2.5.2 Top-down approach (local classifier): 

The most common approach in HMC induction 
is the local classifier. In the simplest scenario, for 
each node in the DAG-specified class hierarchy, a 
separate (local) classifier is induced, and the 
processing is started by creating a whole hierarchy of 
classifiers, from top levels going downwards.  

The main advantage of this method is 
simplicity. On the other hand, the approach tends to 
suffer from “error propagation”, which means that 
misclassifications of the higher- level classes are 
propagated to the lower levels. 

The first experiments with this approach were 
provided by Koller and Sahami [14] by choosing 
Naive Bayes to induce each individual class. The 
authors experimented with tree-structured class 
hierarchies with no more than one parent for any 
node and limited to just two levels. 

Fagni and Sebastiani [78, 79] compared four 
different policies (Sibling, ALL, BestGlobal, and 
BestLocal) to generate a set of binary training data. 
Tree-structured hierarchical versions of boosting and 
SVM called TreeBoost and TreeSVM were used. The 
best results were obtained with the Sibling policy in 
which the negative training examples of the ith node 
are all positive examples of its Sibling nodes in the 
hierarchy.  

This strategy was applied to text classification 
by Sun and Lim [33], where the class hierarchy was a 
plain tree structure. They induced two SVMs for each 
class: a local classifier and a sub-tree classifier. An 

example is labeled as  by the local classifier, while 
the sub-tree classifier decides whether or not this 

example should be passed to ci’s sub-classifiers. This 
approach was extended to domains with DAG-
structured class hierarchies, by Nguyen et al. [34], the 
DAG hierarchy being transformed into a set of tree 
hierarchies. Experimental results indicated high 
classification performance as well as high 
computational costs. 

Looking to further improve the performance, 
Secker et al. [35] used several induction algorithms 
for each node of the hierarchy: Naive Bayes, SMO, 3-
NN, etc. Ten classifiers were trained for each node, 
and the one with the best classification results was 
selected. This improved classification accuracy, but 
the computational costs were even higher than in the 
previous attempt. 

Bi and Kwok [36] applied the Kernel 
Dependency Estimation (KDE) to reduce the number 
of classes in the hierarchy during the training process. 
This is because the number of classes in the hierarchy 
is usually unmanageable. The authors proposed an 
algorithm called “Condensing Sort and Selection 
Algorithm (CSSA)” for the tree structured hierarchies 
and, then, extended it to the CSSAG algorithm for the 
DAG-structured hierarchies. However, they did not 
report experimental results regarding induction time 
and the number of reduced classes. 

Alaydie et al. [37] proposed a framework called 
“HiBLADE (Hierarchical multi-label Boosting with 
Label Dependency),” applied to tree-structured 
hierarchies. The classifier for each class is a boosting-
type algorithm, such as ADABOOST, where the new 
model for each boosting iteration is updated by 
utilizing the proposed Baysian correlation.  
 
2.5.3. The “big-bang” approach (global classifier): 

Some authors preferred to induce one big 
(global) classification model to cover the entire class 
hierarchy, instead of inducing a separate binary 
classifier for each node. In this manner, mutual 
interdependencies of the classes can be easily taken 
into account, and the global classifier is often smaller 
than the total of the local classifiers. 

Clare and King [8] developed a hierarchical 
extension to the decision-tree generator C4.5 [38] and 
applied it to functional-genomics data. Their system 
is known as HC4.5, a mechanism for weighing the 
entropy formula (in order to give higher priority to 
more specific classes) being induced. 

Seeking to make the decision-tree paradigm 
applicable to hierarchical domains, an attempt was 
reported by Blockeel et al. [39] whose Clus-HMC is a 
hierarchical version of the earlier “predictive 
clustering tree” (PCT) [40]. Ven et al. [3] improved 
Clus-HMC so it could be used in DAG-specified 
class hierarchies. Schietgat et al. [12] proposed an 
ensemble version of the algorithm Clus-HMC-ENS. 
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Although the ensemble concept can improve 
classification accuracy, its computational costs are 
much higher than those of the original Clus-HMC. 

A global-approach hierarchical framework 
based on the K-Nearest Neighbor classifier (k-NN), 
was proposed by Pandey et al. [41]. There system’s 
improvements include: i) a Lin’s semantic similarity 
measure used as a distance measure; ii) the prediction 
function of the i-th class incorporates the inter-
relationship score of the i-th class to other classes in 
the hierarchy; and iii) the mechanism to filter 
insignificant class inter-relationships was suggested. 

Lo et al. [42] proposed a basis expansion model 
for multi-label classification, where a basis function 
is a Label Power set (LP) classifier trained on a 
random k-label set. LP [43] method is a multi-label 
learning algorithm which basically reduces the multi-
label classification problem to a single-label multi-
class classification problem by dealing with each 
distinct combination of labels in the training set as a 
different class. Random k-Label sets (RAKEL) [44] 
has introduced to overcome the drawback of the LP 
method. It randomly selects a number of label subsets 
from the original set of labels and then uses LP for 
training the corresponding multi-label classifiers. 
Experiments were conducted on ten benchmark 
datasets belonging to different domains, including: 
scene, enron, cal500, major miner, medical bibtex, 
and four versions of delicious (from dlc1 to dlc4). 
More details on these data sets are available at the 
MULAN library website [45].  

Qu et al. [46] proposed a Multi-Label 
classification algorithm based on label-Specific 
Features (MLSF). The feature density on the positive 
and negative instances set of each class was first 
computed and after that, the features of high density 
from the positive and negative instances set of each 
class were selected. The intersection was taken as the 
label-specific features of the corresponding class. 
Finally, the multi-label data was classified on the 
basis of label-specific features. The classifiers 
induction process of MLSF is similar to the original 
binary classifiers. Given an unlabeled instance xu 
∈U , the feature sets for each class label are first 
rebuild based on the label-specific features, and then 
the corresponding classifier is used to predict whether 
it has the label or not. The proposed MLSF is 
compared with three multi-label learning algorithms, 
including ML-KNN, LIFT, and Rank-SVM. The 
experiments were employed on both regular-scale 
and large-scale. For the results, common evaluation 
criteria for multi-label classification were used 
(hamming loss, one-error, coverage, and average 
precision). It is observed, that the performance of 
MLSF is comparable to that of LIFT on the regular-
scale data sets and large-scale data sets and that 

MLSF and LIFT algorithms perform significantly 
better than ML-KNN and Rank-SVM. 

Kong et al. [47], used the heterogeneous 
information networks to simplify the multi-label 
classification process. They focused on extracting the 
relationships among different class labels and data 
samples by mining the linkage structure of 
heterogeneous information networks. These 
relationships can be then used to effectively infer the 
correlations among different class labels in general, 
as well as the dependencies among the label sets of 
data examples that are inter-connected in the 
network. The proposed multi-label collective 
classification algorithm (called PIPL) was tested on a 
bio-informatic dataset SLAP [48], which is a 
heterogeneous network contains integrated data 
related to chemical compounds, genes, diseases, side 
effects, pathways etc. 
 
2.6. Other Classification Methods  

Other existing multi-label classification methods 
may include:  BSVM (binary SVM), ECC (multi-
label classification + ensemble); PISl (binary 
decomposition + meta-path based instance 
correlation):a collective classification approach [49], 
where instance correlations are from heterogeneous 
network;  Icml (simple label correlation + instance 
correlation in homogeneous network): this method 
was proposed by Kong et al. [50, 50] which exploit 
relational features for inter-instance dependencies 
based on homogeneous network for multi-label 
collective classification; PIml (simple label 
correlation + meta-path based in- stance correlation): 
a multi-label collective classification approach 
extended from PIsl [49] by adding relational features 
according to inter- instance-cross-label dependencies 
for multi-label collective classification [50]; PIPL 
(meta-path based instance and label correlation): a 
method for multi-label collective classification in 
heterogeneous information networks. The only 
difference between PIPL and PIml is that PIml does 
not consider the meta-path based label correlation. 
 
2.7. Performance Evaluation  

In order to evaluate the multi-label classifiers, 
different methods than the ones used in the case of 
single-label problems are used because an example 
can be partially correct or incorrect [57].  According 
to [43], the measures used for evaluation of multi-
label classification can be organized into two classes: 
i) bipartition based (includes example based measures 
and label based measures) and ii) ranking based 
(evaluates measures based on the ground truth of 
multi-label dataset). The example based measures 
evaluate the bipartitions over all examples of the 
evaluation dataset, while the label based measures 
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divide the evaluation process into evaluations of each 
label [57]. 

In classical machine learning, the classifiers are 
usually evaluated by error-rate estimates. This error is 
obtained by the comparison between testing 
examples’ with a pre-determined class labels with 
those class labels recommended by the classifier. 
This, however, is not quite enough when dealing with 
domains where one class significantly outnumbers 
the other [58]. For instance, if only 1% of the 
examples are positive, then a classifier that labels all 
examples as negative will achieve 99% accuracy.  

For this latter case, other criteria are used, the 
most popular among them being precision and recall. 
Let us denote by TP the number of true positives, by 
FN the number of false negatives, by FP the number 
of false positives, and by TN the number of true 
negatives. Precision and recall (which are example 
based measures) are defined as follows: 

   (1) 

   (2) 
Precision is the percentage of truly positive 

examples among those labeled as such by the 
classifier; recall is the percentage of positive 
examples that have been recognized as such 
(“recalled”) by the classifier. Which of the two is 
more important depends on the given domain. In 
order to combine them in a single formula, [59] 

proposed F , where the user-specified parameter, 

, quantifies each component’s relative 
importance:  

  (3) 

It would be easy to show that  > 1 apportions 

more weight to recall while  < 1 emphasizes 

precision. Moreover, F  converges to recall if 

, and to precision if  = 0. If we do not want 
to give more weight to either of them, we use the 

neutral  = 1: 

   (4) 
All this, however, applies only to domains 

where each example is labeled with one and only one 
class.  

F-measure is the harmonic mean between 
precision and recall [52]:  

 (5) 

where  are the precision and recall for . 
Here, the F-measure is calculated per label and then 
averaged. 

Yang [60] proposed two methods to average the 
above metrics over multiple classes: (1) macro-
averaging, where precision and recall are first 
computed separately for each class and then 
averaged; and (2) micro-averaging, where precision 
and recall are obtained by summing over all 
individual decisions. Which of the two approaches is 
better depends on the concrete application. Generally 

speaking, micro-  weighs the classes by their 

relative frequency, whereas macro-  gives equal 
weight to each class. The formulas are summarized in 

Table 2.1, where , , and F1.j , stand for 
precision, recall, and F1 for the jth class (from l 
classes).  

 
Table.1 Macro-averaging and micro-averaging 

of the performance criteria on the data set with l 
classes [60]. 

  
Hamming loss (an example based measure) [61] 

evaluates how many times an example-label pair is 
misclassified, i.e., label not belonging to the example 
is predicted or a label belonging to the example is not 
predicted. The smaller the value of hamming_loss(h), 
the better the performance. The performance is 
perfect when hamming_loss(h) = 0. This metric is 
defined as:  

 
     (6) 

where Δ stands for the symmetric difference between 
the two sets, N is the number of examples and Q is 
the total number of possible class labels. Yi denotes 
the set of true labels of examples xi and h(xi) denotes 
the set of predicted labels for the same examples.   
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3. Methodology 
Digital libraries provide a huge range of 

information including text, movies, speeches, images, 
photos, books and others. This digital data provides 
large collections of content which naturally leads to 
the need of powerful tools that efficiently process, 
analyze, navigate, and browse the digital data [65]. 
Therefore, in this work, different data sets from 
books digital libraries and other contents were used. 
There are many digital libraries available online such 
as, Internet archive [66], Google books [67], Open 
library [68], The New York public library [69], and 
Wiley online library [70].  Library collections such as 
Wiley Online Library [70], which hosts the world's 
broadest and deepest multidisciplinary collection of 
online resources covering life, health and physical 
sciences, social science, and the humanities, Routers-
21578 [71], which a collection appeared on the 
Reuters newswire in 1987.  From the 
available sources Wiley Online Library [70], Routers-
21578 text categorization collection data set [71], and 
the 20 Newsgroups data set [17] were chosen for the 
conducted experiments. Wiley Online Library hosts 
the world's broadest and deepest multidisciplinary 
collection of online resources covering life, health 
and physical sciences, social sciences, and 
humanities. It delivers seamless integrated access to 
over 4 million articles in 1500 journals, over 14,000 
online books, and hundreds of reference works, 
laboratory protocols and databases. The documents in 
Routers-21578 [71] are organized and indexed with 
categories by personnel from Reuters Ltd. In 1990, 
Reuters and CGI made the documents available for 
research purposes to the Information Retrieval 
Laboratory of the Computer and Information Science 
Department at the University of Massachusetts at 
Amherst. There are multiple categories, and there are 
relationships among the categories, therefore are 
many possible feature sets can be extracted from the 
text.  

The 20 Newsgroups data set [17] is a collection 
of approximately 20,000 newsgroup documents, 
partitioned across 20 different newsgroups, each 
corresponding to a different topic. It has become a 
popular data set for experiments in text applications 
of machine learning techniques, such as text 
classification and text clustering. 

Since the data set that is provided by the digital 
library is considered as raw data, it may contain 
nominal attributes (un-necessary). Nominal attributes 
are defined by providing a <nominal-specification > 
listing the possible values: {the, for, in, on, edition, 
processes, systems...}. Also, a raw data set may 
contain many values that may be missing, so it is 
necessary to do some pre-processing. Once pre-
processing was finished, a proprietary algorithm for 

multi-label class was implemented and compared 
with some existing algorithms.  

 
3.1. Data pre-processing: 

Since the data set is a raw data, it may contain 
many values that might be missing, so it is necessary 
to do some pre-processing. This phase consists of the 
following: i) data cleaning; ii) feature extraction; and 
iii) nominal to numerical conversion.  
 
3.1.1. Data cleaning: 

Removing un-necessary and meaningless words 
such as “introduction”, “handbook”, “edition” etc., is 
done in this stage. Its role is to reduce the dimensions 
of the dataset and to eliminate the elements that can 
create errors in the classification algorithm. 

Meaningless words with very high frequency 
are considered as stop words [16], and these words 
are added to the Stop Word list. Removing such 
words will result in better results and it will not affect 
the classification efficiency at the same time.  

In data cleaning, mainly the input file is parsed 
line by line and each line is being split into words by 
space character as a delimiter. Then each is getting its 
stem using the Porter stemming algorithm [15].  

The Porter stemming algorithm is a process for 
removing the commoner morphological and 
inflexional endings from words in English. It is 
mainly used is as part of the normalization process 
that is usually done during processing information 
retrieval systems. After the stemming process, each 
root is being searched in the list of unwanted words 
and if that root exists in the unwanted words file, then 
the word will be deleted from the input file and it's 
derivatives should be removed from the input file as 
well. Finally, reconstruct the line that has unwanted 
words eliminated and push it in a new file 
(Intermediate).  
 
3.1.2. Feature extraction: 

Transforming the input data into the set of 
features is called feature extraction. The features have 
to be chosen carefully. By that, the features set will 
extract the relevant information from the input data in 
order to perform the desired task using this reduced 
representation instead of the full size input [13].  

In features extraction, the process starts by 
reading the intermediate file line by line. Then, we 
find the stem of each word by searching in the stem 
file. If the stem is found then ignore the word, and go 
to the next word. If that stem is not found, then 
increase the count of features by one and add that 
stem into the feature set, then write that original word 
of that stem in the output file. We count the feature in 
this step in order to find the relationship between the 
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number of features and number of example later in 
this research.   
 
3.1.3. Nominal-to-numerical conversion:   

To make the classification less computational 
expensive, the classes were numbered and their 
corresponding meaning was defined. Also the 
extracted features were transformed into numerical 
features usable for machine learning. 

Figure 3.2 shows an example of the pre-
processing phases, where un-necessary word 
(Handbook) is removed in the data cleaning and the 
remaining words will be extracted representing the 
features. Those features will be associated with 
numbers to deal with, which make it easier.  

 

 

 
Figure 3.2: Pre-Processing phases on an example 

 
3.2 The proposed algorithm 

Once data pre-processing is completed, the data 
is stored in a pre-processed file to be handled later as 
clean data. The proposed classifiers read from this 
data set. First, the system reads a set of the data set X, 

where each example in the training  X, Then, the 
system reads another set of data, let’s call it Z. This 
data is used for testing, so each example in the testing 

set  Z. After the classification process is done, the 
error rate and the classification accuracy will be 
observed.  

Let's call the set of misclassified examples Y, 

each misclassified example  Y.  Then classifier 
must be trained again. The new training set will be 

called , where each example in the training 

iteration i   
Because Y is smaller than Z a number of 

examples (E) must be added, where E = Z – Y and 
the new training set is N where N = E + Y. 

The system reads another set of data, let's call it 
(V), and this is going to be used for testing, so every 

example in the testing iteration i  .  
For every classification iteration, a training 

session will start again and a new testing session  
will also go through the classifier. In Figure 3.4 a 
simplified schema of the proposed approach is 
presented. 
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Figure 3.4: Methodology work flow 

 
A common approach for building a reliable 

classifier is to split a data set in to a training set and 
an independent test set, where the training set is used 
to develop the classifier and the testing set is used to 
evaluate its performance. The common used strategy 
is allocating 2/3rd of cases for training is nearly 

optimal for reasonable sized data sets (n ) 
with strong signals [11]. According to this principle 
the workflow is as following: 
 Once the data it is cleaned, the algorithm reads 

it. 
 The algorithm trains the classifier by assigning 

the feature numbers with every class in the 
classification tree.  

For example if data has a set of features 
(Computer = 1, Science = 2, Machine = 3, 
Learning = 4, Algorithm = 5, Engineering = 6, 
Biology = 7, Chemistry = 8), these features are 
assigned to each class according to a pre-
designed classification tree: 
Class 1, features [1, 2, 3, 5, 8, 10] 
Class 2, features [1, 5, 8] 
Class 3, features [5, 8, 10]  
and so on. 
Then, the classification tree might look as 
Figure 3.5. 
 

 

 
Figure 3.5: Classification tree 

 
 Once the features are assigned to classes, the 

testing set is introduced, every word in the title 
being assigned to a class. The word might be 
assigned to more than one class, but only to the 
ones belonging to the same grandparent. Once a 
word cannot be classified in any class, it means, 
the feature of the word is new, and the classifier 

needs to be re-trained. The error rate is 
calculated if a word feature was miscounted or 
if a word was classified in a wrong class. 
Macro- and Micro- averaging are used to 
calculate the error rate in case a word was 
classified into a wrong class. 

1 

2 4 

5  6 9 10 
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The pseudo-code of the proposed algorithm is the following: 
TitleList = Import_Titels_List( ) 
CategoriesList  = Import_Categories_List( ) 
StemList = Import_Words_List( ) 
ErrorsCounter = 0 
WordsCounter = 0 
For each title in TitleList 
       WordsIn Title = extractWordsFromTitles(title) 
       WordsCounter = WordsCounter + NumberOfElement(WordsIn Title) 
       TitleCategories(title) = emplylist( ) 
               for each wordintitle in WordsInTitle 
                       for each stem in StemList 
                                  StemIsFound = false 
                                  if StemOf (wordintiltle) = stem 

    TitleCategories(titles) = union( TitleCategories(title),  
        CategoriesOfStem(stem)) 

                                                 GoToNextWordIntitle( ) 
                                                  StemIsFound = true 
                                       end 
                             end 
                            if StemIsFound == false 
                                            OutputWarning(“The word”wordintitle “in the title”title “has  
       not  a matching in the list of stems”) 
                                            ErrorsCounter = ErrorsCounter + 1 
                          end 
             end 
end 
ErrorRate = ErrorCounter / WordsCounter 
Output(“The error rate is” ErrorRate) 
 
3.3. Complexity analysis 
To analyze the complexity of the algorithm the 
following symbols are used: 
n : number of titles to be analyzed  
m : number of stems present in the database 

t : number of categories per word (mean value) 
p : number of words per title (mean value) 
q : number of characters per word (mean value) 
w : total number of categories 

The overall number of instructions is  
 

   (7) 
That is in the expanded form 

   (8) 
Analyzing the expression above we can note 

that the increasing the size of inputs the dominants 

terms are  and . Then, considering 

that the number of categories per word (  is 
generally lower than the number of characters per 

word (  the time-complexity of the algorithm is 

( . 
Considering that the number of word per title 

( , the number of characters (  and the number of 

categories per word (  does not increase by 
increasing the input size (as they mainly depend on 
the language the words belong) they can be treated as 

constant (the medium value is considered) and can be 
neglected in the evaluation of the time - complexity 
of the algorithm. 

In the end, the time complexity of the algorithm 

result using the big-   notation.  

   (9) 
The space complexity of the algorithm is 

calculated considering the bytes of memory needed 
for the execution of the algorithm. Therefore, the 
number of bytes is defined by Equation 19, described 
in its extended form by Equation 20: 
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   (10) 

   (11) 
Considering that the number of categories (�) is 

generally lower than the number of titles to be 
analyzed (�) and lower than the number of stems 

(�), in the asymptotic analysis the last term (��) can 
be neglected. In these conditions, the space required 
when increasing n and q can be approximated as: 

     (12) 
Considering that the number of words per title 

� and the number of characters per word � do not 
increase increasing the input size (as said in the 

previous paragraph they mainly depend on the 
language used), the space required can be 
approximated to 

  (13) 
In the end, the space complexity of the algorithm result using the big-� notation 

    (14) 
 

 
3.4. Case studies 

The same experiment is conducted for full 
domain, and sub-domains of the library collections 
which are shown in Figure 3.6. 
 

 
Figure 3.6: Books domain and sub-domains 

 
3.4.1. Case study one (Wiley online library) 

The data set that first case study is represented 
by the Willey online library [70]. It has collection of 
books (examples) described by different attributes. 
These books were collected from different fields and 
disciplines. The characteristics of this database are 
the following:   
 Dataset name: Wiley online library [57]  
 Number of attributes: 5888 
 Number of examples: 8842 
 Number of classes: 64 
 Number of hierarchical levels: 3 

The data set already contains nominal attributes, 
many values were missing. Therefore, pre-processing 
was necessary. According to the workflow of the 
proposed algorithm, before training and testing, a 
data cleaning step and nominal to numerical 
conversion steps are performed.  

In the data cleaning step, rare classes or classes 
that may have a representation of less than 1% of the 
data set will be ignored as 1% is really a small 
number of examples. In case the data set is a large 
one, 1% might be taken into consideration in other 
data sets. Some examples of books titles that might 
be ignored due to the low class representation are: “It 
Happened One Night”, “Top Hat”, “Hairspray”, “The 
Act of Remembering”, and “Women at the Top”. 

In the nominal to numerical conversion, 
numbers are manually assign to each class as those 
classes are already induced and defined to their 
corresponding meaning. Also transform the extracted 
features into numerical features is useful for machine 
learning since its easy to handle when coding. For 
example if we have the word “science = 1” in the 
feature set and we got a book titled with “computer 
science algorithms”, the word “computer” will be 
assigned to 2, and the word “algorithms” will be 
assigned to 3 as we already have “science” assigned 
to 1. So, the example representation will be:  “2,1,3.” 

The data set has thousands of examples. To 
insure precise performance evaluation, a 5-fold cross 
validation was used. The training examples are 
described by thousands of attributes, thus it becomes 
easy to classify discriminant classes, but that means 
that a large number of examples is required in this 
case. 

This data is cleaned and all un-necessary words 
and stop words are removed. Thus, using stemming 
every word is associated with its family. 
Consequently, words like computer, computing, 
computers, and compute will have only one stem 
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number. We select , and is a 

set of examples that consists of  examples for 
training. In the training stage, the features are 
manually assign with each class. This is called a class 
feature vector. Once this stage is achieved, the 
classifier is trained and becomes ready for testing.  

For this case study, the scope was to test if the 
classifier can be trained and what would be the error 
rate. The dataset considered is represented by the 
entire book domain [70]. The entire data set including 
all major classes and sub-classes was used. The main 
classes are: Applied Science, Engineering Science, 
Health and Social Sciences. 

The data set was divided into training and 
testing examples each training set having 200 
examples and each testing 200 examples. For the 
training set, the examples are manually classified and 
the class label is updated with every example.  
 
4. Results 

In this section, the results of the simulations 
performed with the proposed algorithm and the 
algorithms chosen for comparison are presented and 
discussed. Several experiments were conducted on 
real world data sets from different fields including 
library collections [70], Routers- 21578 [71], and 20 
Newsgroup [17] data sets. The final goal was to 

correctly classify a library collection into classes 
where the examples (books) are classified into classes 
and the classes are hierarchically ordered.  

In order to compute the error rate for this 
dataset, the macro-micro averaging were used. When 
multiple class labels are to be retrieved, averaging the 
evaluation measures can give a view on the general 
results. For example, consider a binary evaluation 
measure B(TP,TN,FP,FN) that is calculated based on 
the number of true positives (TP), true negatives 
(TN), false positives (FP) and false negatives (FN), 

and 2 labels  and .  
Figure 4.2 shows the result of the experiment 

with a very noisy training, until 1000 examples are 
reached. At this point, the error rate starts to drop 
below 80%. The learning curve shows an error rate of 
40% when almost 4000 examples are used.  We 
expect that the curve will keep improving and the 
error rate keeps dropping as more examples are 
added. This experiment was conducted on the whole 
books domain. The number of attributes used in this 
experiment was 8555.  

Figure 4.2 shows the result of applying the 
proposed algorithm, Where every class is labeled 
with the features that best describe the class. These 
all the examples were classified to all classes that 
may have their features as shown in Figure 3.5 

 

 
Figure 4.2: Books full domain error rate. 

 
Figure 4.3 and 4.4  show the output of different 

subdomains, where the error rate drop below 20% 
with fewer examples. This can be explained by the 
fact that the number of attributes associated with this 

domain is very small and equals to 1831 for the 
engineering domain. The error rate was calculated 
using the Macro-Micro averaging metric.  
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Figure 4.3: Engineering domain error rate 

 
Figure 4.4: Social sciences and Humanities error rate. 

 
The previous case studies showed that a book 

collection could be trained and the error rate can be 
reduced if more examples are added. The error rate in 
this case was calculated using the hamming loss [61]. 

Figure 4.10 shows the result of the experiment. As it 
can be observed, the error rate is very low starting at 

 1.5% to less than 0.5%. 

 

 
Figure 4.10: Routers-21578 data set error rate 
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In this experiment, we used another popular 
algorithm in documents classification called Term 
Frequency Inverse Document Frequency (TF-IDF) 
[8] and the data set “20 newsgroup” was used. As 
explained in  section 3.4.8 the data set has about 
19,000 documents. It is expressed in terms of the 
document-term matrix. Rows are represented by the 
document examples, and columns represent words. A 
matrix entry (i,j) represents the frequency of 
occurrence of a word j in a document i. Word 
frequencies for about 60,000 words are specified for 
each document. The item (1,1) means document #1, 
word #1, and the #4 means word#1 has frequency = 4 
in document #1 and so on. 

In an attempt to reduce the dimensionality of 
dataset, the following steps were preformed: 

 Removing features that do not help in 
discriminating between class i.e., words like ’a’, ‘the’ 
that appear in all documents. 

 Using Principle Component Analysis PCA 
[39] for dimensionality reduction 

Words with high Inverse Document Frequency 
(IDF) counts are removed, where IDF represents the 
ratio of the number of documents in which a 
particular word appears, to the total number of 
documents. A high value indicates that the word is 
present in most of the documents across classes, and 
hence does not help much in discriminating between 
the classes. But we noticed that we were left with a 
large number of words even after removing such 
words with counts above a certain threshold. Since 
discarding information can affect classifier 
performance later, setting too low threshold is not a 
good thing we dropped this and looked at alternative 
attempts. 
 
4.1. Existing algorithm (Method A: Naïve Bays 
algorithm) 

The first task in the training stage is to separate 
10% data for testing purposes from each class. 10% 
data is separated for each class out of total data for 
that class. For example, if 100 samples are available 
for class 1, 10 samples were taken out for testing. 
This 10% amount is standard in literature and in 
normal circumstances 10-15% data is taken out for 
testing. If 50% of data is taken out, too less remains 
for the training stage and the classifier may not 
generalize well. After segregating, there were 9012 
items in training data and 969 items in testing data, 
including roughly 10% from each class.  

On the second stage, the methodology of data 
cleaning presented in section 3.1is applied, all the 
unnecessary words being removed from the titles of 
the books. These include articles such as, (a, and), 
prepositions (of, for etc.) and other common 
meaningless words like volume, edition, e-book etc. 

On the third stage, all the remaining words were 
extracted from the books’ titles and each word was 
assigned a unique number and another identifier to 
show which class it belongs to. Actually wordID is 
unnecessary and we may ignore it. For each word, we 
have a list of classes it can belong to, e.g. chemical 
may belong to class 1, 3 and 5 so its class ID will be 
(1,3,5). So the format was like: 
word  class ID  wordID 

For instance, the word Horticulture, the word ID 
may be 5 and if it belongs to class 10, its class ID is 
10. Then all words are converted to uppercase so that 
while comparing the words later we do not have to 
deal with case-sensitivity issue. 

Finally, all the words are sorted alphabetically 
so that when comparing in the testing stage, we do 
not have to compare with all words. Thus, there is no 
need to compute distances with all the words but only 
with those which start with the specified letter. For 
instance, if the word is Horticulture, then we only 
need to compare it with the words starting with the 
letter H. 

Once all is done, all the words, sorted 
alphabetically and in the format mentioned above, are 
stored in a data file. 

 
4.1.1. Testing stage 

In the testing stage, all the titles, along with the 
class to which it belongs to are passed through the 
testing function. For instance:  

Class                                  title 
Agriculture   Horticultural Reviews, 

Volume 1 
In the testing stage, the book title goes through 

the same steps as the training data start the data 
cleaning process again. Useless words are removed, 
but useful words are extracted and separated, then 
converted into uppercase. 

After pre-processing, the final shape of the title 
will be: 
(HORTICULTURAL REVIEWS and VOLUME and 
1) all of those words being removed as they are very 
generic words and cannot be associated with a 
particular class. The only word kept is 
HORTICULTURAL 

Next, the training data is loaded and as 
discussed before, only the words starting with the 
same letter as the testing word are selected for 
comparison. For instance, when we want to see which 
class the word FUNGI belong to, we will compare 
only with the words starting with the letter F. We do 
the same with the example above 
HORTICULTURAL which starts with H, we will 
compare it only with the words starting with the letter 
H. We call this a stemming process, where we 
associate each word with its own stem words only. 
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The testing word is compared with the above 
selected words and its distance is computed from 
them. Two types of matching techniques are used; 
one is the Lavenstein Distance [5], the number of 
edits required to convert one string to another. For 
instance, if HORTICULTURE and 
HORTICULTURAL are compared, then Lavenstein 
Distance will be 2, since 2 edits are required to 
convert the first string into the second one. 
 
4.1.2. Using single label classification  

The testing is done for all the classes and the 
error rate for each class is compared. The error rate 
for most of the classes is quite high, the reason being 
that out of the 49000 total words in the 9012 training 
titles, only about 8500 are unique and the rest are just 
repetitions. This indicates a huge overlap of data 
among different classes and as a consequence, the 
classifier gets confused while testing and therefore 
misclassify the data. 

The last step, in which we pick the ID of the 
most frequent class, normally has number of IDs with 
the same frequency, and just picking the first one also 
introduces errors.  

The average error rate for all the classes can be 
computed by  

 

 
 
where ∑ indicates the sum over all the classes. This is 
just the concept of weighted average. e.g. if we have 
3 classes; class 1 has an error rate of 60%, class 2 has 
an error rate of 40% and class 3 has an error rate of 
50%.  

Then using the simple average formula, the 
error rate obtained is 50%.   ( (60+40+50)/3 = 50). 
But now suppose there are total of 10 words; 5 
belong to class 1, 3 to class 2 and 2 to class 3. Since 
more words belong to class, logically its error rate 
should have more contribution in the overall error 
rate. So we do weighted average, weight for class 1 is 
5/10 = 0.5 (no. of words in the class / total words). 
Similarly weight for class 2 is 3/10 = 0.3 and weight 
for class 3 is 2/10 = 0.2. Now we multiply with 
respective error rates and sum them up; so the error 
rate becomes (0.5 x 60) + (0.3 x 40) + (0.2 x 50) = 30 
+ 12 +10 = 52%. This error rate is more indicative of 
the overall behavior of all the classes as it gives more 
weight to the classes with more amount of data. 
Using the above formula, the Avg. Error Rate for all 
classes comes out to be 64%. 
4.1.3. Using multi-label classification 

The error rate can be reduced by number of 
different techniques. One simple way is to get all the 
different class IDs in the last step of testing stage, 

each of which have the same probability to be 
assigned to the given title – this is the Multi-Label 
Classification and in this case each title can belong to 
multiple classes. Given that the actual class is among 
the final set, this step can eliminate all the non-
probable classes and another classifier can be used in 
the next step to choose the final class or a human can 
do that provided the number of such instances are 
small.  

Alternatively, we can extract the unique words 
and find out for each word the class to which it 
belongs most frequently – the bag-of-words 
approach, and then instead of assigning the class IDs 
of all the classes to which the word may belong, we 
assign only those class (or classes) IDs to which it 
belongs the most. But this technique is biased 
towards the class having more training samples, and 
the error rates for the classes which have the lesser 
data may increase more. But the overall error rate 
will surely decrease as the classifier is now more 
biased towards the classes which are more frequent 
and more likely to come.  

 
The Avg. Error Rate for this technique comes 

out to be 57% which is an improvement over the 
previous technique. 
 
4.2. Existing algorithm (Method B: KNN 
algorithm) 

Suppose the classifier was asked to classify 
some sample X, and after computation classifier finds 
that it can belong to any one of the class 1, class 2 
and class 3. In this case, we need a rule to break a tie 
and the one we used in previous section was to pick 
the lowest class ID. Therefore, the sample will be 
classified to class 1 even though it may belong to 
class 2 or class 3. Suppose that sample originally 
belonged to class 2; then the classification will be 
wrong and will account as an error. But if we don’t 
use any tie-breaker and outputs all the equally 
probable classes, i.e. class 1, class 2 and class 3, then 
there will be no error as sample does belong to one of 
these classes. This is the whole idea of multi-label 
classification or multi-output classification, in which 
input X is not mapped to a single scalar class y, but 
rather a vector of classes Y  

 The algorithm was modified to 
accommodate the multi-label classification and an 
error occurs only if the actual class y was not among 
the vector of classes Y given by the classifier. The 
error rate is reduced in this case compared to the case 
of single-output classification.  

Green blocks indicate the classes with error rate 
of less than 50% and it is visible that now such 
instances are lot more than in previous tables. The 
overall Avg. Error Rate is 41% which is an 
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improvement of nearly 16% from the previous 
method. 
 
4.2.1. Classification of parent class 

The classification of Parent Classes is much less 
error prone as there are few parent classes and the 
margin for error is smaller. In this case, there are 6 
Parent classes corresponding to 65 Child classes. The 
original classifier (in multi-label case) returns a set of 
child classes, which may or may not belong to the 
same parent class. So we get the parent class for each 
of these child classes and then compare them one by 
one to the original parent class. An error occurs only 
if none of the parent classes match the original parent 
class.  

The highlighted entries indicate the classes with 
error rate of less than 30%. The overall weighted 
Average Error Rate is 21%. 
 
5. Conclusion 

This study is focused on the HMC with 
emphasis on several case studies to draw the research 
observations. This is done by conducting various 
experiments including many popular machine 
learning algorithms. KNN and Naïve Bays algorithms 
along with the proposed algorithm based on SVM are 
used. The research also aimed to identify the child-
parent relation, and parent-child relation. To this 
goal, a proprietary software was built to test whether 
an example is classified into its corresponding child 
and grandchild as well as if the grandchild belonged 
to its accurate parent and grandparent. The 
significance of the research is the motivation for the 
use of machine learning in digital libraries which 
were the primary resource that were used in the 
study. We have also used 20 newsgroup and Routers 
data set to compare the performance.   

The performance analysis was done using 
Macro and Micro averaging and hamming loss 
metrics. Based on the results, it was found that, it is 
very time consuming and costly to use only book 
titles to classify a large collection of library contents. 
Thus, we suggest that we either use the sub domain 
approach or classify each sub domain separately, or 
include more information such as abstract of 
documents, an introduction of the document. Another 
major finding is that a parent node can be a parent of 
all documents with a small and acceptable error rate. 
In general, our findings are very similar to the many 
recent published studies. 

In future, we plan to generalize the proposed 
algorithm for the hierarchical case where the 
interrelation of the class labels can be specified by a 
generalization tree of a directed acyclic graph (DAG) 
as in Vateekul et al. [2] study. 
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