
Life Science Journal 2014;11(10) http://www.lifesciencesite.com

495

Induction From Multi-label Examples

Hind Hazza Alsharif1, Wadee Saleh Alhalabi2, Miroslav Kubat3

1, 2 Computer Science Department
Faculty of Computing and Information Technology

King Abdul Aziz University
3 Electrical and Computer Engineering Department

University of Miami

Abstract: The task of text categorization is to assign one or more classes to a document. The simplest machine
learning approach to such domains, simply induces a binary classifier separately for each class, and then uses these
classifiers in parallel. An example of motivating application is a digital library collection that used to be classified
into classes and sub-classes in a hierarchical order. Another important issue that we are considering is the document
might belong to more than one class, in this case we will be working on a high performance multi-class label
classifier. The study we are intending to do herein is going to show how much we can gain from machine learning.
This mean, if we need something like 10 to 15% of the data for training, and testing or do we need > 50% of the data
set for training and testing. In the latter case, the machine learning may don’t contribute that much. However, if 10
to 15% of the data set is needed, then, machine learning has a great contribution. The last issue we are working on in
this research is the inter-class relation. Which means, if the example is classified to belong to a class C, does this
mean, the example belong to parents and grandparents classes of the class C, and on the opposite way too? We will
use a framework to classify documents automatically and this can indeed answer these questions.
[Hind Hazza Alsharif, Wadee Saleh Alhalabi, Miroslav Kubat. Induction From Multi-label Examples. Life Sci J
2014;11(10):495-511] (ISSN:1097-8135). http://www.lifesciencesite.com. 67

Keywords: text categorization, induction process, multi-label classifiers, inter-class relation, KNN algorithms,
Naïve Bays algorithms

1. Introduction

The main goal of a classification induction
process is to find the mechanism (rules) able to place
an example or a stream of examples into sets of
categories called classes. In the case of multi-label
classification induction, an example is allowed to
belong to more than one class at a time, and the
classes are hierarchically ordered. This is referred to
as Hierarchical Multi label Classification (HMC).
The classification of a library collection (where book
titles represent the examples and each of the scientific
field represents a class) is an example of an HMC
problem. The class-to-class relations are defined by a
Directed Acyclic Graph (DAG) (Figure1.1) which
indicates that there are no cycles. The nodes and the
edges define the structure of the network, and the
conditional probabilities are the parameters to give
the structure to the graph [1].

The focus of this research is on the HMC
problem, with emphasis on several case studies used
for drawing observations and reaching general
conclusions. Aiming to build a proper induction
system for these problems, the top down approach
was preferred. It started by inducing a classifier for
each class of the highest level of the DAG and
continued downward by employing the higher-level
classifiers when creating the training sets for lower-
level classifiers.

Figure 1.1: An example of a DAG-structured class hierarchy as

presented in [2]

The scope was to develop a proprietary

methodology and algorithm and compare it with a
couple of many popular algorithms including Support
Vector Machines (SVM) [3-5], K-Nearest Neighbor
(KNN) [6] and Naïve Bays [7]. The comparative
study consisted in: i) classifying examples into
hierarchically ordered classes and ii) finding their
inter-class relation.

As the work in this research progressed and as
recommended by [2], we realized that HMC’s
performance has to be evaluated along somewhat
different criteria than those used in classical machine
learning. For example, let C be a set of classes to
which an example X belongs to. A perfect classifier
will label X with all classes from C, never suggesting

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

496

any class from outside C; moreover, an HMC usually
requires that any X that has been labeled with Ci
should also be labeled with all ancestors of Ci in the
class hierarchy. To be able to reflect these
requirements in performance evaluation, we used an
adequate extensions of precision and recall
introduced by Clare et al. [8].

1.1. Problem Statement

A graph mainly consists of a set of nodes, N,
and a set of edges, E, where an edge is an ordered

pair of nodes, (,) E {N × N }. in this
pair, is known as a parent, and Nc as a child. A path
(Na → Nc) from an ancestor (Na) to a child (Nc) is

referred to be a series of edges, {(,), (,),

. . . , (,)} in a way that = Na and Nn =
Nc. The existence of a path in a DAG, is Na → Nc,
guarantees the non-existence of the opposite-direction
path, Nc → Na. A leaf node is known to be a node
without any child, and a root node is known to be a
node without any parent.

In this research, this problem is addressed by
considering a set of class labels, C, whose mutual
relations are specified by a class hierarchy, H, which
has the form of a DAG in which each node represents
only one class.

X is a finite set of examples, each
described by a set of p numeric attributes. We assume

that each X is assigned a set of class labels, L =

{ , ..., } H (all classes belong to the given

class hierarchy). An example belonging to class is

assumed to also belong to all ’s ancestor classes,

. This property is called “hierarchical constraint”.
There are two versions of the hierarchical

classification task: i) the Mandatory Leaf-Node
Problem (MLNP), where only the leaf-node classes
are used and; ii) the Non-Mandatory Leaf Node
Problem (NMLNP), where an example can be labeled
with any class from the given class hierarchy.
Considering the class hierarchy from Figure 1.1,
MLNP permits an example to be labeled only with a
subset of {C1.1, C2.1, C2.2.1, C2.2.2}, but NMLNP
allows also the other class labels (e.g., C1 or C2.2).
This research focuses on the general NMLNP,
because we assign examples to any node in the
hierarchy.

1.2. Two main questions were addressed in this
research:

Suppose that a machine learning algorithm has
already induced classifiers for some highest-level
classes. Does this facilitate any future attempts at the
induction of lower-level classes? For instance, if an
example was classified to a lower level class, can this
example belong to the parent and grandparent
classes?

Turning this upside down, suppose we know the
lowest-level classes. Can this be exploited in the
induction of the parents of these classes? For
instance, if an example was classified in the upper
level class, can this example be a parent of the lower
level classes?

Aiming to answer these questions, a proprietary
algorithm will be built. It will test whether an
example is classified into its corresponding child and
grandchild, as well as if the grandchild is belonged to
its accurate parent and grandparent. The focus is on
the inter-class relations and we want to look at the
parent-child and child-parent relations, this aspect
representing the main contribution of this study.

The significance of the research is the
motivation for the use of machine learning in digital
libraries which can be defined as follow: The digital
library needs to be able to identify all documents
relevant to a user’s query. This function is sometimes
supported by an indexing system in which each
document is tagged with the labels of all the topics it
represents. The indexing system is relatively easy to
create in a small collection: an expert reads each
single document, and then decides which topics it
represents. In large collections, this might be
expensive and clearly impossible if hundreds of
thousands of documents are added to the library
every week, or even on a daily basis. In this latter
case, one solution is to classify manually only a
subset of the documents, and then employ the training
set, to obtain the induction of a classifier. The
induced classifier then labels those documents that
have not been classified manually. The principle can
be applied to other domains, not just digital libraries.

The main research question is the following:
how many documents should we classify manually if
we want to induce a high-performance classifier? To
put the question in another format: How much can be
gained from the use of machine learning? For
example, suppose we have 106 documents. If we
manually classify only a few, the induced classifier
will over fit the training examples, and thus perform
poorly on the remaining documents. The situation
will improve if the training set consists of about 10%
of the collection or more; but then, the price of
manual classification will become prohibitive. This
motivates an experimental study whose goal is to
identify the right size of the training set, and this is
what we want to do in this research.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

497

1.3. Possible conclusions:
It may turn out that only a small percentage of

all examples are enough for the induction of a
relatively high-performance classifier. In this case,
the use of machine learning is justified. Conversely, it
may turn out that even using 50% of the examples for
training is not enough. In this case, machine learning
does not seem to help. Most likely, the observed
result will be somewhere between these two
extremes. We might want to verify if the observation
is the same in each of the studied experimental
domains. This means, we want to repeat this
experiment for several different domains.

2. Background

Over the past few years, studies of induction
from multi-label examples have targeted two specific
strategies: induction of sets of binary classifiers, and
induction of one large multi-label classifier. For the
induction of sets of binary classifiers, mechanisms
based on Bayesian theory were studied by Friedman
et al. [7], and McCallum and Nigam [9]. The latter
was investigated by Baoli et al. [6], and the currently
popular SVM were discussed by Joachimis [4] and
Kwok [10]. Unfortunately, binary classifiers ignore
inter-class relations, which sometimes lead to
performance degradation. In this study, the focus is
on these inter-class relations.

2.1. Bayesian Networks:

The Naïve Bays, classifier learns from training

data the conditional probability of each attribute
given the class label C. Classification is then done by
applying Bayes rule to compute the probability of C

given the particular instance of , . . . , , and
then predicting the class with the highest posterior
probability. This computation is rendered feasible by
making a strong independence assumption: all the

attributes are conditionally independent given the
value of the class C. By independence means the
probabilistic independence, that is, A is independent
of B.

A naive Bayesian classifier has the simple
structure shown in Figure 2.1. This network captures
the main assumption behind the naive Bayesian
classifier, namely, that every attribute (every leaf in
the network) is independent from the rest of the
attributes, given the state of the class variable (the
root in the network). Thus, it is said that the
performance of naive Bayes is somewhat surprising
due its dependency [9].

Figure 2.1: The structure of the naive Bayes network.

2.2. K-Nearest Neighbor:

In a text categorization system based on the K-
Nearest Neighbor algorithm (KNN), k is the most
important parameter. To classify a new document, the
k-nearest documents in the training set are
determined first. The prediction of categories for this
document can then be made according to the category
distribution among the k nearest neighbors. Generally
speaking, the class distribution in a training set is not
even; some classes may have more samples than
others. The system's performance is very sensitive to
the choice of the parameter k. And it is very likely
that a fixed k value will result in a bias for large
categories, and will not make full use of the
information in the training set [6]. Baoli et al. [6]
studied a text categorization system based on the
KNN, and an improved KNN strategy (in which
different numbers of nearest neighbors for different
categories are used instead of a fixed number across
all categories) was proposed.

2.3. Support Vector Machine:

SVM aims to fit an Optimal Separating
Hyperplane (OSH) between classes by focusing on
the training samples that lie at the edge of the class
distributions, the support vectors. The OSH is
oriented such that it is placed at the maximum
distance between the sets of support vectors, which
leads to generalize more accurately and aims to
minimize the training error such as neural networks
[26]. Joachims [4] introduced the Support Vector
Machine (SVM) for text categorization from
examples by analyzing particular properties of
learning with text data. Practical results showed that
SVM's achieved good performance on text
categorization tasks, substantial improvements over
the currently best performing methods being
observed. In addition, SVMs are fully automatic, and
they eliminate the need for manual parameter tuning
making the text categorization process much easier.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

498

2.4. Hierarchical Multi-label Classification
Strategies

Silla and Freitas [29] explored the solutions to
the HMC problems and presented three fundamental
strategies: 1) flat classification, 2) top-down approach
“local classification”, 3) the “big-bang” approach or
global classification.

2.5.1 Flat classification

The advantage of this strategy is that it enables
the use of traditional machine-learning techniques
such as neural networks, decision trees, or SVM to be
implemented in the HMC as reported by [30-32].
Basically it ignores the class hierarchy and deals only
with the leaf-node classes (as if the problem were
MLNP), whether by a single multi-label classifier or
by a set of binary classifiers (a separate one for each
leaf node). If the leaf-node class label is known for
each example, this strategy is possible. Besides, if the
nature of the application seems to allow the user to
afford the inability to identify non-terminal classes.

2.5.2 Top-down approach (local classifier):

The most common approach in HMC induction
is the local classifier. In the simplest scenario, for
each node in the DAG-specified class hierarchy, a
separate (local) classifier is induced, and the
processing is started by creating a whole hierarchy of
classifiers, from top levels going downwards.

The main advantage of this method is
simplicity. On the other hand, the approach tends to
suffer from “error propagation”, which means that
misclassifications of the higher- level classes are
propagated to the lower levels.

The first experiments with this approach were
provided by Koller and Sahami [14] by choosing
Naive Bayes to induce each individual class. The
authors experimented with tree-structured class
hierarchies with no more than one parent for any
node and limited to just two levels.

Fagni and Sebastiani [78, 79] compared four
different policies (Sibling, ALL, BestGlobal, and
BestLocal) to generate a set of binary training data.
Tree-structured hierarchical versions of boosting and
SVM called TreeBoost and TreeSVM were used. The
best results were obtained with the Sibling policy in
which the negative training examples of the ith node
are all positive examples of its Sibling nodes in the
hierarchy.

This strategy was applied to text classification
by Sun and Lim [33], where the class hierarchy was a
plain tree structure. They induced two SVMs for each
class: a local classifier and a sub-tree classifier. An

example is labeled as by the local classifier, while
the sub-tree classifier decides whether or not this

example should be passed to ci’s sub-classifiers. This
approach was extended to domains with DAG-
structured class hierarchies, by Nguyen et al. [34], the
DAG hierarchy being transformed into a set of tree
hierarchies. Experimental results indicated high
classification performance as well as high
computational costs.

Looking to further improve the performance,
Secker et al. [35] used several induction algorithms
for each node of the hierarchy: Naive Bayes, SMO, 3-
NN, etc. Ten classifiers were trained for each node,
and the one with the best classification results was
selected. This improved classification accuracy, but
the computational costs were even higher than in the
previous attempt.

Bi and Kwok [36] applied the Kernel
Dependency Estimation (KDE) to reduce the number
of classes in the hierarchy during the training process.
This is because the number of classes in the hierarchy
is usually unmanageable. The authors proposed an
algorithm called “Condensing Sort and Selection
Algorithm (CSSA)” for the tree structured hierarchies
and, then, extended it to the CSSAG algorithm for the
DAG-structured hierarchies. However, they did not
report experimental results regarding induction time
and the number of reduced classes.

Alaydie et al. [37] proposed a framework called
“HiBLADE (Hierarchical multi-label Boosting with
Label Dependency),” applied to tree-structured
hierarchies. The classifier for each class is a boosting-
type algorithm, such as ADABOOST, where the new
model for each boosting iteration is updated by
utilizing the proposed Baysian correlation.

2.5.3. The “big-bang” approach (global classifier):

Some authors preferred to induce one big
(global) classification model to cover the entire class
hierarchy, instead of inducing a separate binary
classifier for each node. In this manner, mutual
interdependencies of the classes can be easily taken
into account, and the global classifier is often smaller
than the total of the local classifiers.

Clare and King [8] developed a hierarchical
extension to the decision-tree generator C4.5 [38] and
applied it to functional-genomics data. Their system
is known as HC4.5, a mechanism for weighing the
entropy formula (in order to give higher priority to
more specific classes) being induced.

Seeking to make the decision-tree paradigm
applicable to hierarchical domains, an attempt was
reported by Blockeel et al. [39] whose Clus-HMC is a
hierarchical version of the earlier “predictive
clustering tree” (PCT) [40]. Ven et al. [3] improved
Clus-HMC so it could be used in DAG-specified
class hierarchies. Schietgat et al. [12] proposed an
ensemble version of the algorithm Clus-HMC-ENS.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

499

Although the ensemble concept can improve
classification accuracy, its computational costs are
much higher than those of the original Clus-HMC.

A global-approach hierarchical framework
based on the K-Nearest Neighbor classifier (k-NN),
was proposed by Pandey et al. [41]. There system’s
improvements include: i) a Lin’s semantic similarity
measure used as a distance measure; ii) the prediction
function of the i-th class incorporates the inter-
relationship score of the i-th class to other classes in
the hierarchy; and iii) the mechanism to filter
insignificant class inter-relationships was suggested.

Lo et al. [42] proposed a basis expansion model
for multi-label classification, where a basis function
is a Label Power set (LP) classifier trained on a
random k-label set. LP [43] method is a multi-label
learning algorithm which basically reduces the multi-
label classification problem to a single-label multi-
class classification problem by dealing with each
distinct combination of labels in the training set as a
different class. Random k-Label sets (RAKEL) [44]
has introduced to overcome the drawback of the LP
method. It randomly selects a number of label subsets
from the original set of labels and then uses LP for
training the corresponding multi-label classifiers.
Experiments were conducted on ten benchmark
datasets belonging to different domains, including:
scene, enron, cal500, major miner, medical bibtex,
and four versions of delicious (from dlc1 to dlc4).
More details on these data sets are available at the
MULAN library website [45].

Qu et al. [46] proposed a Multi-Label
classification algorithm based on label-Specific
Features (MLSF). The feature density on the positive
and negative instances set of each class was first
computed and after that, the features of high density
from the positive and negative instances set of each
class were selected. The intersection was taken as the
label-specific features of the corresponding class.
Finally, the multi-label data was classified on the
basis of label-specific features. The classifiers
induction process of MLSF is similar to the original
binary classifiers. Given an unlabeled instance xu
∈U , the feature sets for each class label are first
rebuild based on the label-specific features, and then
the corresponding classifier is used to predict whether
it has the label or not. The proposed MLSF is
compared with three multi-label learning algorithms,
including ML-KNN, LIFT, and Rank-SVM. The
experiments were employed on both regular-scale
and large-scale. For the results, common evaluation
criteria for multi-label classification were used
(hamming loss, one-error, coverage, and average
precision). It is observed, that the performance of
MLSF is comparable to that of LIFT on the regular-
scale data sets and large-scale data sets and that

MLSF and LIFT algorithms perform significantly
better than ML-KNN and Rank-SVM.

Kong et al. [47], used the heterogeneous
information networks to simplify the multi-label
classification process. They focused on extracting the
relationships among different class labels and data
samples by mining the linkage structure of
heterogeneous information networks. These
relationships can be then used to effectively infer the
correlations among different class labels in general,
as well as the dependencies among the label sets of
data examples that are inter-connected in the
network. The proposed multi-label collective
classification algorithm (called PIPL) was tested on a
bio-informatic dataset SLAP [48], which is a
heterogeneous network contains integrated data
related to chemical compounds, genes, diseases, side
effects, pathways etc.

2.6. Other Classification Methods

Other existing multi-label classification methods
may include: BSVM (binary SVM), ECC (multi-
label classification + ensemble); PISl (binary
decomposition + meta-path based instance
correlation):a collective classification approach [49],
where instance correlations are from heterogeneous
network; Icml (simple label correlation + instance
correlation in homogeneous network): this method
was proposed by Kong et al. [50, 50] which exploit
relational features for inter-instance dependencies
based on homogeneous network for multi-label
collective classification; PIml (simple label
correlation + meta-path based in- stance correlation):
a multi-label collective classification approach
extended from PIsl [49] by adding relational features
according to inter- instance-cross-label dependencies
for multi-label collective classification [50]; PIPL
(meta-path based instance and label correlation): a
method for multi-label collective classification in
heterogeneous information networks. The only
difference between PIPL and PIml is that PIml does
not consider the meta-path based label correlation.

2.7. Performance Evaluation

In order to evaluate the multi-label classifiers,
different methods than the ones used in the case of
single-label problems are used because an example
can be partially correct or incorrect [57]. According
to [43], the measures used for evaluation of multi-
label classification can be organized into two classes:
i) bipartition based (includes example based measures
and label based measures) and ii) ranking based
(evaluates measures based on the ground truth of
multi-label dataset). The example based measures
evaluate the bipartitions over all examples of the
evaluation dataset, while the label based measures

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

500

divide the evaluation process into evaluations of each
label [57].

In classical machine learning, the classifiers are
usually evaluated by error-rate estimates. This error is
obtained by the comparison between testing
examples’ with a pre-determined class labels with
those class labels recommended by the classifier.
This, however, is not quite enough when dealing with
domains where one class significantly outnumbers
the other [58]. For instance, if only 1% of the
examples are positive, then a classifier that labels all
examples as negative will achieve 99% accuracy.

For this latter case, other criteria are used, the
most popular among them being precision and recall.
Let us denote by TP the number of true positives, by
FN the number of false negatives, by FP the number
of false positives, and by TN the number of true
negatives. Precision and recall (which are example
based measures) are defined as follows:

 (1)

 (2)
Precision is the percentage of truly positive

examples among those labeled as such by the
classifier; recall is the percentage of positive
examples that have been recognized as such
(“recalled”) by the classifier. Which of the two is
more important depends on the given domain. In
order to combine them in a single formula, [59]

proposed F , where the user-specified parameter,

, quantifies each component’s relative
importance:

 (3)

It would be easy to show that > 1 apportions

more weight to recall while < 1 emphasizes

precision. Moreover, F converges to recall if

, and to precision if = 0. If we do not want
to give more weight to either of them, we use the

neutral = 1:

 (4)
All this, however, applies only to domains

where each example is labeled with one and only one
class.

F-measure is the harmonic mean between
precision and recall [52]:

 (5)

where are the precision and recall for .
Here, the F-measure is calculated per label and then
averaged.

Yang [60] proposed two methods to average the
above metrics over multiple classes: (1) macro-
averaging, where precision and recall are first
computed separately for each class and then
averaged; and (2) micro-averaging, where precision
and recall are obtained by summing over all
individual decisions. Which of the two approaches is
better depends on the concrete application. Generally

speaking, micro- weighs the classes by their

relative frequency, whereas macro- gives equal
weight to each class. The formulas are summarized in

Table 2.1, where , , and F1.j , stand for
precision, recall, and F1 for the jth class (from l
classes).

Table.1 Macro-averaging and micro-averaging

of the performance criteria on the data set with l
classes [60].

Hamming loss (an example based measure) [61]

evaluates how many times an example-label pair is
misclassified, i.e., label not belonging to the example
is predicted or a label belonging to the example is not
predicted. The smaller the value of hamming_loss(h),
the better the performance. The performance is
perfect when hamming_loss(h) = 0. This metric is
defined as:

 (6)

where Δ stands for the symmetric difference between
the two sets, N is the number of examples and Q is
the total number of possible class labels. Yi denotes
the set of true labels of examples xi and h(xi) denotes
the set of predicted labels for the same examples.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

501

3. Methodology
Digital libraries provide a huge range of

information including text, movies, speeches, images,
photos, books and others. This digital data provides
large collections of content which naturally leads to
the need of powerful tools that efficiently process,
analyze, navigate, and browse the digital data [65].
Therefore, in this work, different data sets from
books digital libraries and other contents were used.
There are many digital libraries available online such
as, Internet archive [66], Google books [67], Open
library [68], The New York public library [69], and
Wiley online library [70]. Library collections such as
Wiley Online Library [70], which hosts the world's
broadest and deepest multidisciplinary collection of
online resources covering life, health and physical
sciences, social science, and the humanities, Routers-
21578 [71], which a collection appeared on the
Reuters newswire in 1987. From the
available sources Wiley Online Library [70], Routers-
21578 text categorization collection data set [71], and
the 20 Newsgroups data set [17] were chosen for the
conducted experiments. Wiley Online Library hosts
the world's broadest and deepest multidisciplinary
collection of online resources covering life, health
and physical sciences, social sciences, and
humanities. It delivers seamless integrated access to
over 4 million articles in 1500 journals, over 14,000
online books, and hundreds of reference works,
laboratory protocols and databases. The documents in
Routers-21578 [71] are organized and indexed with
categories by personnel from Reuters Ltd. In 1990,
Reuters and CGI made the documents available for
research purposes to the Information Retrieval
Laboratory of the Computer and Information Science
Department at the University of Massachusetts at
Amherst. There are multiple categories, and there are
relationships among the categories, therefore are
many possible feature sets can be extracted from the
text.

The 20 Newsgroups data set [17] is a collection
of approximately 20,000 newsgroup documents,
partitioned across 20 different newsgroups, each
corresponding to a different topic. It has become a
popular data set for experiments in text applications
of machine learning techniques, such as text
classification and text clustering.

Since the data set that is provided by the digital
library is considered as raw data, it may contain
nominal attributes (un-necessary). Nominal attributes
are defined by providing a <nominal-specification >
listing the possible values: {the, for, in, on, edition,
processes, systems...}. Also, a raw data set may
contain many values that may be missing, so it is
necessary to do some pre-processing. Once pre-
processing was finished, a proprietary algorithm for

multi-label class was implemented and compared
with some existing algorithms.

3.1. Data pre-processing:

Since the data set is a raw data, it may contain
many values that might be missing, so it is necessary
to do some pre-processing. This phase consists of the
following: i) data cleaning; ii) feature extraction; and
iii) nominal to numerical conversion.

3.1.1. Data cleaning:

Removing un-necessary and meaningless words
such as “introduction”, “handbook”, “edition” etc., is
done in this stage. Its role is to reduce the dimensions
of the dataset and to eliminate the elements that can
create errors in the classification algorithm.

Meaningless words with very high frequency
are considered as stop words [16], and these words
are added to the Stop Word list. Removing such
words will result in better results and it will not affect
the classification efficiency at the same time.

In data cleaning, mainly the input file is parsed
line by line and each line is being split into words by
space character as a delimiter. Then each is getting its
stem using the Porter stemming algorithm [15].

The Porter stemming algorithm is a process for
removing the commoner morphological and
inflexional endings from words in English. It is
mainly used is as part of the normalization process
that is usually done during processing information
retrieval systems. After the stemming process, each
root is being searched in the list of unwanted words
and if that root exists in the unwanted words file, then
the word will be deleted from the input file and it's
derivatives should be removed from the input file as
well. Finally, reconstruct the line that has unwanted
words eliminated and push it in a new file
(Intermediate).

3.1.2. Feature extraction:

Transforming the input data into the set of
features is called feature extraction. The features have
to be chosen carefully. By that, the features set will
extract the relevant information from the input data in
order to perform the desired task using this reduced
representation instead of the full size input [13].

In features extraction, the process starts by
reading the intermediate file line by line. Then, we
find the stem of each word by searching in the stem
file. If the stem is found then ignore the word, and go
to the next word. If that stem is not found, then
increase the count of features by one and add that
stem into the feature set, then write that original word
of that stem in the output file. We count the feature in
this step in order to find the relationship between the

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

502

number of features and number of example later in
this research.

3.1.3. Nominal-to-numerical conversion:

To make the classification less computational
expensive, the classes were numbered and their
corresponding meaning was defined. Also the
extracted features were transformed into numerical
features usable for machine learning.

Figure 3.2 shows an example of the pre-
processing phases, where un-necessary word
(Handbook) is removed in the data cleaning and the
remaining words will be extracted representing the
features. Those features will be associated with
numbers to deal with, which make it easier.

Figure 3.2: Pre-Processing phases on an example

3.2 The proposed algorithm

Once data pre-processing is completed, the data
is stored in a pre-processed file to be handled later as
clean data. The proposed classifiers read from this
data set. First, the system reads a set of the data set X,

where each example in the training X, Then, the
system reads another set of data, let’s call it Z. This
data is used for testing, so each example in the testing

set Z. After the classification process is done, the
error rate and the classification accuracy will be
observed.

Let's call the set of misclassified examples Y,

each misclassified example Y. Then classifier
must be trained again. The new training set will be

called , where each example in the training

iteration i
Because Y is smaller than Z a number of

examples (E) must be added, where E = Z – Y and
the new training set is N where N = E + Y.

The system reads another set of data, let's call it
(V), and this is going to be used for testing, so every

example in the testing iteration i .
For every classification iteration, a training

session will start again and a new testing session
will also go through the classifier. In Figure 3.4 a
simplified schema of the proposed approach is
presented.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

503

Figure 3.4: Methodology work flow

A common approach for building a reliable

classifier is to split a data set in to a training set and
an independent test set, where the training set is used
to develop the classifier and the testing set is used to
evaluate its performance. The common used strategy
is allocating 2/3rd of cases for training is nearly

optimal for reasonable sized data sets (n)
with strong signals [11]. According to this principle
the workflow is as following:
 Once the data it is cleaned, the algorithm reads

it.
 The algorithm trains the classifier by assigning

the feature numbers with every class in the
classification tree.

For example if data has a set of features
(Computer = 1, Science = 2, Machine = 3,
Learning = 4, Algorithm = 5, Engineering = 6,
Biology = 7, Chemistry = 8), these features are
assigned to each class according to a pre-
designed classification tree:
Class 1, features [1, 2, 3, 5, 8, 10]
Class 2, features [1, 5, 8]
Class 3, features [5, 8, 10]
and so on.
Then, the classification tree might look as
Figure 3.5.

Figure 3.5: Classification tree

 Once the features are assigned to classes, the

testing set is introduced, every word in the title
being assigned to a class. The word might be
assigned to more than one class, but only to the
ones belonging to the same grandparent. Once a
word cannot be classified in any class, it means,
the feature of the word is new, and the classifier

needs to be re-trained. The error rate is
calculated if a word feature was miscounted or
if a word was classified in a wrong class.
Macro- and Micro- averaging are used to
calculate the error rate in case a word was
classified into a wrong class.

1

2 4

5 6 9 10

]1,5,8[

]1,2,3,5.8,10[

]5,8[]5[]10[]8[

]5,8,10[

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

504

The pseudo-code of the proposed algorithm is the following:
TitleList = Import_Titels_List()
CategoriesList = Import_Categories_List()
StemList = Import_Words_List()
ErrorsCounter = 0
WordsCounter = 0
For each title in TitleList
 WordsIn Title = extractWordsFromTitles(title)
 WordsCounter = WordsCounter + NumberOfElement(WordsIn Title)
 TitleCategories(title) = emplylist()
 for each wordintitle in WordsInTitle
 for each stem in StemList
 StemIsFound = false
 if StemOf (wordintiltle) = stem

 TitleCategories(titles) = union(TitleCategories(title),
 CategoriesOfStem(stem))

 GoToNextWordIntitle()
 StemIsFound = true
 end
 end
 if StemIsFound == false
 OutputWarning(“The word”wordintitle “in the title”title “has
 not a matching in the list of stems”)
 ErrorsCounter = ErrorsCounter + 1
 end
 end
end
ErrorRate = ErrorCounter / WordsCounter
Output(“The error rate is” ErrorRate)

3.3. Complexity analysis
To analyze the complexity of the algorithm the
following symbols are used:
n : number of titles to be analyzed
m : number of stems present in the database

t : number of categories per word (mean value)
p : number of words per title (mean value)
q : number of characters per word (mean value)
w : total number of categories

The overall number of instructions is

 (7)
That is in the expanded form

 (8)
Analyzing the expression above we can note

that the increasing the size of inputs the dominants

terms are and . Then, considering

that the number of categories per word (is
generally lower than the number of characters per

word (the time-complexity of the algorithm is

(.
Considering that the number of word per title

(, the number of characters (and the number of

categories per word (does not increase by
increasing the input size (as they mainly depend on
the language the words belong) they can be treated as

constant (the medium value is considered) and can be
neglected in the evaluation of the time - complexity
of the algorithm.

In the end, the time complexity of the algorithm

result using the big- notation.

 (9)
The space complexity of the algorithm is

calculated considering the bytes of memory needed
for the execution of the algorithm. Therefore, the
number of bytes is defined by Equation 19, described
in its extended form by Equation 20:

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

505

 (10)

 (11)
Considering that the number of categories (�) is

generally lower than the number of titles to be
analyzed (�) and lower than the number of stems

(�), in the asymptotic analysis the last term (��) can
be neglected. In these conditions, the space required
when increasing n and q can be approximated as:

 (12)
Considering that the number of words per title

� and the number of characters per word � do not
increase increasing the input size (as said in the

previous paragraph they mainly depend on the
language used), the space required can be
approximated to

 (13)
In the end, the space complexity of the algorithm result using the big-� notation

 (14)

3.4. Case studies

The same experiment is conducted for full
domain, and sub-domains of the library collections
which are shown in Figure 3.6.

Figure 3.6: Books domain and sub-domains

3.4.1. Case study one (Wiley online library)

The data set that first case study is represented
by the Willey online library [70]. It has collection of
books (examples) described by different attributes.
These books were collected from different fields and
disciplines. The characteristics of this database are
the following:
 Dataset name: Wiley online library [57]
 Number of attributes: 5888
 Number of examples: 8842
 Number of classes: 64
 Number of hierarchical levels: 3

The data set already contains nominal attributes,
many values were missing. Therefore, pre-processing
was necessary. According to the workflow of the
proposed algorithm, before training and testing, a
data cleaning step and nominal to numerical
conversion steps are performed.

In the data cleaning step, rare classes or classes
that may have a representation of less than 1% of the
data set will be ignored as 1% is really a small
number of examples. In case the data set is a large
one, 1% might be taken into consideration in other
data sets. Some examples of books titles that might
be ignored due to the low class representation are: “It
Happened One Night”, “Top Hat”, “Hairspray”, “The
Act of Remembering”, and “Women at the Top”.

In the nominal to numerical conversion,
numbers are manually assign to each class as those
classes are already induced and defined to their
corresponding meaning. Also transform the extracted
features into numerical features is useful for machine
learning since its easy to handle when coding. For
example if we have the word “science = 1” in the
feature set and we got a book titled with “computer
science algorithms”, the word “computer” will be
assigned to 2, and the word “algorithms” will be
assigned to 3 as we already have “science” assigned
to 1. So, the example representation will be: “2,1,3.”

The data set has thousands of examples. To
insure precise performance evaluation, a 5-fold cross
validation was used. The training examples are
described by thousands of attributes, thus it becomes
easy to classify discriminant classes, but that means
that a large number of examples is required in this
case.

This data is cleaned and all un-necessary words
and stop words are removed. Thus, using stemming
every word is associated with its family.
Consequently, words like computer, computing,
computers, and compute will have only one stem

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

506

number. We select , and is a

set of examples that consists of examples for
training. In the training stage, the features are
manually assign with each class. This is called a class
feature vector. Once this stage is achieved, the
classifier is trained and becomes ready for testing.

For this case study, the scope was to test if the
classifier can be trained and what would be the error
rate. The dataset considered is represented by the
entire book domain [70]. The entire data set including
all major classes and sub-classes was used. The main
classes are: Applied Science, Engineering Science,
Health and Social Sciences.

The data set was divided into training and
testing examples each training set having 200
examples and each testing 200 examples. For the
training set, the examples are manually classified and
the class label is updated with every example.

4. Results

In this section, the results of the simulations
performed with the proposed algorithm and the
algorithms chosen for comparison are presented and
discussed. Several experiments were conducted on
real world data sets from different fields including
library collections [70], Routers- 21578 [71], and 20
Newsgroup [17] data sets. The final goal was to

correctly classify a library collection into classes
where the examples (books) are classified into classes
and the classes are hierarchically ordered.

In order to compute the error rate for this
dataset, the macro-micro averaging were used. When
multiple class labels are to be retrieved, averaging the
evaluation measures can give a view on the general
results. For example, consider a binary evaluation
measure B(TP,TN,FP,FN) that is calculated based on
the number of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN),

and 2 labels and .
Figure 4.2 shows the result of the experiment

with a very noisy training, until 1000 examples are
reached. At this point, the error rate starts to drop
below 80%. The learning curve shows an error rate of
40% when almost 4000 examples are used. We
expect that the curve will keep improving and the
error rate keeps dropping as more examples are
added. This experiment was conducted on the whole
books domain. The number of attributes used in this
experiment was 8555.

Figure 4.2 shows the result of applying the
proposed algorithm, Where every class is labeled
with the features that best describe the class. These
all the examples were classified to all classes that
may have their features as shown in Figure 3.5

Figure 4.2: Books full domain error rate.

Figure 4.3 and 4.4 show the output of different

subdomains, where the error rate drop below 20%
with fewer examples. This can be explained by the
fact that the number of attributes associated with this

domain is very small and equals to 1831 for the
engineering domain. The error rate was calculated
using the Macro-Micro averaging metric.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

507

Figure 4.3: Engineering domain error rate

Figure 4.4: Social sciences and Humanities error rate.

The previous case studies showed that a book

collection could be trained and the error rate can be
reduced if more examples are added. The error rate in
this case was calculated using the hamming loss [61].

Figure 4.10 shows the result of the experiment. As it
can be observed, the error rate is very low starting at

 1.5% to less than 0.5%.

Figure 4.10: Routers-21578 data set error rate

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

508

In this experiment, we used another popular
algorithm in documents classification called Term
Frequency Inverse Document Frequency (TF-IDF)
[8] and the data set “20 newsgroup” was used. As
explained in section 3.4.8 the data set has about
19,000 documents. It is expressed in terms of the
document-term matrix. Rows are represented by the
document examples, and columns represent words. A
matrix entry (i,j) represents the frequency of
occurrence of a word j in a document i. Word
frequencies for about 60,000 words are specified for
each document. The item (1,1) means document #1,
word #1, and the #4 means word#1 has frequency = 4
in document #1 and so on.

In an attempt to reduce the dimensionality of
dataset, the following steps were preformed:

 Removing features that do not help in
discriminating between class i.e., words like ’a’, ‘the’
that appear in all documents.

 Using Principle Component Analysis PCA
[39] for dimensionality reduction

Words with high Inverse Document Frequency
(IDF) counts are removed, where IDF represents the
ratio of the number of documents in which a
particular word appears, to the total number of
documents. A high value indicates that the word is
present in most of the documents across classes, and
hence does not help much in discriminating between
the classes. But we noticed that we were left with a
large number of words even after removing such
words with counts above a certain threshold. Since
discarding information can affect classifier
performance later, setting too low threshold is not a
good thing we dropped this and looked at alternative
attempts.

4.1. Existing algorithm (Method A: Naïve Bays
algorithm)

The first task in the training stage is to separate
10% data for testing purposes from each class. 10%
data is separated for each class out of total data for
that class. For example, if 100 samples are available
for class 1, 10 samples were taken out for testing.
This 10% amount is standard in literature and in
normal circumstances 10-15% data is taken out for
testing. If 50% of data is taken out, too less remains
for the training stage and the classifier may not
generalize well. After segregating, there were 9012
items in training data and 969 items in testing data,
including roughly 10% from each class.

On the second stage, the methodology of data
cleaning presented in section 3.1is applied, all the
unnecessary words being removed from the titles of
the books. These include articles such as, (a, and),
prepositions (of, for etc.) and other common
meaningless words like volume, edition, e-book etc.

On the third stage, all the remaining words were
extracted from the books’ titles and each word was
assigned a unique number and another identifier to
show which class it belongs to. Actually wordID is
unnecessary and we may ignore it. For each word, we
have a list of classes it can belong to, e.g. chemical
may belong to class 1, 3 and 5 so its class ID will be
(1,3,5). So the format was like:
word class ID wordID

For instance, the word Horticulture, the word ID
may be 5 and if it belongs to class 10, its class ID is
10. Then all words are converted to uppercase so that
while comparing the words later we do not have to
deal with case-sensitivity issue.

Finally, all the words are sorted alphabetically
so that when comparing in the testing stage, we do
not have to compare with all words. Thus, there is no
need to compute distances with all the words but only
with those which start with the specified letter. For
instance, if the word is Horticulture, then we only
need to compare it with the words starting with the
letter H.

Once all is done, all the words, sorted
alphabetically and in the format mentioned above, are
stored in a data file.

4.1.1. Testing stage

In the testing stage, all the titles, along with the
class to which it belongs to are passed through the
testing function. For instance:

Class title
Agriculture Horticultural Reviews,

Volume 1
In the testing stage, the book title goes through

the same steps as the training data start the data
cleaning process again. Useless words are removed,
but useful words are extracted and separated, then
converted into uppercase.

After pre-processing, the final shape of the title
will be:
(HORTICULTURAL REVIEWS and VOLUME and
1) all of those words being removed as they are very
generic words and cannot be associated with a
particular class. The only word kept is
HORTICULTURAL

Next, the training data is loaded and as
discussed before, only the words starting with the
same letter as the testing word are selected for
comparison. For instance, when we want to see which
class the word FUNGI belong to, we will compare
only with the words starting with the letter F. We do
the same with the example above
HORTICULTURAL which starts with H, we will
compare it only with the words starting with the letter
H. We call this a stemming process, where we
associate each word with its own stem words only.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

509

The testing word is compared with the above
selected words and its distance is computed from
them. Two types of matching techniques are used;
one is the Lavenstein Distance [5], the number of
edits required to convert one string to another. For
instance, if HORTICULTURE and
HORTICULTURAL are compared, then Lavenstein
Distance will be 2, since 2 edits are required to
convert the first string into the second one.

4.1.2. Using single label classification

The testing is done for all the classes and the
error rate for each class is compared. The error rate
for most of the classes is quite high, the reason being
that out of the 49000 total words in the 9012 training
titles, only about 8500 are unique and the rest are just
repetitions. This indicates a huge overlap of data
among different classes and as a consequence, the
classifier gets confused while testing and therefore
misclassify the data.

The last step, in which we pick the ID of the
most frequent class, normally has number of IDs with
the same frequency, and just picking the first one also
introduces errors.

The average error rate for all the classes can be
computed by

where ∑ indicates the sum over all the classes. This is
just the concept of weighted average. e.g. if we have
3 classes; class 1 has an error rate of 60%, class 2 has
an error rate of 40% and class 3 has an error rate of
50%.

Then using the simple average formula, the
error rate obtained is 50%. ((60+40+50)/3 = 50).
But now suppose there are total of 10 words; 5
belong to class 1, 3 to class 2 and 2 to class 3. Since
more words belong to class, logically its error rate
should have more contribution in the overall error
rate. So we do weighted average, weight for class 1 is
5/10 = 0.5 (no. of words in the class / total words).
Similarly weight for class 2 is 3/10 = 0.3 and weight
for class 3 is 2/10 = 0.2. Now we multiply with
respective error rates and sum them up; so the error
rate becomes (0.5 x 60) + (0.3 x 40) + (0.2 x 50) = 30
+ 12 +10 = 52%. This error rate is more indicative of
the overall behavior of all the classes as it gives more
weight to the classes with more amount of data.
Using the above formula, the Avg. Error Rate for all
classes comes out to be 64%.
4.1.3. Using multi-label classification

The error rate can be reduced by number of
different techniques. One simple way is to get all the
different class IDs in the last step of testing stage,

each of which have the same probability to be
assigned to the given title – this is the Multi-Label
Classification and in this case each title can belong to
multiple classes. Given that the actual class is among
the final set, this step can eliminate all the non-
probable classes and another classifier can be used in
the next step to choose the final class or a human can
do that provided the number of such instances are
small.

Alternatively, we can extract the unique words
and find out for each word the class to which it
belongs most frequently – the bag-of-words
approach, and then instead of assigning the class IDs
of all the classes to which the word may belong, we
assign only those class (or classes) IDs to which it
belongs the most. But this technique is biased
towards the class having more training samples, and
the error rates for the classes which have the lesser
data may increase more. But the overall error rate
will surely decrease as the classifier is now more
biased towards the classes which are more frequent
and more likely to come.

The Avg. Error Rate for this technique comes

out to be 57% which is an improvement over the
previous technique.

4.2. Existing algorithm (Method B: KNN
algorithm)

Suppose the classifier was asked to classify
some sample X, and after computation classifier finds
that it can belong to any one of the class 1, class 2
and class 3. In this case, we need a rule to break a tie
and the one we used in previous section was to pick
the lowest class ID. Therefore, the sample will be
classified to class 1 even though it may belong to
class 2 or class 3. Suppose that sample originally
belonged to class 2; then the classification will be
wrong and will account as an error. But if we don’t
use any tie-breaker and outputs all the equally
probable classes, i.e. class 1, class 2 and class 3, then
there will be no error as sample does belong to one of
these classes. This is the whole idea of multi-label
classification or multi-output classification, in which
input X is not mapped to a single scalar class y, but
rather a vector of classes Y

 The algorithm was modified to
accommodate the multi-label classification and an
error occurs only if the actual class y was not among
the vector of classes Y given by the classifier. The
error rate is reduced in this case compared to the case
of single-output classification.

Green blocks indicate the classes with error rate
of less than 50% and it is visible that now such
instances are lot more than in previous tables. The
overall Avg. Error Rate is 41% which is an

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

510

improvement of nearly 16% from the previous
method.

4.2.1. Classification of parent class

The classification of Parent Classes is much less
error prone as there are few parent classes and the
margin for error is smaller. In this case, there are 6
Parent classes corresponding to 65 Child classes. The
original classifier (in multi-label case) returns a set of
child classes, which may or may not belong to the
same parent class. So we get the parent class for each
of these child classes and then compare them one by
one to the original parent class. An error occurs only
if none of the parent classes match the original parent
class.

The highlighted entries indicate the classes with
error rate of less than 30%. The overall weighted
Average Error Rate is 21%.

5. Conclusion

This study is focused on the HMC with
emphasis on several case studies to draw the research
observations. This is done by conducting various
experiments including many popular machine
learning algorithms. KNN and Naïve Bays algorithms
along with the proposed algorithm based on SVM are
used. The research also aimed to identify the child-
parent relation, and parent-child relation. To this
goal, a proprietary software was built to test whether
an example is classified into its corresponding child
and grandchild as well as if the grandchild belonged
to its accurate parent and grandparent. The
significance of the research is the motivation for the
use of machine learning in digital libraries which
were the primary resource that were used in the
study. We have also used 20 newsgroup and Routers
data set to compare the performance.

The performance analysis was done using
Macro and Micro averaging and hamming loss
metrics. Based on the results, it was found that, it is
very time consuming and costly to use only book
titles to classify a large collection of library contents.
Thus, we suggest that we either use the sub domain
approach or classify each sub domain separately, or
include more information such as abstract of
documents, an introduction of the document. Another
major finding is that a parent node can be a parent of
all documents with a small and acceptable error rate.
In general, our findings are very similar to the many
recent published studies.

In future, we plan to generalize the proposed
algorithm for the hierarchical case where the
interrelation of the class labels can be specified by a
generalization tree of a directed acyclic graph (DAG)
as in Vateekul et al. [2] study.

References
1. E. Alpaydin, Introduction to machine learning: MIT

press, 2004.
2. P. Vateekul, M. Kubat, and K. Sarinnapakorn,

"Hierarchical Multi-Label Classification with
SVMs: a Case Study in Gene Function Prediction."
. unpublished work.

3. C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H.
Blockeel, “Decision trees for hierarchical multi-
label classification.” Machine Learning, vol. 73, no.
2. pp.185–214, 2008.

4. T. Joachims, Text categorization with support
vector machines: Learning with many relevant
features: Springer, 1998.

5. V. I. Levenshtein, "Binary codes capable of
correcting deletions, insertions and reversals."
Soviet physics doklady vol. 10, p.707. 1966

6. L. Baoli, L. Qin, and Y. Shiwen, "An adaptive k-
nearest neighbor text categorization strategy,"
ACM Transactions on Asian Language Information
Processing (TALIP), vol. 3, no. 4. pp.215-226,
2004.

7. N. Friedman, D. Geiger, and M. Goldszmidt,
"Bayesian network classifiers," Machine learning,
vol. 29, no. 2-3. pp.131-163, 1997.

8. A. Clare and R. D. King, "Predicting gene function
in Saccharomyces cerevisiae," Bioinformatics, vol.
19, no. suppl 2. pp.ii42-ii49, 2003.

9. A. McCallum and K. Nigam, "A comparison of
event models for naive bayes text classification."
AAAI-98 workshop on learning for text
categorization vol. 752, pp. 41-48. 1998. Citeseer.

10. J. T.-Y. Kwok, "Automated text categorization
using support vector machine." In Proceedings of
the International Conference on Neural Information
Processing (ICONIP) . 1998. Citeseer.

11. K. K. Dobbin and R. M. Simon, "Optimally
splitting cases for training and testing high
dimensional classifiers," BMC medical genomics,
vol. 4, no. 1. pp.31, 2011.

12. L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D.
Kocev, and S. Dzeroski, “Predicting gene function
using hierarchical multi-label decision tree
ensembles.” Bmc Bioinformatics, vol. 11, 2010.

13. K. J. Cios, R. W. Swiniarski, W. Pedrycz et al.,
"Feature Extraction and Selection Methods." Data
Mining. pp. 133-233. 2007. Springer.

14. D. Koller and M. Sahami, "Hierarchically
classifying documents using very few words,",
1997.

15. M. F. Porter, "An algorithm for suffix stripping,"
Program: electronic library and information
systems, vol. 14, no. 3. pp.130-137, 1980.

16. W. B. Frakes and R. Baeza-Yates, "Information
retrieval: data structures and algorithms,", 1992.

17. "The 20 Newsgroups data set."
http://qwone.com/~jason/20Newsgroups/ . 2008.

29. C. N. Silla Jr and A. A. Freitas, "A survey of
hierarchical classification across different

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

511

application domains," Data Mining and Knowledge
Discovery, vol. 22, no. 1-2. pp.31-72, 2011.

33. A. Sun and E. P. Lim, "Hierarchical text
classification and evaluation." Data Mining,
2001.ICDM 2001, Proceedings IEEE International
Conference on , pp. 521-528. 2001. IEEE.

34. C. D. Nguyen, T. A. Dung, and T. H. Cao, "Text
classification for DAG-structured categories."
Advances in Knowledge Discovery and Data
Mining. pp. 290-300. 2005. Springer.

35. A. Secker, M. N. Davies, A. A. Freitas et al., "An
experimental comparison of classification
algorithms for hierarchical prediction of protein
function," Expert Update (Magazine of the British
Computer Society's Specialist Group on AI), vol. 9,
no. 3. pp.17-22, 2007.

36. W. Bi and J. T. Kwok, "Multi-label classification
on tree-and dag-structured hierarchies."
Proceedings of the 28th International Conference
on Machine Learning (ICML-11) , pp. 17-24.
2011.

37. N. Alaydie, C. K. Reddy, and F. Fotouhi,
"Exploiting label dependency for hierarchical
multi-label classification." Advances in Knowledge
Discovery and Data Mining. pp. 294-305. 2012.
Springer.

38. J. R. Quinlan, "Induction of decision trees,"
Machine learning, vol. 1, no. 1. pp.81-106, 1986.

39. "Dimensionality reduction."
http://en.wikipedia.org/wiki/
Dimensionality_reduction, 2014.

40. H. Blockeel, L. De Raedt, and J. Ramon, "Top-
down induction of clustering trees," arXiv preprint
cs/0011032, 2000.

41. G. Pandey, C. L. Myers, and V. Kumar,
"Incorporating functional inter-relationships into
protein function prediction algorithms," BMC
bioinformatics, vol. 10, no. 1. pp.142, 2009.

42. H. Lo, S. Lin, and H. M. Wang, "Generalized k-
Labelsets Ensemble for Multi-Label and Cost-
Sensitive Classification,", 2013.

43. G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining
multi-label data." Data mining and knowledge
discovery handbook. pp. 667-685. 2010. Springer.

44. G. Tsoumakas and I. Vlahavas, "Random k-
labelsets: An ensemble method for multi label
classification." Machine Learning: ECML 2007.
pp. 406-417. 2007. Springer.

45. "Mulan: A Java Library for Multi-Label Learning."
. 2014.

46. H. Qu, S. Zhang, H. Liu et al., "A multi-label
classification algorithm based on label-specific
features," Wuhan University Journal of Natural
Sciences, vol. 16, no. 6. pp.520-524, 2011.

47. X. Kong, B. Cao, and P. S. Yu, "Multi-label
classification by mining label and instance
correlations from heterogeneous information
networks." Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery
and data mining , pp. 614-622. 2013. ACM.

48. B. Chen, Y. Ding, and D. J. Wild, "Assessing drug
target association using semantic linked data,"
PLoS computational biology, vol. 8, no. 7.
pp.e1002574, 2012.

49. X. Kong, P. S. Yu, Y. Ding et al., "Meta path-based
collective classification in heterogeneous
information networks." Proceedings of the 21st
ACM international conference on Information and
knowledge management , pp. 1567-1571. 2012.
ACM.

50. X. Kong, X. Shi, and S. Y. Philip, "Multi-Label
Collective Classification." SDM vol. 11, pp. 618-
629. 2011. SIAM.

52. L. Enrique Sucar, C. Bielza, E. F. Morales et al.,
"Multi-label classification with Bayesian network-
based chain classifiers," Pattern Recognition
Letters, 2013.

57. A. Santos, A. Canuto, and A. F. Neto, "A
comparative analysis of classification methods to
multi-label tasks in different application domains,"
Int.J.Comput.Inform.Syst.Indust.Manag.Appl, vol.
3. pp.218-227, 2011.

58. M. Kubat and S. Matwin, "Addressing the curse of
imbalanced training sets: one-sided selection."
ICML vol. 97, pp. 179-186. 1997.

59. A. Singhal, "Modern information retrieval: A brief
overview," IEEE Data Eng.Bull., vol. 24, no. 4.
pp.35-43, 2001.

60. Y. Yang, "An evaluation of statistical approaches to
text categorization," Information retrieval, vol. 1,
no. 1-2. pp.69-90, 1999.

61. V. Gjorgjioski, D. Kocev, and S. D++eroski,
"COMPARISON OF DISTANCES FOR MULTI-
LABEL CLASSIFICATION WITH PCTs,"

65. D. Damm, C. Fremerey, V. Thomas et al., "A
digital library framework for heterogeneous music
collections: from document acquisition to cross-
modal interaction," International Journal on Digital
Libraries, vol. 12, no. 2-3. pp.53-71, 2012.

66. "Internet Archieve." http://archive.org/index.php .
2014.

67. "Google Books." http://books.google.com . 2014.
68. "Open Library." http://openlibrary.org . 2014.
69. "New York Public Library." http://www.nypl.org .

2014.
70. "Wiley Online Library."

http://onlinelibrary.wiley.com/ . 2014.
71. D. D. Lewis, "Reuters-21578 text categorization

test collection." . 2014.

