
Life Science Journal 2014;11(10) http://www.lifesciencesite.com

292

Laplace Mutated Particle Swarm Optimization (LMPSO)

Muhammad Imran1, Rathiah Hashim1 and Noor Eliza Abd Khalid2

1University Tun Hussein Onn Malaysia86400 Parit Raja, Batu Pahat Johor Malaysia

2Universiti Teknologi MARA, Malysia
1malikimran110@gmail.com, 1radhiah@uthm.edu.my, 2elaiza@tmsk.uitm.edu.my

Abstract: Particle Swarm Optimization (PSO) algorithm has shown good performance in many optimization
problems. However, it can be stuck into local minima. To prevent the problem of early convergence into a local
minimum, various researchers have proposed some variants of PSO. In this research different variants of PSO are
reviewed that have been proposed by different researchers for function optimization problem and one new variant of
PSO is proposed using Laplace distribution named as LMPSO. The performance of LMPSO is compared with
existing variants of PSO proposed for function optimization. The analysis in this research shows the effect of
different mutation operator on Particle Swarm Optimization (PSO). To validate the LMPSO, experiments are
performed on 22 benchmark functions. The result shows that the LMPSO achieved better performance as compared
to previous PSO varients.
[Imran M, Hashim R, Khalid NEA. Laplace Mutated Particle Swarm Optimization (LMPSO). Life Sci J
2014;11(10):292-299] (ISSN:1097-8135). http://www.lifesciencesite.com. 42

 Keywords: PSO, Mutation, Laplace, function optimization, PSO variants

1. Introduction

PSO is a population based optimization method
proposed by Kennedy and Eberhart [1] . The
algorithm simulates the behaviour of bird flock flying
together in multi dimensional space in search of some
optimum place, adjusting their movements and
distances for better search [1]. PSO is very similar to
evolutionary computation such as Genetic algorithm
(GA). The swarms are randomly initialized and then
search for an optimum solution by updating
generations [1].

PSO is a combination of two approaches, one is
cognition model that is based on self expression and
the other is a social model, which incorporates the
expressions of neighbours. The algorithm mimics a
particle flying in the search space and moving
towards the global optimum solution. A particle in
PSO can be defined as P� ∈ [a,b] where i=1, 2, 3….
D and a, b ∈ R, D is for dimensions and R is for real
numbers [2]. All the particles are initialized with
random positions and with random velocities [1],
then particles move towards the new position based
on their own experience and with neighbourhood
experience. Each particle in PSO maintains two
important positions called pbest and gbest where pbest is
the particle’s own best position and gbest is the global
best position among all the particles. The velocity
and position of each particle are updated by equation
(1) and (2).
Vi (t+1) = Vi (t) + c1*r1* (pbest – ni (b)) + c2*r2 * (gbest
– xi (t)) …………………………… (1)
Xi (t + 1) = xi (t) + vi (t + 1)………… (2)

where xi is the position, vi is the velocity and Pbest is
the personal best position and gbest is the global best
position for PSO. In this equation r1 and r2 are two
random numbers ranges from (0,1) and c1 and c2 are
learning factors specifically the cognition and
cognition component influential respectively.

2. PSO Variants

J. Kennedy and R. Eberhart proposed PSO in
1995. Despite the successful implementation of PSO
for the purpose of optimization one of the problem
with PSO was to stuck in local minima, to fix this
dilemma number of variants of PSO variants have
been proposed by researchers with respect to
different parameters and operators. Following section
discuss in detail about the variants of PSO with
respect to variant type.

2.1. Initialization

Initialization of population plays an important
role in the evolutionary and swarm based algorithms.
In case of inappropriate initialization, the algorithm
may search in unwanted areas and may be unable to
search for the optimal solution.

Nguyen et al [3] inspect the some randomized
low discrepancy sequence to initialize the swarm to
increase the performance of PSO. They used three
low discrepancy sequence Halton, Faur and Sobol.
Halton sequence is actually the extension of van der
Corput. Ven Der Corput sequence is one dimensional
in order to cover search space in N dimensions and
Halton is defined as one of the extension of Vender
Corput sequence.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

293

Pant et al [4] explore the effect of initializing
swarm with the vender Corput sequence which is a
low discrepancy sequence to solve the global
optimization problem in large dimension search
space. They named the proposed algorithm as VC-
PSO. The author claim that PSO performance is very
well for problems having low dimensions but as the
dimensions evolve the performance deteriorates, this
problem become more severe in case of multimodal
functions. They used the linear decreasing inertia
weight from .9 to .4 with c1=c2=2.0.

Jabeen et al [2] proposed opposition based
initialization which calculates opposition of randomly
initialized population and selects better particles
among random and opposition of initial population.
This population is provided as an input for traditional
PSO algorithm.

Chang et al [5] proposed an enhanced version of
opposition based PSO called quasi-oppositional
comprehensive learning PSO (QCLPSO). Instead of
calculating traditional opposite of a point, the
proposed modification calculates Qausi opposite
particle, which is generated from the interval between
median and opposite position of the particle.

2.2. Constriction Coefficient

For balancing the exploration-exploitation trade
off, Clerc proposed a new approach [6] to improve
the performance of PSO, which uses a new parameter
‘χ’ called the constriction factor. The velocity update
scheme proposed by Clerc can be expressed for the
dth dimension of ith particle as:

���(� + 1) = �����(� + 1) + ������(�) − ���(�)�+

��(����(�) − ���(�))�……………...….. (3)

Where χ= 2  424 

With � =C1+C2, �� = ���� ,	�� = ����

2.3. Inertia Weight
The inertia weight is a scaling factor associated

with the velocity during the previous time step
resulting in a new velocity update equation as eq
(2.1), introduced by Shi [7]. Inertia Weight is used to
control the exploration and exploitation abilities of
the swarm. Large value of inertia weight promotes
exploration while small value promotes local
exploitation [7]. Some researchers [[8], [9], [10]]
used fixed inertia weight and some [[11], [12], [13]]
used decreasing inertia weight.

In linearly decreasing inertia weight, large value
(0.9) linearly decreased to small value (0.4)

The exponent decreasing inertia weight is
introduced by Li [14]. In order to beat the early
convergence Li [14] proposed a variant of PSO with

exponent decreasing inertia weight and stochastic
mutation as shown in equation (4).

� = (� ��� − ���� − ��)exp	(
�

��
���

����

)………… (4)

where ���� denotes the max iteration, t denotes the tth

iteration, � ��� denotes the original inertia
weight,	���� denotes the inertia weight value when
the algorithm process run the max iterations, �� and
�� is a factor to control w between � ������	���� .
In non linear decreasing inertia weight, a large value
decreases to small value but decrease non-linearly. In
non linear decreasing of inertia weight, search space
can be explored in shorter time but take larger time to
exploit the search space Chongpeng et al [15]. The
inertia weight was calculated by equation (5)

�� = ����+(���� − ������) × �1 − �
�

����
�
��
�
��

 (5)

where k1, k2 are two natural numbers,	������ is the
initial inertia weight, ���� is the final value of
weighting coefficient, ���� is the maximum number
of iteration and t is current iteration. Value of k1>1
and K2=1.

Using fuzzy sets and rules, the inertia weight is
adjusted dynamically [12].

Zhang et al [16] set the inertia weight as
uniformly random number between 0 and 1. Author
claimed that this inertia weigh scheme is more
capable to escape from local minima and can
overcome two problems of linearly decreasing inertia
weight
1. Can overcome the problem of linearly inertia

weight dependency on maximum iteration.
2. Another is avoiding the lack of local search

ability at early process of PSO and global search
ability at the end of PSO process.
Wei et al [17] Proposed dynamic PSO with

dimension mutation. First they introduce dynamic
inertia weight which is changed dynamically based
on speed and accumulation factors then they present
a dimension mutation operator to overcome the
premature convergence. They calculate inertia weight
as following.

� = �� − ℎ�� − ���
where ��=1,	�� ∈ (0.4,0.6) ,	�� ∈ (0.1,0.2)

Pant et al [18] proposed a new version of PSO

that uses Gaussian inertia weight. Responsible factor
for the uniqueness of the modified algorithm was
 Development of new inertia weight using

Gaussian distribution
 Use of different distribution instead of uniform

distribution for the generation of the initial
swarm.
Inertia weight equation is given by

� = ���(����)/2 ………………………. (6)

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

294

where rand is the random number having gaussion
distribution..

Shu-Kai [19] proposed a variant of PSO using
an adaptive dynamic weight scheme. They proposed
a novel nonlinear function amendable inertia weight
adaptation with an active method for inertia weight to
improve the performance of PSO algorithms. The
nonlinear function is given by

� = �� �������
�

where d is the decrease rate from 1.0 to 0.1 and r is
dynamic adaption rule depending on the following
rule. For minimization case it follows.

Xuedan Liu et al [20] proposed the PSO with
dynamic inertia weight using mutation, reinitialized
the swarm when it get stagnate. Author used the
linearly decreasing inertia weight with following
formula

� (�) = .9 − �
�

��� �	

�× 0.5 ……… (7)

where ��� �	
 is maximum number of iteration then

they used the wheel structure.

2.4. Mutation Operators

In PSO, Mutation operator is used to change the
position of particle from previous position to new
positions. The basic role of mutation operator in PSO
is quick convergence. It prevents the PSO from
stagnation at any local minima. Some researchers
used different mutation operators to overcome the
premature convergence of the PSO. Through
mutation operators authors mutate the gbest, after
mutating the gbest, they compared the fitness
performance of mutated gbest & original one and
selects the best one for rest of the PSO process.
Some of the mutation operators are Cauchy Mutation
[13], [21], Adaptive Mutation [22], Power Mutation
[23] and Gaussian Mutation [24].

To prevent PSO trapping from local optima, Li
et [25] introduced Cauchy mutation in PSO. They
named their algorithm as CPSO. They updated the
particles position by Cauchy mutation as
V΄=V+exp(δ)
X΄=X+ V΄(δ)
where δ is a Cauchy random number

Wang [13] proposed a new Cauchy mutation
operator for PSO. This operator is applied to perform
local search around the global best particle. The
motivation for using such a mutation operator is to
increase the probability of escaping from a local
optimum. The inertia weight used is 0.72984 and
c1=c2 =1.49618. This mutation operator is used to
increase the probability of escaping from a local
optimum. The cauchy mutation operator is:
������(�) = ������(�) + � (�) ∗� (���� , ���� . (8)
where N is a Cauchy distributed function with scale
parameter t=1, � (���� ,����) is a random number

with in (���� , ����) of defined domain of test
function and

� (�) = �∑ �[�]
�������
���

[�]�/�������

where �[�][�] is the �th velocity vector of �th particle
in the population, popsize is the size of population
Wang [21] proposed opposition based initialization in
PSO coupled with Cauchy mutation operator. Cauchy
mutation operator is used on the global.

Pant et al [22] proposed two variants of PSO:
AMPSO1 and AMPSO2 for global optimization
problem. The author used adaptive mutation for both
techniques. The main goal of author was to improve
the diversity of PSO without compromising on the
solution quality. In AMPSO1 personal best position
of the swarm is mutated while in AMOPSO2 global
best particle of the swarm is mutated. Following
formula is used to mutate the particle.
�����= �����+ � ′ ∗��������()………………. (9)
where � ′ = � ∗exp	(�	� (0,1) + �′	��	(0,1)) , N(0,1)

denotes a normally distributed function with mean
zero and standard deviation one, ��	(0,1) that a
different random number is generated for each value

of j, � and �′ are set as
�

√��
 and

�

� �√�
 respectively and

value of � is originally set as 3. Betarand() is a
random number generated by beta distribution with
parameter less than 1.

 Pant et al [26] explored the Sobol mutation
operator in PSO to enhance the performance of basic
PSO algorithm, which uses Qausi random Sobol
sequence as they claimed that random probability
distribution cannot cover the search domain as Qausi
random can cover. They named their operator
Systematic mutation (SM).
Different mutation operator performs well for
different type of problem. Li et al [27] proposed an
adaptive mutation with three mutation operators to
escape the particle from local optima. They apply
Cauchy mutation, Gaussian mutation and levy
mutation on the position and velocity
Gao [28] presented new adaptive mutation operator
by fitness variance and space position aggregation
degree to give a new PSO with adaptive mutation.
They claimed that algorithm can be stuck into local
convergence when fitness variance of particles is near
to zero.

Wu et al [23] proposed a new variant of PSO
called power mutation PSO (PMPSO), which
employs a power mutation operator. The core plan of
PMPSO is to apply power mutation on the fittest
particle of current swarm. The purpose of power
mutation is to help the particles to jump out from the
local optima.

Pant et al [29] introduced the new mutation
operator for improving the Quantum Particle Swarm

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

295

Optimization (QPSO) algorithm. The mutation
operator uses the Qausi random Sobol sequence and
called as a Sobol mutation operator.

 Silva et al [30] proposed predator pray
optimization technique used for function
optimization. PSO has been applied for constrained
non linear optimization problem [31]. Brits et al [32]
proposed another variant of PSO which intended to
locate multiple best possible solutions in multimodal
problems by using sub swarms and the convergent
sub swarms algorithm. By considering the particles
previous best position and mistakes, Yang et al [33]
proposed a new variant of PSO. To share the
information of particles Zhi-Feng [34] proposed a
PSO with cross over operator. Omran et al [8] used
an opposition based learning to improve the
performance of PSO.

Tang et al [35] proposed an enhance opposition
based PSO which is called as EOPSO. According to
the authors, opposite point is closer to global optima
as compare to current point. This provides more
chances to get close to global optima.

3. Proposed LMPSO

To avoid the PSO issues related to early
convergence and stuck in local minima, this study has
modified PSO to improve its performance. The
modification is done through Laplace distribution and
this modification is called as Laplace Mutated PSO
(LMPSO). Laplace distribution is continuous and
double exponential distribution. It is the distribution
of differences between two independent variables
with identical exponential distributions. A random
variable has a Laplace (μ, b) distribution if its
probability density function is

�(�|�, �) =
�

��
����−|

���

�
|� ………. (10)

where μ is a location parameter and b>0 is a scale
parameter

In LMPSO, global best particle is mutated by
Laplace mutation to escape PSO from local minima.
In LMPSO ����� is mutated by (11).

�����= �
�����+ �,							�����	��+ ��
�����− �, 						�����	��− ��

� ……….. (11)

where � =
��

�� ∗ℒ

where ��, 		�� are the boundaries of the current
search space and	ℒ is the Laplace random number
generated by Laplace distribution.

3.1. Experiments

To validate the performance of the proposed
LMPSO, we run the proposed LMPSO and other 4
variants of PSO on the 22 benchmark functions. The
parameter setting of each PSO variant used for

comparison purpose are shown in Table 1. All the
functions used for the experimental purpose are given
in the appendix at the end of this paper.

The results of the all 22 functions are shown in
the table 3.

We used the same experimental setting as
shown in Table 2 for all the variants of PSO. All
variants including proposed LMPSO run in same
session for one function. We try our best that there
should be no biasness to get the results. The results
are given in table 3.

Table 1: Comparison of parameters
PSO

Variants
Use Population

Min
Use Population

Max
Initialization

Randomly
CPSO No No Yes
AMPSO No No Yes
PMPSO Yes Yes Yes
NMPSO No No Yes
RMPSO No No Yes
LMPSO Yes Yes Yes

Table 2: Experimental Settings
Parameter Value

Search Space [100,-100]
Dimensions 10
 20
 30
Iterations 1000
 1500
 2000
Population size 30
Number of PSO Runs 30

4. Results
4.1. Analysis

Detail Results of all the Benchmark functions
are given in table 3. The results of function f1 show
that LMPSO has better performance as compared to
other techniques.

In function f2, when 10 dimensions with 1000
iterations are used then PMPSO performance is best,
whereas by increasing the dimensions and iterations,
LMPSO performance can be boost up as compared to
other techniques.

 f3 results shows that LMPSO has better
performance than other techniques.

By Result of f4, we can infer that all techniques
have equal performance in all three cases.

The results of function f5 shows that PMPSO
has better performance in case of 10 dimensions and
1000 iterations, while AMPSO perform better in case
of 20 dimensions and 1500 iterations and CPSO
perform better in case of 30 dimensions and 2000
iterations.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

296

Table 3: Results of LMPSO and four previous variants of PSO where, bold one is the best results among all.

In case of function f6, traditional PSO remains

good then other techniques when dimensions are 10
and iterations are 50. But if we increase dimensions
to 20, 30 and iterations to 80,100 iterations
respectfully, PMPSO’s performance is better.
LMPSO’s performance was on the second number.

The performance of LMPSO is better than other
techniques for function f7 in all three cases.

The result of function f8 remains same for all
variants.

The performance of all techniques remains same
for function f9.

 Results of f10 show that the performance of
NMPSO and RMPSO is outstanding, while
traditional PSO remain second best in case of 10
dimension and 1000 iterations while in other two

Function Dim Iterations PSO CPSO AMPSO PMPSO LMPSO
Avg Fitness Avg Fitness Avg Fitness Avg Fitness Avg Fitness

f 1

10 1000 5.35E-56 2.96E-65 1.12E-56 2.53E-96 2.84E-97
20 1500 2.58E-16 4.79E-25 2.09E-16 4.66E-81 5.72E-87
30 2000 3.56E-07 4.30E-14 2.13E-09 2.86E-65 9.19E-78

f 2

10 1000 1.71E-66 2.30E-71 1.73E-67 2.21E-76 1.62E-48
20 1500 1.47E-17 3.64E-27 4.53E-18 1.57E-54 2.77E-66
30 2000 4.04E-07 1.25E-13 3.04E-09 6.12E-11 2.50E-37

f 3 10 1000 4.97E+00 5.42E+00 5.72E+00 3.93E+00 1.89E+00
20 1500 4.25E+01 3.67E+01 3.76E+01 2.24E+01 4.03E+00
30 2000 9.76E+01 9.55E+01 9.86E+01 3.89E+01 5.12E+00

f4 10 1000 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
20 1500 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
30 2000 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

f 5 10 1000 2.57E+00 3.54E+00 1.88E+00 2.50E-03 7.06E+00
20 1500 1.45E+01 1.27E+01 1.38E+01 4.62E+01 1.88E+01
30 2000 2.91E+01 2.14E+01 2.62E+01 6.95E+01 2.88E+01

f6 10 50 -7.50E+05 -3.27E+11 -5.46E+05 1.16E+06 -9.08E+05
20 80 -5.58E+07 -1.71E+15 -8.94E+07 6.15E+07 -1.21E+08
30 100 -2.41E+09 -2.77E+18 -1.82E+09 4.48E+07 -6.18E+08

f7 10 50 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
20 80 2.00E+01 2.00E+01 2.00E+01 2.00E+01 1.99E+01
30 100 2.00E+01 2.00E+01 2.00E+01 2.00E+01 1.90E+01

f8 2 100 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
f9 2 100 -1.00E+00 -1.00E+0 -1.00E+0 1.00E+00 -1.00E+0
f10 10 1000 1.04E-11 1.72E-17 1.32E-11 1.76E-16 2.06E-17

20 1500 5.36E-01 1.68E-02 3.59E-01 9.70E-01 4.64E-06
30 2000 1.03E+01 3.61E+00 8.96E+00 1.62E+01 4.07E-04

f11

10 1000 -3.14E-01 -3.14E-01 -3.14E-01 -3.14E-01 -3.14E-1
20 1500 -1.57E-01 -1.57E-01 -1.57E-01 -6.38E-02 -1.57E-1
30 2000 -7.39E-02 -8.92E-02 -1.60E-02 2.63E-01 4.51E-02

f12 10 100 -1.33E+06 -1.24E+69 -1.71E+05 -2.38E+01 -2.29E+01
20 400 -3.97E+16 1.96E+28 -5.02E+16 -3.32E+01 -7.35E+01
30 800 -1.66E+17 2.94E+70 2.94E+11 -6.91E+01 -8.57E+01

f13 2 50 2.09E-26 4.46E-26 3.41E-26 7.39E-21 7.26E-19
f 14 2 50 -1.03E+0 -1.03E+00 -1.03E+0 -1.03E+00 -1.03E+0
f15

10 50 2.14E+02 1.75E+02 1.63E+02 1.57E+02 1.91E+02
20 80 5.94E+02 7.44E+02 7.98E+02 6.41E+02 7.76E+02
30 100 1.19E+03 1.23E+03 1.26E+03 1.13E+03 1.21E+3

f16 2 100 3.00 E+00 3.00 E+00 3.00 E+00 3.00 E+00 3.00 E+00
f17 2 1000 2.94E-13 2.06E-13 3.03E-14 8.08E-13 3.25E-12
f18 2 100 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+0
f19 10 50 5.39E+00 5.67E+00 8.34E+00 3.76E-01 1.26E-01

20 80 1.15E+02 1.01E+02 9.21E+01 2.10E-01 3.31E-02
30 100 1.08E+03 9.78E+02 1.03E+03 1.11E+00 7.49E-02

f 20

10 1000 3.17E-17 2.01E-22 1.69E-17 6.43E-44 3.69E-46
20 1500 3.80E+02 1.43E+02 2.19E+02 2.49E+00 2.06E+0
30 2000 2.71E+03 1.48E+03 1.71E+03 2.56E+02 6.15E+2

F21 10 1000 9.58E-08 5.87E-08 1.83E-08 3.69E-07 2.83E-15
20 1500 2.23E-01 8.63E-01 3.73E-01 4.49E-02 1.27E-14
30 2000 4.90E+00 7.57E+00 8.18E+00 1.94E+00 2.48E-15

F22 2 100 1.54E-07 1.45E-07 1.59E-08 4.52E-08 3.67E-09
2 400 2.87E-12 6.66E-11 5.75E-13 4.56E-13 2.66E-16
2 800 7.54E-15 4.32E-14 2.89E-16 3.05E-13 0

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

297

cases LMPSO remain second best. For f11 all
techniques almost have same result. The Performance
of all the techniques is almost same for function f12,

f13 and f14 .
From the results of function f15, it can be seen

that performance of LMPSO remains best in all three
cases while PMPSO was the second best technique
during this function.

Again function f16’ and f18 results shows that the
performance of all techniques have same result.
The performance of AMPSO is best for function f18.

The performance of LMPSO is best for the f19- f 22.

5. Conclusion

From the results that are given in the table 3, we
have seen that in 71% cases LMPSO perform batter
then other techniques. Power mutation gave good
performance in some cases. While the performance
of CPSO and AMPSO was just good in one or two
cases. The performance of each technique remains
same for function f4, f13, f14, f15, f16, f17.

The performance of LMPSO remains good
because it uses some statistics of search space while
mutating the gbest. The result of power mutation is
good from CPSO and AMPSO because they don’t
use the statistics of search space while mutating the
gbest. In simple 2 dimensions functions, the
performance of all techniques remains same.

Acknowledgements
The researchers would like to thank University Tun
Hussein Onn Malaysia (UTHM) for supporting this
project under Project Vote No 1315.

Corresponding Author:
Mr. Muhammad Imran
Faculty of Computer Science and Information
Technology, University Tun Hussein Onn Malaysia,
86400 Parit Raja, Batu Pahat, Johor, Malaysia
E-mail: malikimran110@gmail.com

References

[1] J. Kennedy and R. Eberhart, "“Particle Swarm
Optimization," in Proceedings of IEEE
International Conference on Neural Networks,
Perth, WA , Australia, 1995, pp. 1942-1948.

[2] H. Jabeen, Z. Jalil and A.R Baig, "Opposition
Based Initialization in Particle Swarm
Optimization," in Proceedings of the 11th
Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late
Breaking Papers, New York, NY, USA, 2009,
pp. 2047- 2052.

[3] N. Q. Uy, N. X. Hoai, R. McKay and P. M.
Tuan., "Initializing PSO with randomized low-

discrepancy sequences: the comparative results,"
in Proceedings of the IEEE Congress on
Evolutionary Computation, Singapore, 2007, pp.
1985-1992.

[4] M. Pant, R. Thangaraj, C. Grosan, and A.
Abraham, "Improved Particle Swarm
Optimization with Low-Discrepancy
Sequences," in IEEE Cong. on Evolutionary,
Hong Kong , 2008, pp. 3011-3018.

[5] C. Zhang et al, "A Novel Swarm Model With
Quasi-Oppositional Particle," in International
Forum on Information Technology and
Applications, Chengdu, 2009, pp. 325 – 330.

[6] Clerc M and J.Kennedy, "The Particle Swarm –
Explosion, Stability, and Convergence in a
Multidimensional Complex Space," in IEEE
transactions on evolutionary computation, vol.
6, 2002, pp. 58–73.

[7] Y.Shi and R. Eberhart., "A modified particle
swarm optimizer," in In Proceedings of the,
1998, pp. 69–73.

[8] M. G. H. Omran and S.al-Sharhan., "Using
Opposition-based Learning to improve the
Performance of Particle Swarm Optimization.”,"
in IEEE Swarm Intelligence Symposium, St.
Louis, MO , 2008, pp. 1 – 6.

[9] X. Liu et al, "Particle Swarm Optimization with
Dynamic Inertia Weight and Mutation," in Third
International Conference on Genetic and
Evolutionary Computing, Guilin, China, 2009,
pp. 620-623.

[10] C. Zhang et al, "Novel Swarm Model With
Quasi-Oppositional Particle," in International
Forum on Information Technology and
Applications, Chengdu, 2009, pp. 325 – 330.

[11] M. Clerc, "The Swarm and the Queen: Towards
a Deterministic and Adaptive Particle Swarm
Optimization," in Proceedings of the IEEE
Congress on Evolutionary Computation,
Washington, DC , USA , 1999, pp. 1951-1957.

[12] Y. Shi and R. C. Eberhart, "Fuzzy Adaptive
particle Swarm Optimization," in Proceedings of
the IEEE Congress on Evolutionary
Computation, Seoul , South Korea, 2001, pp.
101-106.

[13] H, Wang et al., "A Hybrid Particle Swarm
Algorithm with Cauchy Mutation," in
Proceeding of IEEE Swarm Intelligence
Symposium, Honolulu, HI, 2007, pp. 356 - 360.

[14] H-R LI and Y-L Gao., "Particle swarm
optimization algorithm with exponent
decreasing inertia weight and stochastic
mutation," in Second International Conference

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

298

on Information and Computing Science,
Manchester , 2009, pp. 66-69.

[15] Huang Chongpeng, Zhang Yuling, Jiang
Dingguo and Xu Baoguo, "On Some Non-linear
Decreasing Inertia Weight Strategies in Particle
Swarm Optimization*," in Proceedings of the
26th Chinese Control Conference, Zhangjiajie,
Hunan, China, 2007, pp. 570-753.

[16] L. Zhang, H. Yu, and S. Hu, "A new approach to
improve particle swarm optimization," in
Proceedings of the 2003 international
conference on Genetic and evolutionary
computation, 2003, pp. 134-139.

[17] A.P. Engelbrecht, Fundamentals of
Computational Swarm intelligence. England:
John Wily and Sons Ltd, 2005.

[18] M. Pant and T. Thangaraj, V.P. Singh, "Particle
Swarm Optimization Using Gaussian Inertia
Weight," in International Conference on
Computational Intelligence and Multimedia
Applications, Sivakasi, Tamil Nadu , 2007, pp.
97-102.

[19] S. Kai, S. Fan and J. M. Chang, "A Modified
Particle Swarm Optimizer Using an Adaptive
Dynamic Weight Scheme," in Proceedings of
the 1st international conference on Digital
human modeling, 2007 , pp. 56-65.

[20] X. Liu et al, "Particle Swarm Optimization with
Dynamic Inertia Weight and Mutation," in Third
International Conference on Genetic and
Evolutionary Computing, Guilin, 2009, pp. 620-
623.

[21] H. Wang et al, "Opposition-based Particle
Swarm Algorithm with Cauchy Mutation ," in
IEEE Congress on Evolutionary Computation,
Singapore , 2007, pp. 4750 – 4756.

[22] M. Pant, R. Thangaraj, and A. Abraham ,
"Particle Swarm Optimization Using Adaptive
Mutation," in 19th International Conference on
Database and Expert Systems, Washington, DC,
USA, 2008, pp. 519-523.

[23] X. Wu and M. Zhong, "Particle Swarm
Optimization Based on Power Mutation," in
ISECS International Colloquium on Computing,
Communication, Control, and Management,
Sanya, 2009, pp. 464 – 467.

[24] Higashi, N. Iba, H, "Particle swarm optimization
with Gaussian mutation," in Proceedings of the
IEEE Swarm Intelligence Symposium, 2003 , pp.
72 – 79.

[25] C. Li et al, "A Fast Particle Swarm Optimization
Algorithm with Cauchy Mutation and Natural
Selection Strategy,”," in ISICA'07 Proceedings

of the 2nd international conference on Advances
in computation and intelligence, 2007, pp. 334-
343.

[26] M. Pant, R. Thangaraj1, V.P Singhand and A.
Abraham, "Particle Swarm Optimization Using
Sobol Mutation," in First International
Conference on Emerging Trends in Engineering
and Technology, Nagpur, Maharashtra , 2008,
pp. 367-372.

[27] C. Li, S. Yang, and I. A. Korejo, "An adaptive
mutation operator for particle swarm
optimization," in Proceeding of the 2008 UK
Workshop on Computational Intelligence , 2008,
pp. 165-170.

[28] Y. Gao and Y. Duan , "A New Particle Swarm
Optimization Algorithm with Adaptive Mutation
Operator," in Second International Conference
on Information and Computing Science,
Manchester , 2009 , pp. 58-61.

[29] M. Pant, R.Thangaraj and V. P. Singh, "Sobol
Mutated Quantum Particle Swarm
Optimization," International Journal of Recent
Trends in Engineering, vol. 1, no. 1, pp. 95-99,
May 2009.

[30] A. Silva, A. Neves and E.Costa, "Chasing The
Swarm: A Predator Pray Approach to Function
Optimization," in Proceedings of MENDEL 8th
International Conference on Soft Computing,
2002.

[31] X. Hu and R. Eberhart, "Solving Constraint non-
linear optimization problems with Partilcle
Swarm Optimization," in 6th World
Multiconference on Systemics, Cybernetics and
Informatics, 2002.

[32] R. Brits.A.P. Engelbrecht and F. v. Den Bergh,
"A Niching Particle Swarm Optimizer," in
Proceedings of the Conference on Simulated
Evolution and Learning, 2002.

[33] C. Yang and D. Simon, "A New Particle Swarm
Optimization Technique," in Proceedings of the
18th International Conference on Systems
Engineering, 2005, pp. 164-169.

[34] Z. F Hao,Z. G Wang and H. Huang, "A Particle
Swarm Optimization Algorithm with Crossover
Operator," in Proceedings of the Sixth
International Conference on Machine Learning
andCybernetics, Hong Kong , 2007, pp. 1036 –
1040.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

299

1. Appendix

a. Test Functions
1. ��(�) = ∑ ��

��
���

2. ��(�) = ∑ �∗	��
��

���
3. ��(�) = ∑ [��

� − 10���(2���) + 10]�
���

4. ��(�) =
�

����
	∑ ��

� − ∏ ����
��

√�
��

���
�
��� + 1

5. ��(�) = ∑ [100(����		− ��
�)� + (1 − ��

�)�]�
���

6. ��(�) = ∑ −��
�
��� ∗sin(−1�|��|)

7. ��(�) = −20exp�−0.2�
�

�
	∑ ��

��
��� � − exp�

�

�
	∑ ���2���

�
��� � + 20+ �

8. ��(�) = (�� −
�.�

��� ��
� +

�

�
�� − 6)� + 10�1 −

�

��
������ + 10

9. ��(�) = − cos(��) − cos(��) exp	(− (�� − �)� − (�� − �)�)
10. ���(�) = max|��|,				0 ≤ �≤ �

11. ���(�) =
�

�
{10����(���) + ∑ (�� − 1)�	[1 + 10����(�����)]

�
��� + (�� − 1)�}+ ∑ �(��, 10,100,4)

�
��� ,

a. �� = 1 +
�

�
(�� + 1)

b. �(��, �, �, �) = �
�(�� − �)� 			, �� > ��	,
0,						− � < �� < �,

�(−�� − �)� 	,

�

12. ���(�) = .1{����(3���) + ∑ (�� − 1)�[1 + ����(3�����)] + (�� − 1)[1+ ����(2���)]
���
��� }+

∑ �(��, 5,100,4)
�
���

13. ���(�) = �
�

���
+ ∑

�

��∑ (������)
��

���

��
��� �

��

14. ���(�) = 4��
� − 2.1��

� +
�

�
��	
����� − 4��

� + 4��
�

15. ���(�) = ∑ |��|+	∏ |��|
�
���

�
���

16. ���(�) = [1 + (�� + �� + 1)�(19 − 14�� + 3��
� − 14�� + 16���� + 3��

�)]�[30+ (2� − 3��)
�(18−

32�� + 12��
� + 48�� − 36���� + 27��

�)]

17. ���(�) = −
�����(�����

����
�)

�

�
���

����
����

18. ���(�) = (4 − 2.1��
� +

��
�

�
)��

� + ���� + (−4 + 4��
�)��

�

19. ���(�) = ∑ ⌊�� + .5⌋��
���

20. ��� = ∑ x�
��

��� + (∑ 0.5ix�
�
���)� + (∑ 0.5ix�

�
���)�

21. �21 = ∑ |�� sin(��) + 0.1��|
�
��1

22. �22 = 0.5 +
���2���1

2��2
2��0.5

1�0.01	��1
2��2

2�
2

