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Abstract: Particle Swarm Optimization (PSO) algorithm has shown good performance in many optimization 
problems. However, it can be stuck into local minima. To prevent the problem of early convergence into a local 
minimum, various researchers have proposed some variants of PSO.  In this research different variants of PSO are 
reviewed that have been proposed by different researchers for function optimization problem and one new variant of 
PSO is proposed using Laplace distribution named as LMPSO. The performance of LMPSO is compared with 
existing variants of PSO proposed for function optimization. The analysis in this research shows the effect of 
different mutation operator on Particle Swarm Optimization (PSO).  To validate the LMPSO, experiments are 
performed on 22 benchmark functions.  The result shows that the LMPSO achieved better performance as compared 
to previous PSO varients. 
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1. Introduction 

PSO is a population based optimization method 
proposed by Kennedy and Eberhart [1] . The 
algorithm simulates the behaviour of bird flock flying 
together in multi dimensional space in search of some 
optimum place, adjusting their movements and 
distances for better search [1]. PSO is very similar to 
evolutionary computation such as Genetic algorithm 
(GA). The swarms are randomly initialized and then 
search for an optimum solution by updating 
generations [1]. 

PSO is a combination of two approaches, one is 
cognition model that is based on self expression and 
the other is a social model, which incorporates the 
expressions of neighbours. The algorithm mimics a 
particle flying in the search space and moving 
towards the global optimum solution. A particle in 
PSO can be defined as P� ∈ [a,b] where i=1, 2, 3…. 
D and a, b ∈ R, D is for dimensions and R is for real 
numbers [2]. All the particles are initialized with 
random positions and with random velocities [1], 
then particles move towards the new position based 
on their own experience and with neighbourhood 
experience. Each particle in PSO maintains two 
important positions called pbest and gbest where pbest is 
the particle’s own best position and gbest is the global 
best position among all the particles. The velocity 
and position of each particle are updated by equation 
(1) and (2).  
Vi (t+1) = Vi (t) + c1*r1* (pbest – ni (b)) + c2*r2 * (gbest 
– xi (t))   …………………………… (1) 
Xi (t + 1) = xi (t) + vi (t + 1)………… (2) 
 

where xi is the position, vi is the velocity and Pbest is 
the personal best position and gbest is the global best 
position for PSO. In this equation r1 and r2 are two 
random numbers ranges from (0,1) and c1 and c2 are 
learning factors specifically the cognition and 
cognition component influential respectively. 
 
2. PSO Variants 

J. Kennedy and R. Eberhart proposed PSO in 
1995. Despite the successful implementation of PSO 
for the purpose of optimization one of the problem 
with PSO was to stuck in local minima, to fix this 
dilemma number of variants of PSO variants have 
been proposed by researchers with respect to 
different parameters and operators. Following section 
discuss in detail about the variants of PSO with 
respect to variant type. 
 
2.1. Initialization  

Initialization of population plays an important 
role in the evolutionary and swarm based algorithms. 
In case of inappropriate initialization, the algorithm 
may search in unwanted areas and may be unable to 
search for the optimal solution. 

Nguyen et al [3] inspect the some randomized 
low discrepancy sequence to initialize the swarm to 
increase the performance of PSO. They used three 
low discrepancy sequence Halton, Faur and Sobol. 
Halton sequence is actually the extension of van der 
Corput. Ven Der Corput sequence is one dimensional 
in order to cover search space in N dimensions and 
Halton is defined as one of the extension of Vender 
Corput sequence. 
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Pant et al  [4] explore the effect of initializing 
swarm with the vender Corput sequence which is a 
low discrepancy sequence to solve the global 
optimization problem in large dimension search 
space. They named the proposed algorithm as VC-
PSO. The author claim that PSO performance is very 
well for problems having low dimensions but as the 
dimensions evolve the performance deteriorates, this 
problem become more severe in case of multimodal 
functions. They used the linear decreasing inertia 
weight from .9 to .4 with c1=c2=2.0. 

Jabeen et al [2] proposed opposition based 
initialization which calculates opposition of randomly 
initialized population and selects better particles 
among random and opposition of initial population. 
This population is provided as an input for traditional 
PSO algorithm.  

Chang et al [5] proposed an enhanced version of 
opposition based PSO called quasi-oppositional 
comprehensive learning PSO (QCLPSO). Instead of 
calculating traditional opposite of a point, the 
proposed modification calculates Qausi opposite 
particle, which is generated from the interval between 
median and opposite position of the particle. 
  
2.2. Constriction Coefficient  

For balancing the exploration-exploitation trade 
off, Clerc proposed a new approach [6] to improve 
the performance of PSO, which uses a new parameter 
‘χ’ called the constriction factor. The velocity update 
scheme proposed by Clerc can be expressed for the 
dth dimension of ith particle as:  

���(� + 1) = �����(� + 1) + ������(�) − ���(�)�+

��(����(�) − ���(�))�……………...….. (3) 

Where    χ= 2  424   

With � =C1+C2, �� = ���� ,	�� = ����  

 

2.3. Inertia Weight 
The inertia weight is a scaling factor associated 

with the velocity during the previous time step 
resulting in a new velocity update equation as eq 
(2.1), introduced by Shi [7]. Inertia Weight is used to 
control the exploration and exploitation abilities of 
the swarm. Large value of inertia weight promotes 
exploration while small value promotes local 
exploitation [7]. Some researchers [ [8], [9], [10]] 
used fixed inertia weight and some [ [11], [12], [13]] 
used decreasing inertia weight.   

In linearly decreasing inertia weight, large value 
(0.9) linearly decreased to small value (0.4)  

The exponent decreasing inertia weight is 
introduced by Li [14]. In order to beat the early 
convergence Li [14] proposed a variant of PSO with 

exponent decreasing inertia weight and stochastic 
mutation as shown in equation (4).  

� = (� ��� − ���� − ��)exp	(
�

��
���

����

)………… (4) 

where ����  denotes the max iteration, t denotes the tth   

iteration, � ���  denotes the original inertia 
weight,	����  denotes the inertia weight value when 
the algorithm process run the max iterations, �� and 
�� is a factor to control  w between  � ������	���� . 
In non linear decreasing inertia weight, a large value 
decreases to small value but decrease non-linearly. In 
non linear decreasing of inertia weight, search space 
can be explored in shorter time but take larger time to 
exploit the search space Chongpeng et al [15]. The 
inertia weight was calculated by equation (5)  

�� = ����+(���� − ������) × �1 − �
�

����
�
��
�
��

 (5) 

where k1, k2 are two natural numbers,	������ is the 
initial inertia weight,   ����  is the final value of 
weighting coefficient, ����  is the maximum number 
of iteration and t is current iteration. Value of k1>1 
and K2=1. 

Using fuzzy sets and rules, the inertia weight is 
adjusted dynamically [12]. 

Zhang et al [16] set the inertia weight as 
uniformly random number between 0 and 1. Author 
claimed that this inertia weigh scheme is more 
capable to escape from local minima and can 
overcome two problems of linearly decreasing inertia 
weight 
1. Can overcome the problem of linearly inertia 

weight dependency on maximum iteration. 
2. Another is avoiding the lack of local search 

ability at early process of PSO and global search 
ability at the end of PSO process. 
Wei et al [17] Proposed dynamic PSO with 

dimension mutation. First they introduce dynamic 
inertia weight which is changed dynamically based 
on speed and accumulation factors then they present 
a dimension mutation operator to overcome the 
premature convergence. They calculate inertia weight 
as following. 

� = �� − ℎ�� − ��� 
where ��=1,	�� ∈ (0.4,0.6) ,	�� ∈ (0.1,0.2) 

 
Pant et al [18] proposed a new version of PSO 

that uses Gaussian inertia weight. Responsible factor 
for the uniqueness of the modified algorithm was  
 Development of new inertia weight using 

Gaussian distribution 
 Use of different distribution instead of uniform 

distribution for the generation of the initial 
swarm. 
Inertia weight equation is given by  

� = ���(����)/2 ………………………. (6) 



Life Science Journal 2014;11(10)                                                          http://www.lifesciencesite.com 

294 

where rand is the random number having gaussion 
distribution.. 

Shu-Kai [19]  proposed a variant of PSO using 
an adaptive dynamic weight scheme. They proposed 
a novel nonlinear function amendable inertia weight 
adaptation with an active method for inertia weight to 
improve the performance of PSO algorithms. The 
nonlinear function is given by 

� = �� �������
�  

where d is the decrease rate from 1.0 to 0.1 and r is 
dynamic adaption rule depending on the following 
rule. For minimization case it follows. 

Xuedan Liu et al [20] proposed the PSO with 
dynamic inertia weight using mutation, reinitialized 
the swarm when it get stagnate. Author used the 
linearly decreasing inertia weight with following 
formula 

� (�) = .9 − �
�

��� �	

�× 0.5 ……… (7) 

where ��� �	
 is maximum number of iteration then 

they used the wheel structure.  
 
2.4. Mutation Operators 

In PSO, Mutation operator is used to change the 
position of particle from previous position to new 
positions. The basic role of mutation operator in PSO 
is quick convergence. It prevents the PSO from 
stagnation at any local minima. Some researchers 
used different mutation operators to overcome the 
premature convergence of the PSO. Through 
mutation operators authors mutate the gbest, after 
mutating the gbest, they compared the fitness 
performance of mutated gbest & original one and 
selects the best one for rest of the PSO process.  
Some of the mutation operators are Cauchy Mutation 
[13], [21], Adaptive Mutation [22], Power Mutation 
[23] and Gaussian Mutation [24].  

To prevent PSO trapping from local optima, Li 
et [25] introduced Cauchy mutation in PSO. They 
named their algorithm as CPSO. They updated the 
particles position by Cauchy mutation as  
V΄=V+exp(δ) 
X΄=X+ V΄(δ)  
where δ is a Cauchy random number 

Wang [13] proposed a new Cauchy mutation 
operator for PSO. This operator is applied to perform 
local search around the global best particle. The 
motivation for using such a mutation operator is to 
increase the probability of escaping from a local 
optimum. The inertia weight used is 0.72984 and 
c1=c2 =1.49618. This mutation operator is used to 
increase the probability of escaping from a local 
optimum. The cauchy mutation operator is: 
������(�) = ������(�) + � (�) ∗� (���� , ����  . (8) 
where N is a Cauchy distributed function with scale 
parameter t=1, � (���� ,���� )  is a random number 

with in (���� , ���� )  of defined domain of test 
function and 

� (�) = �∑ �[�]
�������
���

[�]�/�������  

where �[�][�] is the �th velocity vector of �th particle 
in the population,  popsize is the size of population 
Wang [21] proposed opposition based initialization in 
PSO coupled with Cauchy mutation operator. Cauchy 
mutation operator is used on the global. 

Pant et al [22]  proposed two variants of PSO: 
AMPSO1 and AMPSO2 for global optimization 
problem. The author used adaptive mutation for both 
techniques. The main goal of author was to improve 
the diversity of PSO without compromising on the 
solution quality. In AMPSO1 personal best position 
of the swarm is mutated while in AMOPSO2 global 
best particle of the swarm is mutated. Following 
formula is used to mutate the particle. 
�����= �����+ � ′ ∗��������()………………. (9) 
where � ′ = � ∗exp	(�	� (0,1) + �′	��	(0,1)) , N(0,1) 

denotes a normally distributed function with mean 
zero and standard deviation one, ��	(0,1)  that a 
different random number is generated for each value 

of j, � and �′ are set as 
�

√��
 and 

�

� �√�
 respectively and 

value of �  is originally set as 3. Betarand() is a 
random number generated by beta distribution with 
parameter less than 1. 

 Pant et al [26] explored the Sobol mutation 
operator in PSO to enhance the performance of basic 
PSO algorithm, which uses Qausi random Sobol 
sequence as they claimed that random probability 
distribution cannot cover the search domain as Qausi 
random can cover. They named their operator 
Systematic mutation (SM). 
Different mutation operator performs well for 
different type of problem. Li et al [27] proposed an 
adaptive mutation with three mutation operators to 
escape the particle from local optima. They apply 
Cauchy mutation, Gaussian mutation and levy 
mutation on the position and velocity 
Gao [28] presented new adaptive mutation operator 
by fitness variance and space position aggregation 
degree to give a new PSO with adaptive mutation. 
They claimed that algorithm can be stuck into local 
convergence when fitness variance of particles is near 
to zero. 

Wu et al [23] proposed a new variant of PSO 
called power mutation PSO (PMPSO), which 
employs a power mutation operator. The core plan of 
PMPSO is to apply power mutation on the fittest 
particle of current swarm. The purpose of power 
mutation is to help the particles to jump out from the 
local optima. 

Pant et al [29] introduced the new mutation 
operator for improving the Quantum Particle Swarm 
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Optimization (QPSO) algorithm. The mutation 
operator uses the Qausi random Sobol sequence and 
called as a Sobol mutation operator. 

  Silva et al [30] proposed predator pray 
optimization technique used for function 
optimization. PSO has been applied for constrained 
non linear optimization problem [31]. Brits et al  [32] 
proposed another variant of PSO which intended to 
locate multiple best possible solutions in multimodal 
problems by using sub swarms and the convergent 
sub swarms algorithm. By considering the particles 
previous best position and mistakes, Yang et al [33] 
proposed a new variant of PSO. To share the 
information of particles Zhi-Feng [34] proposed a 
PSO with cross over operator. Omran et al [8] used 
an opposition based learning to improve the 
performance of PSO.  

Tang et al [35]  proposed an enhance opposition 
based PSO which is called as EOPSO. According to 
the authors, opposite point is closer to global optima 
as compare to current point. This provides more 
chances to get close to global optima. 
  
3. Proposed LMPSO 

To avoid the PSO issues related to early 
convergence and stuck in local minima, this study has 
modified PSO to improve its performance. The 
modification is done through Laplace distribution and 
this modification is called as Laplace Mutated PSO 
(LMPSO). Laplace distribution is continuous and 
double exponential distribution. It is the distribution 
of differences between two independent variables 
with identical exponential distributions. A random 
variable has a Laplace (μ, b) distribution if its 
probability density function is  

�(�|�, �) =
�

��
����−|

���

�
|� ………. (10) 

where μ is a location parameter and b>0 is a scale 
parameter 

In LMPSO, global best particle is mutated by 
Laplace mutation to escape PSO from local minima.  
In LMPSO ����� is mutated by (11). 

�����= �
�����+ �,							�����	��+ ��
�����− �, 						�����	��− ��

�  ……….. (11)    

where � =
��

�� ∗ℒ  

where  ��, 		��  are the boundaries of the current 
search space and	ℒ  is the Laplace random number 
generated by Laplace distribution.      
  
3.1. Experiments 

To validate the performance of the proposed 
LMPSO, we run the proposed LMPSO and other 4 
variants of PSO on the 22 benchmark functions.  The 
parameter setting of each PSO variant used for 

comparison purpose are shown in Table 1. All the 
functions used for the experimental purpose are given 
in the appendix at the end of this paper. 

The results of the all 22 functions are shown in 
the table 3. 

We used the same experimental setting as 
shown in Table 2 for all the variants of PSO. All 
variants including proposed LMPSO run in same 
session for one function. We try our best that there 
should be no biasness to get the results. The results 
are given in table 3. 
 

Table 1: Comparison of parameters 
PSO 

Variants 
Use Population 

Min 
Use Population 

Max 
Initialization 

Randomly 
CPSO No No Yes 
AMPSO No No Yes 
PMPSO Yes Yes Yes 
NMPSO No No Yes 
RMPSO No No Yes 
LMPSO Yes Yes Yes 

 
Table 2: Experimental Settings 
Parameter Value 

Search Space [100,-100] 
Dimensions 10 
 20 
 30 
Iterations 1000 
 1500 
 2000 
Population size 30 
Number of PSO Runs 30 

 
4. Results 
4.1. Analysis 

Detail Results of all the Benchmark functions 
are given in table 3. The results of function f1 show 
that LMPSO has better performance as compared to 
other techniques.  

In function f2, when 10 dimensions with 1000 
iterations are used then PMPSO performance is best, 
whereas by increasing the dimensions and iterations, 
LMPSO performance can be boost up as compared to 
other techniques. 

 f3 results shows that LMPSO has better 
performance than other techniques.   

By Result of f4, we can infer that all techniques 
have equal performance in all three cases. 

The results of function f5 shows that PMPSO 
has better performance in case of 10 dimensions and 
1000 iterations, while AMPSO perform better in case 
of 20 dimensions and 1500 iterations and CPSO 
perform better in case of 30 dimensions and 2000 
iterations. 
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Table 3:  Results of LMPSO and four previous variants of PSO where, bold one is the best results among all. 

 
In case of function f6, traditional PSO remains 

good then other techniques when dimensions are 10 
and iterations are 50. But if we increase dimensions 
to 20, 30 and iterations to 80,100 iterations 
respectfully, PMPSO’s performance is better. 
LMPSO’s performance was on the second number.  

The performance of LMPSO is better than other 
techniques for function f7 in all three cases. 

The result of function f8 remains same for all 
variants. 

The performance of all techniques remains same 
for function f9. 

 Results of f10 show that the performance of 
NMPSO and RMPSO is outstanding, while 
traditional PSO remain second best in case of 10 
dimension and 1000 iterations while in other two 

Function Dim Iterations PSO CPSO AMPSO PMPSO LMPSO 
Avg Fitness Avg Fitness Avg Fitness Avg Fitness Avg Fitness 

f 1 
 
 

10 1000 5.35E-56 2.96E-65 1.12E-56 2.53E-96 2.84E-97 
20 1500 2.58E-16 4.79E-25 2.09E-16 4.66E-81 5.72E-87 
30 2000 3.56E-07 4.30E-14 2.13E-09 2.86E-65 9.19E-78 

f 2 
 

10 1000 1.71E-66 2.30E-71 1.73E-67 2.21E-76 1.62E-48 
20 1500 1.47E-17 3.64E-27 4.53E-18 1.57E-54 2.77E-66 
30 2000 4.04E-07 1.25E-13 3.04E-09 6.12E-11 2.50E-37 

f 3 10 1000 4.97E+00 5.42E+00 5.72E+00 3.93E+00 1.89E+00 
20 1500 4.25E+01 3.67E+01 3.76E+01 2.24E+01 4.03E+00 
30 2000 9.76E+01 9.55E+01 9.86E+01 3.89E+01 5.12E+00 

f4 10 1000 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 
20 1500 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 
30 2000 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

f 5 10 1000 2.57E+00 3.54E+00 1.88E+00 2.50E-03 7.06E+00 
20 1500 1.45E+01 1.27E+01 1.38E+01 4.62E+01    1.88E+01 
30 2000 2.91E+01 2.14E+01 2.62E+01 6.95E+01 2.88E+01 

f6 10 50 -7.50E+05 -3.27E+11 -5.46E+05 1.16E+06 -9.08E+05 
20 80 -5.58E+07 -1.71E+15 -8.94E+07 6.15E+07 -1.21E+08 
30 100 -2.41E+09 -2.77E+18 -1.82E+09 4.48E+07 -6.18E+08 

f7 10 50 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 
20 80 2.00E+01 2.00E+01 2.00E+01 2.00E+01 1.99E+01 
30 100 2.00E+01 2.00E+01 2.00E+01 2.00E+01 1.90E+01 

f8 2 100 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
f9 2 100 -1.00E+00 -1.00E+0 -1.00E+0 1.00E+00 -1.00E+0 
f10    10     1000    1.04E-11 1.72E-17 1.32E-11 1.76E-16 2.06E-17 

20 1500 5.36E-01 1.68E-02 3.59E-01 9.70E-01 4.64E-06 
30 2000 1.03E+01 3.61E+00 8.96E+00 1.62E+01 4.07E-04 

f11 
 

10 1000 -3.14E-01 -3.14E-01 -3.14E-01 -3.14E-01 -3.14E-1 
20 1500 -1.57E-01 -1.57E-01 -1.57E-01 -6.38E-02 -1.57E-1 
30 2000 -7.39E-02 -8.92E-02 -1.60E-02 2.63E-01 4.51E-02 

f12 10 100 -1.33E+06 -1.24E+69 -1.71E+05 -2.38E+01 -2.29E+01 
20 400 -3.97E+16 1.96E+28 -5.02E+16 -3.32E+01 -7.35E+01 
30 800 -1.66E+17 2.94E+70 2.94E+11 -6.91E+01 -8.57E+01 

f13 2 50 2.09E-26 4.46E-26 3.41E-26 7.39E-21 7.26E-19 
f 14 2 50 -1.03E+0 -1.03E+00 -1.03E+0 -1.03E+00 -1.03E+0 
f15 
 

10 50 2.14E+02 1.75E+02 1.63E+02 1.57E+02 1.91E+02 
20 80 5.94E+02 7.44E+02 7.98E+02 6.41E+02 7.76E+02 
30 100 1.19E+03 1.23E+03 1.26E+03 1.13E+03 1.21E+3 

f16 2 100 3.00 E+00 3.00 E+00 3.00 E+00 3.00 E+00 3.00 E+00 
f17 2 1000 2.94E-13 2.06E-13 3.03E-14 8.08E-13 3.25E-12 
f18 2 100 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+0 
f19 10 50 5.39E+00 5.67E+00 8.34E+00 3.76E-01 1.26E-01 

20 80 1.15E+02 1.01E+02 9.21E+01 2.10E-01 3.31E-02 
30 100 1.08E+03 9.78E+02 1.03E+03 1.11E+00 7.49E-02 

f 20 

 
10 1000 3.17E-17 2.01E-22 1.69E-17 6.43E-44 3.69E-46 
20 1500 3.80E+02 1.43E+02 2.19E+02 2.49E+00 2.06E+0 
30 2000 2.71E+03 1.48E+03 1.71E+03 2.56E+02 6.15E+2 

F21 10 1000 9.58E-08 5.87E-08 1.83E-08 3.69E-07 2.83E-15 
20 1500 2.23E-01 8.63E-01 3.73E-01 4.49E-02 1.27E-14 
30 2000 4.90E+00 7.57E+00 8.18E+00 1.94E+00 2.48E-15 

F22 2 100 1.54E-07 1.45E-07 1.59E-08 4.52E-08 3.67E-09 
2 400 2.87E-12 6.66E-11 5.75E-13 4.56E-13 2.66E-16 
2 800 7.54E-15 4.32E-14 2.89E-16 3.05E-13 0 
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cases LMPSO remain second best. For f11 all 
techniques almost have same result. The Performance 
of all the techniques is almost same for function f12, 

f13 and f14 .  
From the results of function f15, it can be seen 

that performance of LMPSO remains best in all three 
cases while PMPSO was the second best technique 
during this function. 

Again function f16’ and f18 results shows that the 
performance of all techniques have same result. 
The performance of AMPSO is best for function f18. 

The performance of LMPSO is best for the f19- f 22. 
 
5. Conclusion  

From the results that are given in the table 3, we 
have seen that in 71% cases LMPSO perform batter 
then other techniques. Power mutation gave good 
performance in some cases. While the performance 
of CPSO and AMPSO was just good in one or two 
cases. The performance of each technique remains 
same for function f4, f13, f14, f15, f16, f17. 

The performance of LMPSO remains good 
because it uses some statistics of search space while 
mutating the gbest. The result of power mutation is 
good from CPSO and AMPSO because they don’t 
use the statistics of search space while mutating the 
gbest. In simple 2 dimensions functions, the 
performance of all techniques remains same. 
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