Evaluation of growth and yield potentialities of local boro rice varieties in south-west region of Bangladesh

S. K. Roy¹, M. Y. Ali², M. A. Hakim^{3,4*}, M. M. Hanafi³, Abdul Shukor Juraimi⁵, M. S. Jahan², U. K. Saha², Md. Amirul Alam⁵ and M. A. Kashem⁶

¹Assistant Professor in Agriculture, North Khulna Degree College, Khulna, Bangladesh ²Agrotechnology Discipline, Khulna University, Khulna, Bangladesh ³Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, DE 43400, Malaysia ⁴Department of Agricultural Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh

⁵Department of Crop Science, Universiti Putra Malaysia, UPM Serdang, Selangor, DE 43400, Malaysia ⁶Bangladesh Institute of Nuclear Agriculture, Mymensingh *Corresponding authors email: ahakimupm@gmail.com

Abstract: A field experiment was conducted to evaluate the growth and yield performance of local boro rice varieties. Twelve local boro rice varieties were included in this study namely Nayon moni, Tere bale, Bere ratna, Ashan boro, Kajol lata, Koijore, Kali boro, Bapoy, Latai balam, Choite boro, GS one and Sylhety boro, Growth parameters viz. plant height and number of tillers hill⁻¹(at different days after transplanting); yield contributing characters such as effective tillers hill⁻¹, panicle length, number of grains panicle⁻¹, filled grains panicle⁻¹, thousand grain weight, grain yield, straw yield, biological yield and harvest index were recorded. The result revealed that the plant height and number of tillers hill⁻¹ at different days after transplanting varied significantly among the varieties. The plant height for all the varieties and number of tillers hill⁻¹ for most of the varieties increased up to harvest. At harvest, the tallest plant (123.80 cm) was recorded in Bapoy and the shortest (81.13 cm) was found in GS one. The maximum number of tillers hill⁻¹ (46.00) was observed in Sylhety boro and the minimum (19.80) in Bere ratna. All of the parameters of yield and yield contributing characters differed significantly at 1% level except grain yield. biological yield and harvest index. The maximum number of effective tillers hill⁻¹ (43.87) was recorded in the variety Sylhety boro and the minimum (17.73) was found in Bere ratna. The highest (110.57) and the lowest (42.13) number of filled grains panicle⁻¹ was observed in the variety Kojiore and Sylhety boro, respectively. Thousand grain weight was the highest (26.35g) in Kali boro and the lowest (17.83g) in GS one. Grain yield was not differed significantly among the varieties but numerically the highest grain yield (5.01 t ha^{-1}) was found in the variety Koijore and the lowest in GS one(3.17 t ha⁻¹). Considering all parameters the varieties Koijore (5.01tha⁻¹), Choite boro, Sylhety boro, Ashan boro, Bere ratna performed better for the southwest region of Bangladesh. [S. K. Roy, M. Y. Ali, M. A. Hakim, M. M. Hanafi, Abdul Shukor Juraimi, M. S. Jahan, U. K. Saha, Md. Amirul Alam and M. A. Kashem. Evaluation of growth and yield potentialities of local boro rice varieties in south-west region of Bangladesh. Life Sci J 2014;11(10):277-281] (ISSN:1097-8135). http://www.lifesciencesite.com, 39

Key words: Boro rice, growth parameters, yields.

Introduction:

Rice (Oryza sativa L.) is life for more than half of the population in the world. Bangladesh is an agrobased country where agriculture is the single largest sector and the main stay of the country's economy. Agriculture in Bangladesh is predominated by intensive rice cultivation. The national average yield of rice in Bangladesh is low (2.77 t ha⁻¹), while yields of the other rice growing countries of Asia such as, China, Taiwan, Indonesia, and Japan are 5.72, 4.60, 4.38, and 5.97 t ha⁻¹, respectively (Quayum et al., 1996). In Bangladesh, the area under rice cultivation was 4706875 hectares in boro season in 2009-2010, which produced 18058962 MTs of grains with an average yield of 3.837 MTs (BBS, 2010). With the expansive culture of modern varieties, the number of traditional rice cultivars reduced. The promotion of high yielding variety (HYV) rice mono-culture has

led to loss of diversity including 7000 traditional rice varieties (Singh et al., 2000). Now a day, cultivation of modern rice varieties is under threat due to climatic stresses such as salinity, drought. submergence etc. Rice scientists have been giving effort to develop stress tolerant rice varieties. There are thousands of local rice varieties in our country which are well adapted to various stress situations. The local rice varieties are usually said poor yielder but they are superior to modern varieties in terms of stability, resistance to biotic and abiotic factors, quality characters, etc. A number of reports showed that indigenous rice cultivars from Bangladesh possess a wide diversity in ecological, morphological and physiological characteristics (Bhowmik et al., 2000; Islam, 1990; Jahan, 2003). It was reported that a number of local rice varieties have high yield potentiality. Although much research have been done

for understanding modern rice varieties but report on local boro rice cultivar is scanty. This experiment has therefore been undertaken to observe the growth and yield performance as well select the boro rice cultivars and thereby for successful rice production in the southwest region of Bangladesh.

Materials and Methods:

The study was conducted at the Dr. Purnendu Gain Field Laboratory of Agro technology Discipline, Khulna University, Khulna during the period of November 2011 to May 2012. The experimental field was typical rice growing medium high land of loamy soil and it is situated in the Agro ecological Zones (AEZ) 13, i.e., Gangetic Tidal Floodplain. The geographical situation of the experimental field is at latitude of $22^{0}47'$ N and longitude of $89^{\circ}34'$ E having subtropical climate characterized by moderately high temperature and heavy rainfall during kharif season (March to October) and low rainfall and low temperature during the robi season (November to February). The experimental field was typical rice growing medium high land of clay-loam with black colored and p^{H} was 8. The experiment was organized in a Randomized Complete Block Design (RCBD) with three replications. The selected field was firstly divided into three equal blocks and each block was further divided into twelve unit plots. The size of unit plot was 10 m^2 (4 m x 2.5 m). The total number of plots was thirty six. The distance between block to block was 1.0 m and plot to plot distance was 50 cm. In this research work twelve local boro rice varieties were included viz. Navon moni, Tere bale, Bere ratna, Ashan boro, Kajol lata, Koijore, Kali boro, Bapoy, Latai balam, Choite boro, GS one and Sylhety boro. Pre germinated seed were sown in the wet seedbed during boro season on 26th November, 2011. Transplanting was done with three seedlings hill⁻¹ maintaining 20 cm hill to hill and 25cm line to line spacing on 16th January, 2012. The experimental location was uniformly fertilized with Urea, TSP, MoP, Gypsum and Zinc sulphate @ 110, 60, 45, 30 and 10 kg ha⁻¹ respectively. The total TSP, MoP, Gypsum, Zinc sulphate and one third of Urea were applied as basal dose. The rest of the urea was applied at two equal split doses at 30 days after transplanting (DAT) and at 50 DAT. Two hand weeding were done to check weed infestation in the experimental field at 25 DAT and 40 DAT. The experimental field was irrigated regularly up to dough stage depending upon the moisture content of the field and flood irrigation method was practiced. During the experimentation some insect pests like grass hopper, stem borer, rice bug and nematode were infested in the crop. Semcup 50 EC @ 1L ha⁻¹

was applied to control grass hopper, stem borer, rice bug and nematode was controlled by application of Furadan 5G @ 10 kg ha⁻¹. Nayonmoni, Ashan boro, Kajol lata, Bapoy, Latai balam and Choite boro were harvested on 23rd April, 2012 and GS one, Bere ratna, Kali boro were harvested on 2nd May 2012 & Koijore, Sylhety boro, Tere bale were also harvested on 5th May 2012. Data were recorded on growth parameters (at 50, 65 and 80 day after transplanting) and yield parameters at final harvest.

Statistical Analysis:

All the collected data were analyzed following the analysis of Variance (ANOVA) technique and mean differences were adjudged by Duncan's New Multiple Range Test (DMRT) (Gomez and Gomez, 1984) using a computer operated program named MSTAT-C.

Results and Discussion:

Plant height increased progressively reaching a maximum at harvest. The tallest (123.80 cm) plant was found in the variety Bapoy followed by Choite boro (122.93 cm) and the shortest plant was recorded in the variety G.S one (81.13 cm) proceeded by Tere bale (86.00 cm) and Koijore (91.33 cm) (Table 1). Variation in plant height among the varieties might be due to the differences in their genetic makeup. This result was in consistent to those of Khatun (2001) and Das *et al.* (2012) who observed variable plant height among the rice varieties.

Tiller number in most of the treatments increased almost exponentially up to harvest (Table 2). The maximum number of tillers $hill^{-1}$ (46.13) was recorded in the variety Sylhety boro followed by Navon moni (33.00). The minimum number of tillers (18.13) was observed in the variety Koijore. Similar result was also reported by Ramasamy et al. (1987) who stated that number of tillers hill⁻¹ differed due to varietal variation. Variety had significant effect on effective tillers hill⁻¹ (Table 3). The highest number of effective tillers hill⁻¹ (43.87) was produced by Sylhety boro. The lowest number of effective tiller hill⁻¹ (17.73) was observed in Bere ratna which was preceded by Kaijore and Ashan boro. The reason of difference in number of effective tiller hill⁻¹ is the variation in the genetic makeup of the variety.

The highest panicle length (21.62 cm) was recorded in the variety Bapoy which was followed by the variety Kajol lata and Bere ratna. The lowest panicle length (15.13 cm) was found with the variety Sylhety boro which was preceded by Nayon moni, GS one, Kali boro and Choite boro. Similar results were also recorded by Idris and Matin (1990) and Anonymous (1993) who reported that panicle length influenced by different varieties.

Variaty	Plant height (cm) at					
variety	50 DAT	65 DAT	80 DAT	Harvest		
Nayonmoni	62.06bc	75.00d-g	104.73bc	111.40bc		
Tere bale	51.13cd	63.00fgh	79.00ef	86.00fg		
Bere ratna	67.93ab	78.80cde	95.20cd	97.60de		
Ashan boro	62.80bc	73.33e-h	88.20de	92.13ef		
Kajol lata	71.26ab	91.13bc	103.86bc	108.67bc		
GS one	47.26d	59.20h	70.93f	81.13g		
Koijore	49.00d	61.20gh	76.06f	91.33efg		
Kali boro	61.93bc	76.86c-f	108.53ab	114.87ab		
Bapoy	68.80ab	88.26bcd	116.20a	123.80a		
Latai balam	67.93ab	95.33b	110.13ab	117.20ab		
Choite boro	77.33a	110.00a	117.73a	122.93a		
Sylhety boro	51.53cd	62.06gh	95.46cd	103.47cd		
Level of significance	0.01	0.01	0.01	0.01		
CV (%)	8.19	7.82	4.73	4.33		

Table 1. Plant height of local boro rice varieties at different days after transplanting

In a column figures having similar letter(s) did not differ significantly where as dissimilar letter(s) differed significantly DAT = Days after transplanting

Table 2. Number of tillers hill ⁻¹ of	of loca	l boro rice	varieties a	t different	days after	transplanting
--	---------	-------------	-------------	-------------	------------	---------------

Table 2. Number of time	as min of local boro m	Le valleties at utilieren	i uays aller transplanti	Ig		
Variaty	Number of tillers hill ⁻¹ at					
variety	50 DAT	65 DAT	80 DAT	Harvest		
Nayon moni	20.36abc	25.66b	29.66 bc	33.00b		
Tere bale	12.66c	21.87bc	31.26b	29.80bc		
Bere ratna	15.00bc	16.60c	19.13de	19.80e		
Ashan boro	17.00abc	19.86bc	20.40cde	22.07de		
Kajol lata	19.66abc	23.86bc	24.73b-e	29.60bc		
GS One	18.46abc	24.26bc	23.40b-е	24.47cde		
Koijore	23.93a	20.53bc	18.13e	20.40e		
Kali boro	22.20ab	26.26b	27.26b-е	29.13bc		
Bapoy	19.20abc	27.00b	28.20bcd	29.93bc		
Latai balam	20.86abc	22.33bc	23.80b-e	25.60cd		
Choite boro	25.00a	23.33bc	27.00b-e	27.27bcd		
Sylhety boro	25.40a	36.33a	46.13a	46.00a		
Level of significance	0.05	0.01	0.01	0.01		
CV (%)	22.34	13.33	14.68	9.12		

In a column figures having similar letter(s) did not differ significantly whereas dissimilar letter(s) differed significantly DAT = Days after transplanting

Table 3. Yield and yield contributing characters of different indigenous Boro rice varieties

Variety	No. of effective tiller hil ⁻¹	Panicle length (cm)	No. of grains panicle ⁻¹	No. of filled grains panicle ⁻¹	1000 grain wt. (g)	Grain yield (t ha ⁻¹)	Straw yield (t ha ⁻¹)	Biologica l yield (t ha ⁻¹)	Harvest index (%)
Nayonmoni	30.73b	17.71c	53.77e	46.51de	26.28a	3.72	3.68bc	7.42	50.08
Tere bale	27.13bc	19.11bc	74.01cde	61.36cde	20.92cd	3.36	3.21bc	6.57	51.26
Bere ratna	17.73f	20.22ab	113.17ab	97.42ab	22.02bc	4.24	3.31bc	7.55	55.68
Ashan boro	20.00def	18.82bc	96.57bc	83.29bc	21.86bc	4.34	3.15bc	7.49	57.52
Kajol lata	26.13bcd	21.54a	88.17bcd	74.96bc	24.80ab	3.68	2.77c	6.45	56.74
GS one	22.00c-f	18.32c	108.95ab	83.36bc	17.83e	3.17	3.37bc	6.77	51.48
Koijore	18.00ef	18.58bc	132.80a	110.57a	18.88de	5.01	4.46ab	9.47	53.01
Kali boro	27.13bc	17.66c	45.32e	40.52e	26.35a	3.72	3.66bc	7.39	49.85
Bapoy	27.06bc	21.62a	86.75bcd	66.69cd	24.34ab	3.67	3.76bc	7.43	49.38
Latai balam	23.60c-f	18.26c	55.81e	49.17de	25.74a	3.94	3.10bc	7.04	56.13
Choite boro	24.53b-е	18.34c	62.81de	48.64de	24.34ab	4.78	3.99abc	8.77	54.52
Sylhety boro	43.87a	15.13d	47.69e	42.13e	24.19ab	4.67	5.44a	10.11	46.07
CV (%)	10.61	3.98	14.59	14.44	5.50	22.65	17.76	18.28	8.36
Level of significance	0.01	0.01	0.01	0.01	0.01	NS	0.01	NS	NS

In a column figures having similar letter(s) did not differ significantly whereas dissimilar letter(s) differed significantly, NS = Not significant.

The number of grains panicle⁻¹ was the highest (132.80) with the variety Koijore which was statistically identical with Bere ratna and GS one. The lowest number of grains panicle¹ (45.32) was recorded with the variety Kali boro which was statistically identical with Navon moni and Latai balam. The results revealed that number of filled grains panicle⁻¹ was the highest (110.57) with the variety Koijore which was statistically identical with Bere ratna. The lowest number of filled grains panicle⁻¹ (40.52) was recorded with the variety Kali boro which was statistically similar to Sylhety boro. The results were also supported by Singh and Gangwer (1989) who stated that varietal differences regarding the number of filled grains panicle⁻¹ might be due to their differences in genetic constituents.

Among the tested varieties the highest 1000grain weight (26.35 g) was produced by Kali boro which might be due to its larger grain size and that was statistically similar to Nayon moni and Latai balam. The lowest 1000-grain weight (17.83 g) was found in GS one for its smaller grain size which was statistically similar to Koijore. Similar results were reported by Gupta and Sharma (1991). Results showed that the grain yield did not vary significantly among the varieties but was varied numerically (Table 3). The highest grain yield (5.01 t ha⁻¹) was recorded in Koijore which might be due to its highest number of filed grains panicle⁻¹ and the lowest grain yield (3.17 t ha⁻¹) was found in GS one.

Varieties differed significantly in their straw yield (Table 3). The highest straw yield (5.44 t ha⁻¹) was obtained from the variety Sylhety boro which might be due to its highest number of tillers hill⁻¹. The lowest straw yield (2.77 t ha⁻¹) was observed in the Kajol lata. The result are in accordance with the findings of Hossain (2002).

Biological yield did not vary significantly among the varieties (Table 3). However, numerically the highest biological yield (10.11 t ha⁻¹) was obtained from the variety Sylhety boro. The lowest biological yield (6.45 t ha⁻¹) was found in the Kajol lata. These results are in agreement with the findings of Sohel *et al.* (2009). Varieties did not follow any regular trend in case of harvest index and was not varied significantly (Table 3). However, numerically the highest harvest index (57.52%) was recorded from the variety Ashan boro and that of the lowest (46.07%) was recorded in Sylhety boro. The result was supported by Sohel *et al.* (2009).

Conclusion:

From the results of this study it may be concluded that the varieties Koijore (5.01tha^{-1}) , Choite boro, Sylhety boro, Ashan boro, Bere ratna (> 4.0tha^{-1}) gave the high yield potentiality in compared to modern varieties. Other varieties have moderate yield potentiality (> 3.0tha⁻¹). Moreover these varieties are well adapted to the agro-ecology in southwest region of the country. So, farmers can cultivate these local varieties instead of modern varieties without significant yield loss.

Acknowledgement

The authors would like to acknowledge the University of Khuna, Bangladesh for the support of this research and also acknowledge to University Putra Malaysia and also acknowledge to Long Term Research Grant Scheme (LRGS) in Food Security– Enhance Sustainable Rice Production under the Ministry of High Education, Malaysia for Technical and financial support of this publication.

References

- Anonymous, 1993. *Annual Report*. Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh. pp 143.
- BBS (Bangladesh Bureau of Statistics). 2010. Planing Division, Ministry of Planning, Government of Peoples Republic of Bangladesh, Dhaka. p. 83.
- Bhowmick, N. and Nayak, R. L. 2000. Response of hybrid rice (*Oryza sativa*) varieties to nitrogen, phosphorus and potasium fertilizers during dry (Boro) season in West Bengal. *Indian Journal of Agronomy*, 45(2): 323-326.
- Das, B.; Mannan, M. A. and Das, P. K. 2012. Performance study of three high yielding varieties of Bangladesh and one exotic rice variety. B.Sc. Ag. Thesis. Agrotechnology Discipline, Khulna University, Khulna. pp.19-27.
- Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedure for Agricultural Research. International Rice Research Institute. Philippine.pp. 139-153, 204-207.
- Gupta A.K. and Sharma R.S. 1991. Effect of plant spacing and fertility level on grain yield of early, medium, indica rice (*Oryza sativa*). *Indian Journal of Agronomy*. 36 (supplement):223-225.
- Haque, M. E. and Miah N. M. 1991. Rice genetic resources in Bangladesh –its past, present and future. In: L. Rahman and M.A.Q. Shaikh (eds.). *Plant Breeding in Bangladesh. Proceeding of the First National Symposium.* 5-7 June, 1989. Bangladesh Jute Research Institute (BJRI), Dhaka, Bangladesh and Plant Breeding and Genetics Society of Bangladesh, Gazipur, Bangladesh. pp 219-224.
- Hossain M. Z. 2002. Perfomance of BRRI dhan32 in the SRI and conventional methods and their technology Mixes. MS Thesis, Depertment of Agronomy. BAU, Mymensingh. pp. 28-71.

- Idris, M. and Matin, M.A. 1990. Response of four exotic strains of aman rice to urea. *Bangladesh Journal of Agricultural Science*. 17 (2): 271-275.
- Islam, Q. R. 1990. Ecological and physiological studies on Bangladesh deepwater rice. *Bulletin, Institute of Tropical Agriculture, Kyushu University.* 13: 1-93.
- Jahan, M. S.;T. Kumamaru,; A. Hamid and H. Satoh. 2003. Diversity of grain quality characters in Bangladesh rice germplasm. Khulna University Studies. 5: 71-77.
- Khatun, R. 2001. Effect of variety and nitrogen on the performance of fine rice. M.Sc. Thesis, Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh. pp 93.
- Quayum, M. A.; Mustafi, B. A. A. and Baset, M. A. 1996. Ecinomics of irrigated rice cultivation in selected areas of Bangladesh. *Bangladesh Journal* of Agriculture Res. 21 (1): 89-98.

- Ramasany, S.; Chandrasekaran, B. and Sankaran, S. 1987. Effect of spacing and seedlings hill⁻¹on rice yield. International Rice Research Newsletter, IRRI, Philippines, 12(4): 49.
- Singh, S. and Gangwer, B. 1989. Comparative studies on production potentials in transitional tall and improved rice cultivars. *Journal of Andaman Science Association.* 5(1): 81-82.
- Singh, R.K.; Gautam, P.L.; Saxena, S. and Singh, S. 2000. Scented rice germplasm: conservation, evaluation and utilization. *In* Singh, R. K.; Singh, U. S. and Khush, G. S. (eds.), *Aromatic rices*. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi and Calcutta, India. pp.109.
- Sohel, M. A. T., Siddique, M. A. B., Asaduzzaman, M., Alam, M. N. and. Karim, M. M. 2009. Varietal performance of transplant aman rice under differnt hill densities. *Bangladesh Journal* of Agriculture Res. 34(1): 33-39.