
 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

269

Improvement of a Weak RFID Authentication Protocol Making Drug Administration Insecure

Mehmet Hilal Özcanhan

Department of Computer Engineering, Tinaztepe Campus, Dokuz Eylul University, Buca-Kaynaklar, Izmir 35160,
Turkey

hozcanhan@cs.deu.edu.tr

Abstract: Many RFID authentication protocols have been proposed for safe drug administration. Unfortunately,
many of the proposed protocols have security weaknesses that put the safety and/or privacy of inpatients into
danger. A recent protocol is analyzed in this work, which proves to be another such example. The secrets of the
inpatient tag are exposed by software and a table created by the present author. The protocol is security upgraded to
meet the patient safety expectations, by using lightweight cryptography instead of the hash function of the analyzed
protocol. The proposed protocol is complemented by server control mechanisms. Performance and security
comparisons show that the present proposal truly guarantees patient safety and has better performance results than
its predecessor.
[Mehmet Hilal Özcanhan. Improvement of a Weak RFID Authentication Protocol Making Drug

Administration Insecure. Life Sci J 2014;11(10):269-276]. (ISSN:1097-8135). http://www.lifesciencesite.com. 38

Keywords: RFID; authentication; security; cryptographic protocols; medical applications; healthcare services

1. Introduction
The use of mobile devices and radio

frequency identification (RFID) technologies in
healthcare services is gaining momentum (Wamba,
2012), (Yao et al., 2012). The aim is to facilitate the
healthcare services and face off the negative
statistical reports. According to reports, adverse drug
events (ADE) due to wrong drug administration are
increasing. ADE are harming inpatients and
prolonging hospital stays, resulting in loss of human
life, health and money (Hickner et al., 2010),
(Eurobarometer, 2006). Researchers are trying to
solve the problem through RFID aided drug
administration protocols.

Observing the success of RFID in tracking
commercial goods, many protocols have been
proposed to solve the ADE problem with the same
RFID material and methods (Wamba, 2012). The
goal is to identify and match patients with their
drugs, by using low-cost RFID tags. But, the gap
between providing the required patient safety put
forward in the National Patient Safety Goals (Joint
Commission, 2009) and the limited resources of low
cost tags is huge. The result of the proposals can be
revealed by making a small search in the well-known
academic indices. Simply, the number of security
attacks made on the proposed low-cost RFID
protocols almost equals the number of proposals.

The use of RFID enabled mobile devices in
healthcare has been described in different works
(Wamba, 2012), (Yao et al., 2012), (Özcanhan et al.,
2013), (Lathela et al. 2008). Although in 2013, EPC
Global GS1 defined version 2 of the well-known
EPC Global Class 1 Generation 2 Standard (Gen-2)
for low cost tags, there is no standard for healthcare

RFID systems. Therefore, it is necessary to at least
identify the mandatory security characteristics of
RFID aided drug administration protocols, so that use
of low cost tags without true confidentiality functions
is abandoned.

2. Related Work

Two pioneering works recommending RFID
tags in drug administration have been presented in
works (Wu et al., 2005) and (Sun et al., 2008). But,
they lack detailed description, propose the use of
paper barcodes on medicine packets and personal
computers as mobile devices. But, barcodes have
limited capabilities and disadvantages in patient
safety (Chen and Wu, 2012) and personal computers
are not mobile. A proposal that identifies both the
inpatient’s drug and the inpatient using Gen-2 tags
was made in work (Huang and Ku, 2009). The
security flaws of the proposal however are
demonstrated and corrected in work (Chien et al.,
2011), which turns out to be also vulnerable
according to another work (Yen et al., 2012).

There are numerous works using XOR (⊕),
pseudo-random number generator (PRNG) and cyclic
redundancy check (CRC) functions – the only
available in old Gen-2 version tags. But, it has been
shown that these functions do not provide good
confidentiality as well as cryptographic functions
(Özcanhan et al., 2013), (Van Deursen and
Radomirovic, 2009). Hence, protocols based on them
demonstrate vulnerabilities. A recent protocol using a
non-standard function is presented in (Kaul et al.
2013). The protocol; named Kea for short, is shown
in Figure 1. Briefly, Kea accepts hashing as
lightweight and uses it with the PRNG and XOR.

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

270

Figure 1. The analyzed Kea Protocol.

The protocol has three phases. In

Initialization Phase, the server and the tag are loaded
with an ordered ‘secret-identity’ pair (KInpi, Inpi),
each of bit length llll. No secret is shared with the
reader. In the Authentication Phase, the reader
generates and sends a pseudo random number
(nonce) rR to the tag. The tag generates its nonce rInpi,
hides it in mInpi_1 and then prepares its authenticator
mInpi_2; by using an unfounded timestamp T. The tag
sends {mInpi_1, mInpi_2, T} to the reader. The reader
checks the timestamp and then sends {rR, mInpi_1,
mInpi_2, T′} to the server. T′ is reader’s timestamp
which is validated by the server. Trying (KInpi, Inpi)
pairs in its database one by one, the server computes
values for r*

Inpi and m*
Inpi_2 to look for a match

between the received mInpi_2 and computed m*
Inpi_2.

The match decides the identity of the tag. A counter
limits the number of server’s matching attempts.

Next, the server computes and sends its
authenticator mS, proving the possession of the
nonces and the shared secret pair. Finally, the secrets
are updated without waiting for an acknowledgement

(ack) from the tag. The old secret pair values are
preserved, in case message 5 does not reach the tag.
The reader relays mS to the tag, who computes its
own m*

S version and compares it with the received
mS. A match means successful mutual authentication
and the tag goes into its own Update Phase. A tag
counter is briefly mentioned, but not described.

Kea is declared as resistant to known RFID
attacks, but our crypt-analysis demonstrates inherent
weaknesses leading to the conclusion that the
proposed protocol is insecure.

3. Security Analysis of Kea Protocol

The following are given in Kea’s paper:
1. The bit length of Kea is llll ; i.e. Inpi ∈ {0,1}llll, KInpi

∈ {0,1}llll, rInpi∈{0,1} llll, rR∈{0,1} llll.
2. h() is a one way hash function such that h(x) �

{0,1} llll is relatively easy to compute for any x
�{0,1}*, and for any x it is computationally
infeasible to find z ≠ x such that h(z) = h(x).

3. InpiRInpiInpi rrKhm ⊕⊕=)(1_ (1)

Inpatient (Inp)

2: Request, rR

3: mInpi_1,mInpi_2,T

4: rR, mInpi_1, mInpi_2, T'

5: mS

Inpi, KInpi

1: Request

Reader (R)

mInpi_1 = h(KInpi ⊕ rR) ⊕ rInpi

mInpi_2 = h(Inpi || rR || rInpi || KInpi || T)

Server (S)

Generate: rR

Generate: rInpi

r
*

Inpi = h(KInpi ⊕ rR) ⊕ mInpi_1

While (1 ≤ i ≤ n AND m
*

Inpi_2 <>mInpi_2) {

m
*

Inpi_2 = h(Inpi || rR || rInpi || KInpi || T'')

CounterInpi = 0

 else ++CounterInpi, RESTART

mS = h(Inpi ⊕ rR⊕rInpi ⊕ KInpi)

6: mS

m
*

S = h(Inpi ⊕ rR⊕rInpi ⊕KInpi)

Check m
*

S ?= mS ☺

Check m
*

S ?= mS �

Inp
new

i = h(Inpi ⊕ rR ⊕ rInpi),

K
new

Inpi = h(KInpi || rR || rInpi),

Inp
new

i = h(Inpi ⊕ rR ⊕ rInpi)

K
new

Inpi = h(KInpi || rR || rInpi)

Inpi Inp
new

i

KInpi K
new

Inpi

Store: Inp
new

i , K
new

Inpi

Fail: HALT

While (track old values) {

KInpi, Inpi, K
new

Inpi, Inp
new

i

Verification: (T'-T) ≤ δT √

Verification: (T''-T') ≤ δT' √

Inpi Index pseudonym of the i
th

 inpatient wristband

KInpi Shared secret key of Inpi

T, T′, T′′ Timestamp generated by the tag, reader and the server

rR , rInpi Pseudo random number generated by reader and tag Inpi

h() A one way hash function

 x
th

 (x=1,2) message generated by tag Inpi

ms Message generated by server
⊕ XOR function
n Number of tags within the range of the reader

If m
*

Inpi_2 == mInpi_2

mInpi_x

}}

then CounterInpi=0

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

271

4.)(InpiInpiRiS KrrInphm ⊕⊕⊕= (2)

Thus, the following can be deduced:
1. ⊕ operation on parameters rInpi, rR, Inpi, KInpi

also give llll bit results.
2. h() is deterministic such that for any x, both the

reader and the tag calculate the same h(x). Since
h() is public, a table Th() of 2llll records can be
prepared, as in Table 1.

Table 1. Deterministic table Th()

x h(x) h(῀x) Q=h(x) ⊕ h(῀x)
In1 Out1 Out23 OutXOR1
In2 Out2 …. OutXOR2
In3 Out3 …. OutXOR3
…. …. …. ….
In65,536 Out65,536 Out1 OutXOR65,536

DoS Attack

Denial of Service (DoS) attack is possible
both on the server and the tag of Kea. Consider the
computations after the reader sends message 4 to the
server. The server first computes r*

Inpi, then m*
Inpi_2

and compares m*
Inpi_2 with the received mInpi_2. The

server repeats this computation cycle for all tag
records in its database, until it finds a valid match.
Therefore, the possible maximum number of
computations is n × (two XOR, four concatenation,
two hash operations). If the received mInpi_2 is bogus
of an adversary, the match fails and another session is
started. Assuming the server counts up to j wrong
attempts, [(n + j) × (two XOR, four concatenations,
two hash operations)] computations have to be made.
If n + j values are high enough, the server’s reply to
tag cannot reach before a tag timeout.

The second weakness is when the server
assumes a completed authentication after sending mS;
computing a new secret pair and keeping the old. But
the tag does not update, if mS is altered or blocked on
the way. A server command sent after authentication
is denied by the tag and a new authentication is
necessary with the saved old secrets. Message mS can
be blocked repeatedly; therefore a second counter is
required to count the number of authentication
attempts, but it is missing. But, every failed mS
matching forces the tag to increment its own counter.
After a few consecutive failed attempts the tag halts
the protocol, but the server is unaware and falls out of
sync with the tag and the DoS attack succeeds.
Full-disclosure Attack

Let for the ith session mInpi_1 and mS be
denoted as mi

Inp_1 and mi
S, respectively. Assuming an

adversary plays r1
R = 0000H to the tag with a

dishonest reader in session 1, from Figure 1:
11

1_)(InpiInpiInpi rKhm ⊕= (3)

))((11
InpiInpiiS rKInphm ⊕⊕= (4)

The adversary blocks m1
S to the tag and plays r2

R =
FFFFH to the tag, in session 2:

22
1_)(~

InpiInpiInpi
rKhm ⊕= (5)

))((~ 22
InpiInpiiS

rKInphm ⊕⊕= (6)

Although the server updates Inpi and KInpi after each
unsuccessful session, the tag does not. Therefore Inpi
and KInpi are the same in the two sessions. From (3):

11
1_)(InpiInpiInpi rmKh ⊕= (7)

Let the value of m1
S in (4) to be Out3, in Table 1. A

search is made in the h(x) column until Out3 is found.
Let the corresponding input value be In3. From (4):

))(1
3 InpiInpii rKInpIn ⊕⊕= (8)

Substituting the value of r1
Inpi in (8), into (7):

3
1

1_)()(InKInpmKh InpiiInpiInpi ⊕⊕⊕= (9)

Repeating the same argument above for (5) and (6):
22

1_)(~
InpiInpiInpi

rmKh ⊕= (10)
2

2)(~ InpiInpii rKInpIn ⊕⊕= (11)

Substituting the value of r2
Inpi in (11) into (10):

2
2

1_)(~)(~ InKInpmKh
InpiiInpiInpi

⊕⊕⊕= (12)

Now, XORing (9) with (12) and simplifying:

2
2

1_3
1

1_~)(~)(InmInmKhKh InpiInpiInpiInpi ⊕⊕⊕=⊕ (13)

Because (Inpi⊕KInpi)⊕῀(Inpi⊕KInpi)=FFFFH. Hence,
h(KInpi)⊕h(῀KInpi) is a value that can be found from
exchanged values (13). For simplicity replacing
῀m1

Inpi_1⊕In3⊕m2
Inpi_1⊕In2 with notation Q:

QKhKh InpiInpi =⊕)(~)((14)

From Table 1, the rows which satisfy Q are
found. The corresponding x =KInpi, h(KInpi) and
h(῀KInpi) values are obtained. Substituting in (3) and
(5), r1

Inpi, r
2

Inpi values are obtained. Finally from (8)
Inpi is obtained. Timestamps are passed in plain text,
therefore T and T' are available. Substituting the
obtained values in the calculated m*

Inpi_2 =
h(Inpi||rR||rInpi||KInpi||T) and checking with transmitted
mInpi_2; the case where m*

Inpi_2 = mInpi_2 holds, the Inpi
and KInpi values are correct. Hence, the secrets are
captured. The capture of the secrets is devastating
because this vulnerability can be exploited for
malicious intentions.

The above algebraic attack has been
simulated by software available from the author
through e-mail, which is run offline after
eavesdropping on two consecutive sessions. Random
values for Inpi, KInpi and nonce rInpi are assumed and
Table 2 is prepared for llll = 16 and 32. The two tables
have 65,536 and 4,294,967,296 records; and are
sorted, based on [h(KInpi)⊕h(῀KInpi)] values.

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

272

Table 2. 16 and 32 bit simulation results
Run # Inpi KInpi rInpi Av. time

(ms)
1, l = 16 39017 17767 9158 1.02
2, l = 16 23807 18547 56401 1.00

3, l = 16 55199 29283 49715 1.10

4, l = 16 55211 31949 22714 1.12

5, l = 16 43491 16882 7931 0.97

6, l = 32 3959529863 26500 1245719430 9864
7, l = 32 4016134551 24464 2426312360 9921

8, l = 32 616919038 491 2189695706 19720

9, l = 32 3220908140 14604 3221546860 19703

10, l = 32 2755712171 23281 33640809 4911

The software searches Table 1 and for a Q

value found, the corresponding x = KInpi, h(KInpi) and
h(῀KInpi) values are read. The obtained values are
substituted to test the match m*

Inpi_2 ?= mInpi_2. The
match exposes the secrets. Table 2 shows the results
of 5 simulation sessions each, for llll = 16 and 32. Full-
disclosure of secrets takes on the average 1.04 ms for
llll = 16 and 12.82 sec. for llll = 32. In llll = 32, the number
of Q value candidates is very high and accordingly
the secret capture time is around 13 seconds.
Nevertheless, the attack is feasible. The equipment
used is an Intel i-7 quad core notebook with
Microsoft Windows 7 operating system.

4. Proposed protocol – SC-SRP

Weak encryption and lack of multiple
counters led to the demonstrated Kea vulnerabilities.
Therefore, the main goal should be to design a secure
protocol which truly guarantees patient safety. This is
the main motivation behind the proposed Server
Complemented Secure RFID Protocol (SC-SRP) in
Figure 2, which uses the new version Gen-2
standard’s support for cryptographic functions.
Assumptions and the notation of SC-SRP

The assumptions of Kea have been
preserved. Hence, the reader – server channel is
secure, but the tag – reader air channel is not. The
reader can be dishonest which can be used to block or
interfere with the exchanged messages. The same
notation of Kea is used, but the hash is replaced by a
lightweight cryptographic function; like KLEIN
(Gong et al., 2012) or LED (Guo et al., 2011), in
accordance with Gen-2 ver2. The tag EPC (IDi),
shared secrets and timestamps are 64 bit. The PRNG
produces 32 bit nonces, which can be used to produce
64 bit values by concatenating two nonces.
The proposed protocol

SC-SRP has three major differences than
Kea. First, there is an additional 4th step; second, a
lightweight encryption function is used; and third
there are two counters for each tag in the server
database (Table 3). The tag record also contains a
static IDi, a dynamic index pseudonym Inpi, a shared

secret KInpi and three previous secret values, notated
by superscripts. The initial values loaded on each side
are shown under the parties (Figure 2). No secrets are
shared with the reader.
The Request Phase– The server provides timestamp
T to the reader, because passive tags cannot. The
reader acts as a mediator, generates its message
freshness nonce rR and sends it to the tag with T.
Sending T provides security and removes the need
for time synchronization.
Tag Response Phase– The energized tag generates a
nonce rInpi to use with rR and T, in formulating its
replies. A key (KInpi⊕T) is formed to encrypt KInpi
and then XOR it with the concatenated nonces to hide
rInpi, in mInpi_1. Then mInpi_2 is prepared to pass Inpi
and prove the reception of T.
Tag Verification and Server Secret Update Phase–
The reader first validates the time of the tag response.
If response delay is within limits, the tag messages
are passed on to the server, with the reader timestamp
T' and rR. The server checks both time delays. Then,
the server tries each value of KInpi in the database to
compute a tag nonce r*Inpi. Using the computed nonce
value, authenticator m*Inpi_2 is calculated and
compared to the received mInpi_2. A match identifies
the tag’s record shown in Table 3. If a match is not
found, the server increments counter CInpi_1. If the
counter has reached the threshold, an alarm is raised
to announce a possible DoS attack or the presence of
a non-classified tag; the tag is placed in the blacklist.
Before continuing the authentication of the identified
tag, the server increments counter CInpi_2. If the
threshold has been reached, an alarm is raised to
indicate that this tag has been identified three times
before, but its previous authentications have not
finished correctly; the tag is put into the blacklist. If
no alarms are raised, the server updates and ensures
that the new secret Knew1

Inpi is nonzero and not equal
to other tag secrets (no collision). Normally, update
continues with Inpnew1

i computation and now K0
Inpi =

Knew1
Inpi and Inp0

i=Inpnew1
i; K

-1
Inpi = KInpi and Inp-1

i =
Inpi as shown in Table 3. Next, authenticator mS_1 is
computed to prove that server has IDi and the
dynamic (Inpi, KInpi) pair of the tag.

In the Update Phase, the new values are
obtained by encrypting the old secrets XORed with
nonces, using a dynamic key obtained from IDi,
concatenated nonces and T. Hence, the update
depends on both sides’ parameters and the unique
IDi. If the server does not receive the ack message 8
from the identified tag, it keeps the pairs (Inp0

i,
K0

Inpi), (Inp-1
i, K

-1
Inpi) and the CInpi_2 value.

Server Verification and Tag Secret Update Phase–
The reader simply relays the authenticator mS_1 to the
tag. The tag computes a new key for encryption to
find its version m*

S_1. If the computed and the

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

273

Figure 2. Proposed protocol:SC-SRP.

received authenticators match, mutual authentication
of the parties is complete. Then, the tag computes,
sends its ack mInpi_3 and updates its secrets. The
reader simply relays the ack.
The Tag Update Acknowledgement Phase– After
receiving the tag’s ack, the server confirms tag
update. Only then the server resets CInpi_2 and
initializes the record of the tag to the 1st row of Table
3. Notice that if a tag ack is not received the new
session starts with the old the secret pair (Inp-1

i =
Inpi, K

-1
Inpi = KInpi). If another tag ack fails, the record

of the tag is the 2nd session row of Table 3. After
three consecutive failed tag acks, CInpi_2 overflows
and the tag is placed on the blacklist. But, the oldest
values (K-3

Inpi = KInpi and Inp-3
i = Inpi) are not flushed

out of the tag’s record. Hence, there is no risk of
losing the tag. The tag can be re-admitted into the
whitelist, after administrator intervention.

5. Comparison and evaluation of protocols

The proposed SC-SRP’s performance and
security are compared with Kea’s. The security
analysis covers the attacks launched on Kea in this

work and the known RFID attacks. But first, two
apparent and critical design errors of Kea need to be
pointed out. The tag of Kea supposedly produces a
timestamp T. But passive tags do not have a power
source to supply continuous energy for a timer.
Secondly, T is not passed to the server by the reader
(Figure 1). As a result, the server can not verify
mInpi_2. Omission of T cannot be a typing mistake,
because verification of T by the server is also
missing. T’s failure to reach the server opens the
avenue to suppress-replay attack (Gong, 1992). Thus,
T has to reach the server to despair any dishonest
reader. SC-SRP does not have these ambiguities.
Performance analysis of SC-SRP

The chip area requirement of a hardware
implementation is measured in µm2, which is
dependent on the fabrication technology. In order to
compare the area requirements independently, a
measurement called gate equivalents (GE) –
hardware complexity– is used (Paar et al., 2009). One
GE is equivalent to the area which is required by a
two-input NAND gate; i.e. GE is derived by dividing
the area in µm2 by the area of a two-input

Table 3. Each tag’s record in the database

Session K0
Inpi Inp0

i K-1
Inpi Inp-1

i K-2
Inpi Inp-2

i K-3
Inpi Inp-3

i CInpi_1 CInpi_2 EPC

0 KInpi Inpi - - - - - - X 0 IDi
1 Knew1

Inpi Inpnew1
i KInpi Inpi - - - - X 1 IDi

2 Knew2
Inpi Inpnew2

i Knew1
Inpi Inpnew1

i KInpi Inpi - - X 2 IDi
3 Knew3

Inpi Inpnew3
i Knew2

Inpi Inpnew2
i Knew1

Inpi Inpnew1
i KInpi Inpi X 3 IDi

E(data, K): Encryption function that encrypts data using key K.

Inpatient (Inp)

2: Request, rR,T

3: mInpi_1,mInpi_2 Verification:

(T’-T) ≤ δT’ √
4: rR, mInpi_1, mInpi_2, T’

5: mS_1

Inpi, KInpi, IDi

1: T

Reader (R)

then CInpi_1 = 0

mInpi_2 = E[(Inpi ⊕T), KInpi⊕(rInpi||rR)]

Server (S)

Generate: rR

Generate: rInpi

r
*

Inpi || rR = E(KInpi , KInpi⊕T) ⊕ mInpi_1

m
*

Inpi_2 = E[(Inpi ⊕T), KInpi⊕(rInpi||rR)] }}

If m
*

Inpi_2 == mInpi_2

6: mS_1

else

If m
*
S_1 != mS_1 then

Inp
new1

i = E[Inpi ⊕ (rR || rInpi), IDi⊕(rInpi||rR)⊕T]

K
new1

Inpi = E[KInpi ⊕ (rR || rInpi),IDi⊕(rInpi||rR)⊕T]

, Inpi ← Inp
new1

i
KInpi ← K

new1
Inpi

Update DB

else ++CInpi_1, if CInpi_1 > 3 ALARM!

mS_1 = E[(Inpi ⊕ KInpi), IDi⊕(rInpi||rR)⊕T]

m*Inp_3 = E[(Inpi ⊕ KInpi⊕ T), ID i⊕(rInpi||rR)⊕T]

Verification: (T’’-T’) ≤ δT’’ √ Verification: (T’’-T) ≤ δT’’’ √

CInpi_2 = 0

7: mInpi_3

++CInpi_2, if CInpi_2 > 2 ALARM! Blacklist

else

If m
*

Inpi_3 == mInpi_3 then

m*S_1 = E[(Inpi ⊕ KInpi), IDi⊕(rInpi||rR)⊕T]

mInp_3 = E[(Inpi ⊕ KInpi⊕ T), IDi⊕(rInpi||rR)⊕T]

Initialize DB

mInpi_1 = E(KInpi , KInpi⊕T)⊕(rInpi || rR)

8: mInpi_3

CInpi_2 value kept.If no message 8, time out,

Inpi, KInpi, Inp
-1

i, K
-1

Inpi, Inp
-2

i, K
-2

Inpi, Inp
-3

i, K
-3

Inpi, IDi, CInpi_1 = 0, CInpi_2 = 0.

CInpi_2 value kept.

Inp
new1

i = E[(Inpi ⊕ (rR || rInpi), ID i⊕(rInpi||rR)⊕T]

K
new1

Inpi = E[KInpi ⊕ (rR || rInpi), IDi⊕(rInpi||rR)⊕T]

New Round

New Round

While (1 ≤ i ≤ n AND m
*

Inpi_2 <>mInpi_2) {
While (track old values) {

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

274

NAND gate. Using this method, the GE for each gate
and flip flop; hence, the total GE of the registers and
functions of a theoretical scheme can be estimated.

Table 4 covers the GEs and clock cycles
spent for encrypting one block of data, by some
popular hashing and encryption functions. The
product of the GE and clock cycles is accepted as a
measure of computational complexity (Feldhofer and
Wolker, 2009). A lightweight implementation of the
NIST’s SHA-3 contest winner Keccak spends 900
clocks and uses 2520 GE (Kavun and Yalçin, 2010).
Thus, Keccak’s computational complexity is over 2.2
million GE-clocks. The hash functions are known to
have larger computational complexity values than
encryption functions (Feldhofer and Wolkerstorfer,
2009). A lightweight implementation of the popular
AES function (Moradi et al., 2011) has four times
less computational complexity than Keccak (Kavun
and Yalçin, 2010). However, the lightweight KLEIN
encryption function has the lowest complexity with
252,540 GE-clocks; almost nine times less than
Keccak. It is clear that KLEIN based SC-SRP
consumes less die area and spends less number of
clocks than Kea. From Table 4, lightweight
encryption functions (Gong et al., 2012), (Guo et al.,
2011), (Moradi et al.,2011) all appear to have less
computational complexities than Kea.

Table 4. Gate Equivalents (GE) and Clock Cycles
used by the compared algorithms

Algorithm
Encryp. Load

(Clock Cycles)

Chip Area

(GE)

Area × Delay

(Complexity)

LED-64 1248 966 1,205,568
KLEIN-64 207 1220 252,540
Light AES 226 2400 542,400

AES 1032 3400 3,508,800
Keccak 900 2520 2,268,000

For a better, direct comparison of SC-SRP

and Kea, Table 5 is given. The server memory used
per tag in SC-SRP is higher. But, additional 4llll and a
counter (total of 9 × 64 + 2 × 8 = 592 bits/tag) is not
a decisive load on a server with giga bytes of primary
and secondary memory. Meanwhile, the only
additional memory that appears to be used on a SC-
SRP tag is llll; which is not critical. Therefore, memory
requirements are not critically different. Another
minor difference is in the total number of exchanged
messages, where SC-SRP transmits only llll additional
bits. But the decisive factors like the total number of
clock cycles taken by the protocol and the maximum
clock cycles of a particular step are very different.

The same functions are used in both
protocols except for encryption, which is denoted as
f() in Table 5. But, that difference results in a big
advantage on SC-SRP’s performance over Kea’s.
Even if 21 total function calls are made; 8 more than

Kea (Table 5’s last row), SC-SRP is still more
efficient. Simply because the hash function of Kea
spends hundreds of more clock cycles. For example,
the total 3 hash calls of Kea requires 3 * 900 = 2700
clock cycles, compared to SC-SRP’s total encryption
calls 4 * 207 = 828 clock cycles. The XOR,
concatenate and PRNG operations spend 2, 1 and 72
clocks (Özcanhan et al., 2013) respectively.

Table 5. Certain characteristic of study sites

Characteristic Protocol

Kea SC-SRP

Architecture 16 bit 32 bit
Server Memory 5 l + 1 counter 9 l + 2 counter
Tag Memory 2 l 3 l

Exchanged Bits 5 l 6 l

Functions used
PRNG, ⊕, ||,

hash
PRNG, ⊕, ||,

encryption
of Calls:

PRNG, ⊕ , ||, f()
1, 5, 4, 3 2, 11, 4, 4

Both SC-SRP and Kea use their encryption

or hashing function maximum twice in one step.
Neglecting the clock cycles of XOR and
concatenation operations, SC-SRP spends 414 and
Kea 1800 clock cycles. Therefore, SC-SRP is more
efficient than Kea both in the overall total and the
maximum per step clock cycles.
Security analysis of SC-SRP

Not only vulnerable, Kea fails to consider
the possibility of collision of shared secrets. But, SC-
SRP avoids collision of secrets or zero value secrets;
and resists known attacks, including those launched
on Kea in this work.
Resistance to DoS Attack– The above demonstrated
or other DoS attacks on the server are resisted by two
counters placed in each tag’s record. After a number
of failed authentications or ack receptions, alarm
generation through counters CInpi_1, CInpi_2 and
blacklist relegation stop the attack. DoS attack on the
tag cannot succeed either, because tag drops an
exchange if mS_1 matching fails. Therefore, SC-SRP
is more secure than Kea, against DoS attacks.
Resistance to De-synchronization Attack– The
second counter CInpi_2 in the record for each tag
dissolves any de-synchronization attack. A tag is
placed in blacklist after three consecutive failed acks.
The counter’s maximum value is such that originally
shared (KInpi, Inpi) pair is never flushed from the tag
record, shown as row 3 of Table 3. Therefore, a
blacklisted tag can be promoted back to whitelist
after administrator intervention. Thus, the tag is not
lost and medication can proceed.
Resistance to Full Disclosure or Cloning Attack–
SC-SRP employs a 64 bit encryption algorithm
supported with dynamic keys. Therefore, the secret

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

275

values Inpi, KInpi and IDi are secure until KLEIN is
fully analyzed. Without capturing the secrets of
exchanged messages, tag cloning is not possible.
Cloning through physical tampering of low cost tags
is outside the scope of this work. The pre-calculated
table attack of Section 3 fails because of two reasons.
Firstly, the table length is now 264, therefore the table
search used to attack Kea is infeasible. Secondly, the
keys of encryption operations are changed even
within a single session. Therefore, the brute force
attacks launched at exposing a constant encryption
key by ciphertext-only attacks cannot be used on SC-
SRP. Hence, SC-SRP is more secure than Kea
against full disclosure attacks.
Resistance to Man in the Middle Attack– This attack
cannot succeed in SC-SRP because the man in the
middle cannot conclude an authentication with either
the tag, or the server. With the secrets encrypted and
unknown to the adversary mInpi_1, mInpi_2, mS_1 and the
acknowledgement mInpi_3 cannot be fabricated.
Therefore, attacks of any adversary playing in the
middle fail.
Resistance to Traceability Attack– Tracing the tag in
SC-SRP is not possible because index pseudonym
Inpi is updated at the end of every successful
authentication. The new Inpi is obtained through
encryption of the old value, obscured with the
exchanged nonces and with a dynamic key dependent
on the IDi, nonces and the server timestamp T. The
tag placed into a blacklist is not traceable either,
because it is removed from use.
Resistance to Replay and Parallel Session Attacks–
These attacks are resisted by the use of the two
nonces and the server timestamp T, which is absent
in Kea. The server provides T to prevent replay of old
successful session values. Also, the use of both
generated nonces provides mutual message freshness.
In SC-SRP, a parallel attack is not possible either,
because of the (KInpi, Inpi) and T timestamp bonding.
Resistance to Impersonation Attack– Neither the tag,
nor the server can be impersonated because their
authentication steps cannot be formulated by an
adversary. The secrets cannot be decrypted because
they are dynamically encrypted with keys depending
on the nonces and the server timestamp T. Therefore,
even if the exchanged messages are collected, they
cannot be used to fabricate the authenticators and
impersonate a party.

Conclusion
A recent healthcare RFID authentication

protocol which proposes keeping time on passive tags
and one way hashing for creating authenticators has
been analyzed. Analyses reveal that the Kea protocol
is erroneous and vulnerable to multiple attacks. With
a generic table and software created by the present

author; the secrets of the used tags are fully-exposed,
which makes Kea’s drug administration insecure. An
alternative protocol SC-SRP complying with the new
standard version of Gen-2 has been presented. SC-
SRP uses lightweight cryptography complemented by
database server control mechanisms. In addition, SC-
SRP achieves encryption with varying keys, instead
of a static key. Comparison shows that SC-SRP has
overall better performance and higher security than
its predecessor. Therefore, SC-SRP is a better tool for
RFID aided ubiquitous hospital applications, based
on low cost tags. Supported by standards, lightweight
cryptography can be the mandatory confidentiality
algorithm for healthcare RFID protocols.

Corresponding Author:
Dr. Mehmet Hilal Özcanhan
Department of Computer Engineering
Tinaztepe Campus, Dokuz Eylul University
Buca-Kaynaklar, Izmir 35160, Turkey
E-mail: hozcanhan@cs.deu.edu.tr

References
1. Wamba SF. RFID-enabled health care

applications, issues and benefits: An archival
analysis (1997–2011). Journal of Medical
Systems 2012;36(6):3393-3398.

2. Yao W, Chao HC, Zang L. The adoption and
implementation of RFID technologies in health
care: a literature review. Journal of Medical
Systems 2012;36(6):3507-3525.

3. Hickner J, Zafar A, Kuo GM, Fagnan LJ,
Forjuoh SN, Knox LM, Tierney WM. Field Test
Results of a New Ambulatory Care Medication
Error and Adverse Drug Event Reporting
System—MEADERS. The Annals of Family
Medicine 2010;8(6):517-525.

4. Special Eurobarometer 241. Medical errors.
Wave 64.1 & 64.3. TNS Opinion and Social.
European Commission, Jan. 2006.

5. Joint Commission on Accreditation of Health
care Organizations. Approved: 2010 National
Patient Safety Goals (NPSGs). Joint
Commission Perspectives 2009;29(10).

6. Özcanhan MH, Dalkılıç G, Utku S. Is NFC a
Better Option Instead of EPC Gen-2 in Safe
Medication of Inpatients. Radio Frequency
Identification 2013;(8262):19-33.

7. Lathela A, Hassinen M, Jylha V. RFID and
NFC in Health care: Safety of Hospitals
Medication Care. Proceedings International
Conference on Pervasive Computing
Technologies for Healthcare. IEEE 2008;241-
244.

8. Wu F, Kuo F, Liu LW. The application of RFID
on drug safety of inpatient nursing health care.

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

276

Proceedings 7th International Conference on
Electronic Commerce. ACM 2005;85–92.

9. Sun PR, Wang BH, Wu F. A new method to
guard inpatient medication safety by the
implementation of RFID. Journal of Medical
Systems 2008;32(4):327–332.

10. Chen CL, Wu CY. Using RFID yoking proof
protocol to enhance inpatient medication safety.
Journal of Medical Systems 2012;36(5):2849-
2864.

11. Huang HH, Ku CY. A RFID grouping proof
protocol for medication safety of inpatient.
Journal of Medical Systems 2009;33(6):467-
474.

12. Chien HY, Yang CC, Wu TC, Lee Cf. Two
RFID-based solutions to enhance inpatient
medication safety. Journal of Medical Systems
2011;35(3):369-375.

13. Yen YC, Lo NW, Wu TC. Two RFID-Based
Solutions for Secure Inpatient Medication
Administration. Journal of Medical Systems
2012;36(5):2769-2778.

14. Van Deursen T, Radomirović S. Algebraic
attacks on RFID protocols. Information Security
Theory and Practice. Smart Devices, Pervasive
Systems, and Ubiquitous Networks. Springer
2009;5746:38-51.

15. Kaul SD, Awasthi AK. RFID authentication
protocol to enhance patient medication safety.
Journal of Medical Systems 2013;37(6):1-6.

16. Gong Z, Nikova S, Law YW. KLEIN: a new
family of lightweight block ciphers. RFID
Security and Privacy. Springer 2012;7055:1-18.

17. Guo J, Peyrin T, Poschmann A, Robshaw M.
The LED block cipher. Cryptographic Hardware
and Embedded Systems–CHES 2011. Springer
2011;6917:326-341.

18. Gong L. A security risk of depending on
synchronized clocks. ACM SIGOPS Operating
Systems Review 1992;26(1):49-53.

19. Paar C, Poschmann A, Robshaw MBJ. New
designs in lightweight symmetric encryption.
RFID Security. Springer 2009;349-371.

20. Feldhofer M, Wolkerstorfer J. Hardware
implementation of symmetric algorithms for
RFID security. RFID Security. Springer
2009;373-415.

21. Kavun EB, Yalçın T. A lightweight
implementation of Keccak hash function for
radio-frequency identification applications.
Radio Frequency Identification. Springer
2010;258-269.

22. Moradi A, Poschmann A, Ling S, Paar C.
Pushing the limits: a very compact and a
threshold implementation of AES. Advances in
Cryptology–EUROCRYPT 2011. Springer
2011;6632:69-88.

23. Özcanhan MH, Dalkılıç G, Gürle MC. An ultra-
Light PRNG for RFID tags. Computer and
Information Sciences III. Springer 2013;231-
238.

6/6/2014

