
 Life Science Journal 2014;11(10)       http://www.lifesciencesite.com 

 

269 

Improvement of a Weak RFID Authentication Protocol Making Drug Administration Insecure 
 

Mehmet Hilal Özcanhan 
 

Department of Computer Engineering, Tinaztepe Campus, Dokuz Eylul University, Buca-Kaynaklar, Izmir 35160, 
Turkey 

hozcanhan@cs.deu.edu.tr 
 
Abstract: Many RFID authentication protocols have been proposed for safe drug administration. Unfortunately, 
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comparisons show that the present proposal truly guarantees patient safety and has better performance results than 
its predecessor.  
[Mehmet Hilal Özcanhan. Improvement of a Weak RFID Authentication Protocol Making Drug 

Administration Insecure. Life Sci J 2014;11(10):269-276]. (ISSN:1097-8135). http://www.lifesciencesite.com. 38 
 
Keywords: RFID; authentication; security; cryptographic protocols; medical applications; healthcare services 
 

1. Introduction 
The use of mobile devices and radio 

frequency identification (RFID) technologies in 
healthcare services is gaining momentum (Wamba, 
2012), (Yao et al., 2012). The aim is to facilitate the 
healthcare services and face off the negative 
statistical reports. According to reports, adverse drug 
events (ADE) due to wrong drug administration are 
increasing. ADE are harming inpatients and 
prolonging hospital stays, resulting in loss of human 
life, health and money (Hickner et al., 2010), 
(Eurobarometer, 2006). Researchers are trying to 
solve the problem through RFID aided drug 
administration protocols. 

Observing the success of RFID in tracking 
commercial goods, many protocols have been 
proposed to solve the ADE problem with the same 
RFID material and methods (Wamba, 2012). The 
goal is to identify and match patients with their 
drugs, by using low-cost RFID tags. But, the gap 
between providing the required patient safety put 
forward in the National Patient Safety Goals (Joint 
Commission, 2009) and the limited resources of low 
cost tags is huge. The result of the proposals can be 
revealed by making a small search in the well-known 
academic indices. Simply, the number of security 
attacks made on the proposed low-cost RFID 
protocols almost equals the number of proposals. 

The use of RFID enabled mobile devices in 
healthcare has been described in different works 
(Wamba, 2012), (Yao et al., 2012), (Özcanhan et al., 
2013), (Lathela et al. 2008). Although in 2013, EPC 
Global GS1 defined version 2 of the well-known 
EPC Global Class 1 Generation 2 Standard (Gen-2) 
for low cost tags, there is no standard for healthcare 

RFID systems. Therefore, it is necessary to at least 
identify the mandatory security characteristics of 
RFID aided drug administration protocols, so that use 
of low cost tags without true confidentiality functions 
is abandoned. 
 
2. Related Work  

Two pioneering works recommending RFID 
tags in drug administration have been presented in 
works (Wu et al., 2005) and (Sun et al., 2008). But, 
they lack detailed description, propose the use of 
paper barcodes on medicine packets and personal 
computers as mobile devices. But, barcodes have 
limited capabilities and disadvantages in patient 
safety (Chen and Wu, 2012) and personal computers 
are not mobile. A proposal that identifies both the 
inpatient’s drug and the inpatient using Gen-2 tags 
was made in work (Huang and Ku, 2009). The 
security flaws of the proposal however are 
demonstrated and corrected in work (Chien et al., 
2011), which turns out to be also vulnerable 
according to another work (Yen et al., 2012). 

There are numerous works using XOR (⊕), 
pseudo-random number generator (PRNG) and cyclic 
redundancy check (CRC) functions – the only 
available in old Gen-2 version tags. But, it has been 
shown that these functions do not provide good 
confidentiality as well as cryptographic functions 
(Özcanhan et al., 2013), (Van Deursen and 
Radomirovic, 2009). Hence, protocols based on them 
demonstrate vulnerabilities. A recent protocol using a 
non-standard function is presented in (Kaul et al. 
2013). The protocol; named Kea for short, is shown 
in Figure 1. Briefly, Kea accepts hashing as 
lightweight and uses it with the PRNG and XOR.  
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Figure 1. The analyzed Kea Protocol. 
 
The protocol has three phases. In 

Initialization Phase, the server and the tag are loaded 
with an ordered ‘secret-identity’ pair (KInpi, Inpi), 
each of bit length llll. No secret is shared with the 
reader. In the Authentication Phase, the reader 
generates and sends a pseudo random number 
(nonce) rR to the tag. The tag generates its nonce rInpi, 
hides it in mInpi_1 and then prepares its authenticator 
mInpi_2; by using an unfounded timestamp T. The tag 
sends {mInpi_1, mInpi_2, T} to the reader. The reader 
checks the timestamp and then sends {rR, mInpi_1, 
mInpi_2, T′} to the server. T′ is reader’s timestamp 
which is validated by the server. Trying (KInpi, Inpi) 
pairs in its database one by one, the server computes 
values for r*

Inpi and m*
Inpi_2 to look for a match 

between the received mInpi_2 and computed m*
Inpi_2. 

The match decides the identity of the tag. A counter 
limits the number of server’s matching attempts. 

Next, the server computes and sends its 
authenticator mS, proving the possession of the 
nonces and the shared secret pair. Finally, the secrets 
are updated without waiting for an acknowledgement  

(ack) from the tag. The old secret pair values are 
preserved, in case message 5 does not reach the tag. 
The reader relays mS to the tag, who computes its 
own m*

S version and compares it with the received 
mS. A match means successful mutual authentication 
and the tag goes into its own Update Phase. A tag 
counter is briefly mentioned, but not described. 

Kea is declared as resistant to known RFID 
attacks, but our crypt-analysis demonstrates inherent 
weaknesses leading to the conclusion that the 
proposed protocol is insecure. 

 
3. Security Analysis of Kea Protocol  

The following are given in Kea’s paper: 
1. The bit length of Kea is llll    ; i.e. Inpi ∈ {0,1}llll, KInpi 

∈ {0,1}llll, rInpi∈{0,1}    llll, rR∈{0,1}    llll. 
2. h() is a one way hash function such that h(x) � 

{0,1}    llll is relatively easy to compute for any x 
�{0,1}*, and for any x it is computationally 
infeasible to find z ≠ x such that h(z) = h(x). 

3. InpiRInpiInpi rrKhm ⊕⊕= )(1_   (1) 

Inpatient (Inp)

2: Request, rR

3: mInpi_1,mInpi_2,T

4: rR, mInpi_1, mInpi_2, T'

5: mS

Inpi, KInpi

1: Request

Reader (R)

mInpi_1 = h(KInpi ⊕ rR)  ⊕ rInpi

mInpi_2 = h(Inpi || rR || rInpi || KInpi || T)

Server (S)

Generate: rR 

Generate: rInpi

r
*

Inpi = h(KInpi ⊕ rR)  ⊕ mInpi_1

While (1 ≤ i ≤ n AND m
*

Inpi_2 <>mInpi_2) {

m
*

Inpi_2 = h(Inpi || rR || rInpi || KInpi || T'')

CounterInpi = 0

 else ++CounterInpi, RESTART

mS = h(Inpi ⊕ rR⊕rInpi ⊕ KInpi)

6: mS

m
*

S = h(Inpi ⊕ rR⊕rInpi ⊕KInpi)

Check m
*

S ?= mS ☺  

Check m
*

S ?= mS �

Inp
new

i = h(Inpi ⊕ rR  ⊕ rInpi),

K
new

Inpi = h(KInpi  || rR || rInpi),

Inp
new

i = h(Inpi ⊕ rR  ⊕ rInpi)

K
new

Inpi = h(KInpi  || rR || rInpi)

Inpi   Inp
new

i

KInpi  K
new

Inpi

Store: Inp
new

i , K
new

Inpi

Fail: HALT

While (track old values) {

KInpi, Inpi,  K
new

Inpi, Inp
new

i

Verification: (T'-T) ≤ δT √ 

Verification: (T''-T') ≤ δT' √ 

Inpi  Index pseudonym of the i
th

 inpatient wristband  

KInpi  Shared secret key of Inpi  

T, T′, T′′ Timestamp generated by the tag, reader and the server 

rR , rInpi Pseudo random number generated by reader and tag Inpi 

h()  A one way hash function  

  x
th

 (x=1,2) message generated by tag Inpi

ms  Message generated by server  
⊕ XOR function  
n Number of tags within the range of the reader  

If  m
*

Inpi_2 == mInpi_2 

mInpi_x

}}

then CounterInpi=0
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4. )( InpiInpiRiS KrrInphm ⊕⊕⊕=  (2) 

Thus, the following can be deduced: 
1. ⊕ operation on parameters rInpi, rR, Inpi, KInpi 

also give llll bit results. 
2. h() is deterministic such that for any x, both the 

reader and the tag calculate the same h(x). Since 
h() is public, a table Th() of 2llll records can be 
prepared, as in Table 1.  

 
Table 1. Deterministic table Th() 

x h(x) h(῀x) Q=h(x) ⊕ h(῀x) 
In1 Out1 Out23 OutXOR1 
In2 Out2 …. OutXOR2 
In3 Out3 …. OutXOR3 
…. …. …. …. 
In65,536 Out65,536 Out1 OutXOR65,536 

 
DoS Attack 

Denial of Service (DoS) attack is possible 
both on the server and the tag of Kea. Consider the 
computations after the reader sends message 4 to the 
server. The server first computes r*

Inpi, then m*
Inpi_2 

and compares m*
Inpi_2 with the received mInpi_2. The 

server repeats this computation cycle for all tag 
records in its database, until it finds a valid match. 
Therefore, the possible maximum number of 
computations is n × (two XOR, four concatenation, 
two hash operations). If the received mInpi_2 is bogus 
of an adversary, the match fails and another session is 
started. Assuming the server counts up to j wrong 
attempts, [(n + j) × (two XOR, four concatenations, 
two hash operations)] computations have to be made. 
If n + j values are high enough, the server’s reply to 
tag cannot reach before a tag timeout. 

The second weakness is when the server 
assumes a completed authentication after sending mS; 
computing a new secret pair and keeping the old. But 
the tag does not update, if mS is altered or blocked on 
the way. A server command sent after authentication 
is denied by the tag and a new authentication is 
necessary with the saved old secrets. Message mS can 
be blocked repeatedly; therefore a second counter is 
required to count the number of authentication 
attempts, but it is missing. But, every failed mS 
matching forces the tag to increment its own counter. 
After a few consecutive failed attempts the tag halts 
the protocol, but the server is unaware and falls out of 
sync with the tag and the DoS attack succeeds. 
Full-disclosure Attack 

Let for the ith session mInpi_1 and mS be 
denoted as mi

Inp_1 and mi
S, respectively. Assuming an 

adversary plays r1
R = 0000H to the tag with a 

dishonest reader in session 1, from Figure 1:  
11

1_ )( InpiInpiInpi rKhm ⊕=    (3) 

))(( 11
InpiInpiiS rKInphm ⊕⊕=   (4) 

The adversary blocks m1
S to the tag and plays r2

R = 
FFFFH to the tag, in session 2: 

22
1_ )(~

InpiInpiInpi
rKhm ⊕=   (5) 

))((~ 22
InpiInpiiS

rKInphm ⊕⊕=   (6) 

Although the server updates Inpi and KInpi after each 
unsuccessful session, the tag does not. Therefore Inpi 
and KInpi are the same in the two sessions. From (3): 

11
1_)( InpiInpiInpi rmKh ⊕=    (7) 

Let the value of m1
S in (4) to be Out3, in Table 1. A 

search is made in the h(x) column until Out3 is found. 
Let the corresponding input value be In3. From (4): 

))( 1
3 InpiInpii rKInpIn ⊕⊕=   (8) 

Substituting the value of r1
Inpi in (8), into (7): 

3
1

1_ )()( InKInpmKh InpiiInpiInpi ⊕⊕⊕=   (9) 

Repeating the same argument above for (5) and (6): 
22

1_)(~
InpiInpiInpi

rmKh ⊕=    (10) 
2

2 )(~ InpiInpii rKInpIn ⊕⊕=   (11) 

Substituting the value of r2
Inpi in (11) into (10): 

2
2

1_ )(~)(~ InKInpmKh
InpiiInpiInpi

⊕⊕⊕=  (12) 

Now, XORing (9) with (12) and simplifying:  

2
2

1_3
1

1_~)(~)( InmInmKhKh InpiInpiInpiInpi ⊕⊕⊕=⊕  (13) 

Because (Inpi⊕KInpi)⊕῀(Inpi⊕KInpi)=FFFFH. Hence, 
h(KInpi)⊕h(῀KInpi) is a value that can be found from 
exchanged values (13). For simplicity replacing 
῀m1

Inpi_1⊕In3⊕m2
Inpi_1⊕In2 with notation Q: 

QKhKh InpiInpi =⊕ )(~)(    (14) 

From Table 1, the rows which satisfy Q are 
found. The corresponding x =KInpi, h(KInpi) and 
h(῀KInpi) values are obtained. Substituting in (3) and 
(5), r1

Inpi, r
2

Inpi values are obtained. Finally from (8) 
Inpi is obtained. Timestamps are passed in plain text, 
therefore T and T' are available. Substituting the 
obtained values in the calculated m*

Inpi_2 = 
h(Inpi||rR||rInpi||KInpi||T) and checking with transmitted 
mInpi_2; the case where m*

Inpi_2 = mInpi_2 holds, the Inpi 
and KInpi values are correct. Hence, the secrets are 
captured. The capture of the secrets is devastating 
because this vulnerability can be exploited for 
malicious intentions. 

The above algebraic attack has been 
simulated by software available from the author 
through e-mail, which is run offline after 
eavesdropping on two consecutive sessions. Random 
values for Inpi, KInpi and nonce rInpi are assumed and 
Table 2 is prepared for llll = 16 and 32. The two tables 
have 65,536 and 4,294,967,296 records; and are 
sorted, based on [h(KInpi)⊕h(῀KInpi)] values. 
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Table 2. 16 and 32 bit simulation results 
Run # Inpi KInpi rInpi Av. time 

(ms) 
1, l = 16 39017 17767 9158 1.02 
2, l = 16 23807 18547 56401 1.00 

3, l = 16 55199 29283 49715 1.10 

4, l = 16 55211 31949 22714 1.12 

5, l = 16 43491 16882 7931 0.97 

6, l = 32 3959529863 26500 1245719430 9864 
7, l = 32 4016134551 24464 2426312360 9921 

8, l = 32 616919038 491 2189695706 19720 

9, l = 32 3220908140 14604 3221546860 19703 

10, l = 32 2755712171 23281 33640809 4911 

 
The software searches Table 1 and for a Q 

value found, the corresponding x = KInpi, h(KInpi) and 
h(῀KInpi) values are read. The obtained values are 
substituted to test the match m*

Inpi_2 ?= mInpi_2. The 
match exposes the secrets. Table 2 shows the results 
of 5 simulation sessions each, for llll = 16 and 32. Full-
disclosure of secrets takes on the average 1.04 ms for 
llll = 16 and 12.82 sec. for llll = 32. In llll = 32, the number 
of Q value candidates is very high and accordingly 
the secret capture time is around 13 seconds. 
Nevertheless, the attack is feasible. The equipment 
used is an Intel i-7 quad core notebook with 
Microsoft Windows 7 operating system.  

 
4. Proposed protocol – SC-SRP  

Weak encryption and lack of multiple 
counters led to the demonstrated Kea vulnerabilities. 
Therefore, the main goal should be to design a secure 
protocol which truly guarantees patient safety. This is 
the main motivation behind the proposed Server 
Complemented Secure RFID Protocol (SC-SRP) in 
Figure 2, which uses the new version Gen-2 
standard’s support for cryptographic functions. 
Assumptions and the notation of SC-SRP 

The assumptions of Kea have been 
preserved. Hence, the reader – server channel is 
secure, but the tag – reader air channel is not. The 
reader can be dishonest which can be used to block or 
interfere with the exchanged messages. The same 
notation of Kea is used, but the hash is replaced by a 
lightweight cryptographic function; like KLEIN 
(Gong et al., 2012) or LED (Guo et al., 2011), in 
accordance with Gen-2 ver2. The tag EPC (IDi), 
shared secrets and timestamps are 64 bit. The PRNG 
produces 32 bit nonces, which can be used to produce 
64 bit values by concatenating two nonces. 
The proposed protocol 

SC-SRP has three major differences than 
Kea. First, there is an additional 4th step; second, a 
lightweight encryption function is used; and third 
there are two counters for each tag in the server 
database (Table 3). The tag record also contains a 
static IDi, a dynamic index pseudonym Inpi, a shared 

secret KInpi and three previous secret values, notated 
by superscripts. The initial values loaded on each side 
are shown under the parties (Figure 2). No secrets are 
shared with the reader. 
The Request Phase– The server provides timestamp 
T to the reader, because passive tags cannot. The 
reader acts as a mediator, generates its message 
freshness nonce rR and sends it to the tag with T. 
Sending T provides security and removes the need 
for time synchronization.  
Tag Response Phase– The energized tag generates a 
nonce rInpi to use with rR and T, in formulating its 
replies. A key (KInpi⊕T) is formed to encrypt KInpi 
and then XOR it with the concatenated nonces to hide 
rInpi, in mInpi_1. Then mInpi_2 is prepared to pass Inpi 
and prove the reception of T. 
Tag Verification and Server Secret Update Phase– 
The reader first validates the time of the tag response. 
If response delay is within limits, the tag messages 
are passed on to the server, with the reader timestamp 
T' and rR. The server checks both time delays. Then, 
the server tries each value of KInpi in the database to 
compute a tag nonce r*Inpi. Using the computed nonce 
value, authenticator m*Inpi_2 is calculated and 
compared to the received mInpi_2. A match identifies 
the tag’s record shown in Table 3. If a match is not 
found, the server increments counter CInpi_1. If the 
counter has reached the threshold, an alarm is raised 
to announce a possible DoS attack or the presence of 
a non-classified tag; the tag is placed in the blacklist. 
Before continuing the authentication of the identified 
tag, the server increments counter CInpi_2. If the 
threshold has been reached, an alarm is raised to 
indicate that this tag has been identified three times 
before, but its previous authentications have not 
finished correctly; the tag is put into the blacklist. If 
no alarms are raised, the server updates and ensures 
that the new secret Knew1

Inpi is nonzero and not equal 
to other tag secrets (no collision). Normally, update 
continues with Inpnew1

i computation and now K0
Inpi = 

Knew1
Inpi and Inp0

i=Inpnew1
i; K

-1
Inpi = KInpi and Inp-1

i = 
Inpi as shown in Table 3. Next, authenticator mS_1 is 
computed to prove that server has IDi and the 
dynamic (Inpi, KInpi) pair of the tag. 

In the Update Phase, the new values are 
obtained by encrypting the old secrets XORed with 
nonces, using a dynamic key obtained from IDi, 
concatenated nonces and T. Hence, the update 
depends on both sides’ parameters and the unique 
IDi. If the server does not receive the ack message 8 
from the identified tag, it keeps the pairs (Inp0

i, 
K0

Inpi), (Inp-1
i, K

-1
Inpi) and the CInpi_2 value.  

Server Verification and Tag Secret Update Phase– 
The reader simply relays the authenticator mS_1 to the 
tag. The tag computes a new key for encryption to 
find its version m*

S_1. If the computed and the 
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Figure 2. Proposed protocol:SC-SRP. 
 

received authenticators match, mutual authentication 
of the parties is complete. Then, the tag computes, 
sends its ack mInpi_3 and updates its secrets. The 
reader simply relays the ack. 
The Tag Update Acknowledgement Phase– After 
receiving the tag’s ack, the server confirms tag 
update. Only then the server resets CInpi_2 and 
initializes the record of the tag to the 1st row of Table 
3. Notice that if a tag ack is not received the new 
session starts with the old the secret pair (Inp-1

i = 
Inpi, K

-1
Inpi = KInpi). If another tag ack fails, the record 

of the tag is the 2nd session row of Table 3. After 
three consecutive failed tag acks, CInpi_2 overflows 
and the tag is placed on the blacklist. But, the oldest 
values (K-3

Inpi = KInpi and Inp-3
i = Inpi) are not flushed 

out of the tag’s record. Hence, there is no risk of 
losing the tag. The tag can be re-admitted into the 
whitelist, after administrator intervention. 
 
5. Comparison and evaluation of protocols   

The proposed SC-SRP’s performance and 
security are compared with Kea’s. The security 
analysis covers the attacks launched on Kea in this 

work and the known RFID attacks. But first, two 
apparent and critical design errors of Kea need to be 
pointed out. The tag of Kea supposedly produces a 
timestamp T. But passive tags do not have a power 
source to supply continuous energy for a timer. 
Secondly, T is not passed to the server by the reader 
(Figure 1). As a result, the server can not verify 
mInpi_2. Omission of T cannot be a typing mistake, 
because verification of T by the server is also 
missing. T’s failure to reach the server opens the 
avenue to suppress-replay attack (Gong, 1992). Thus, 
T has to reach the server to despair any dishonest 
reader. SC-SRP does not have these ambiguities. 
Performance analysis of SC-SRP 

The chip area requirement of a hardware 
implementation is measured in µm2, which is 
dependent on the fabrication technology. In order to 
compare the area requirements independently, a 
measurement called gate equivalents (GE) – 
hardware complexity– is used (Paar et al., 2009). One 
GE is equivalent to the area which is required by a 
two-input NAND gate; i.e. GE is derived by dividing 
the area in µm2 by the area of a two-input

 
Table 3. Each tag’s record in the database 

Session K0
Inpi Inp0

i K-1
Inpi Inp-1

i K-2
Inpi Inp-2

i K-3
Inpi Inp-3

i CInpi_1 CInpi_2 EPC 

0 KInpi Inpi - - - - - - X 0 IDi 
1 Knew1

Inpi Inpnew1
i KInpi Inpi - - - - X 1 IDi 

2 Knew2
Inpi Inpnew2

i Knew1
Inpi Inpnew1

i KInpi Inpi - - X 2 IDi 
3 Knew3

Inpi Inpnew3
i Knew2

Inpi Inpnew2
i Knew1

Inpi Inpnew1
i KInpi Inpi X 3 IDi 

E(data, K): Encryption function that encrypts data using key K.

Inpatient (Inp)

2: Request, rR,T

3: mInpi_1,mInpi_2 Verification: 

(T’-T) ≤ δT’ √ 
4: rR, mInpi_1, mInpi_2, T’

5: mS_1

Inpi, KInpi, IDi

1: T

Reader (R)

then CInpi_1 = 0

mInpi_2 = E[(Inpi ⊕T), KInpi⊕(rInpi||rR)]

Server (S)

Generate: rR 

Generate: rInpi

r
*

Inpi || rR = E(KInpi , KInpi⊕T) ⊕ mInpi_1

m
*

Inpi_2 = E[(Inpi ⊕T), KInpi⊕(rInpi||rR)] }}

If  m
*

Inpi_2 == mInpi_2 

6: mS_1

else

If m
*
S_1 != mS_1 then

Inp
new1

i = E[Inpi ⊕ (rR  || rInpi), IDi⊕(rInpi||rR)⊕T]

K
new1

Inpi = E[KInpi ⊕ (rR || rInpi),IDi⊕(rInpi||rR)⊕T]

, Inpi ← Inp
new1

i
KInpi ← K

new1
Inpi

Update DB

else ++CInpi_1, if CInpi_1 > 3 ALARM! 

mS_1 = E[(Inpi ⊕ KInpi), IDi⊕(rInpi||rR)⊕T]

m*Inp_3 = E[(Inpi ⊕ KInpi⊕ T),  ID i⊕(rInpi||rR)⊕T]

Verification: (T’’-T’) ≤ δT’’ √ Verification: (T’’-T) ≤ δT’’’ √ 

CInpi_2 = 0

7: mInpi_3

++CInpi_2, if CInpi_2 > 2 ALARM! Blacklist

else

If m
*

Inpi_3 == mInpi_3 then

m*S_1 = E[(Inpi ⊕ KInpi), IDi⊕(rInpi||rR)⊕T]

mInp_3 = E[(Inpi ⊕ KInpi⊕ T), IDi⊕(rInpi||rR)⊕T]

Initialize DB

mInpi_1 = E(KInpi , KInpi⊕T)⊕(rInpi || rR )

8: mInpi_3

CInpi_2 value kept.If no message 8, time out,

Inpi, KInpi, Inp
-1

i, K
-1

Inpi, Inp
-2

i, K
-2

Inpi, Inp
-3

i, K
-3

Inpi, IDi, CInpi_1 = 0, CInpi_2 = 0.

CInpi_2 value kept.

Inp
new1

i = E[(Inpi ⊕ (rR  || rInpi), ID i⊕(rInpi||rR)⊕T]

K
new1

Inpi = E[KInpi ⊕ (rR || rInpi), IDi⊕(rInpi||rR)⊕T]

New Round

New Round

While (1 ≤ i ≤ n AND m
*

Inpi_2 <>mInpi_2  ) {
While (track old values) {
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NAND gate. Using this method, the GE for each gate 
and flip flop; hence, the total GE of the registers and 
functions of a theoretical scheme can be estimated. 

Table 4 covers the GEs and clock cycles 
spent for encrypting one block of data, by some 
popular hashing and encryption functions. The 
product of the GE and clock cycles is accepted as a 
measure of computational complexity (Feldhofer and 
Wolker, 2009). A lightweight implementation of the 
NIST’s SHA-3 contest winner Keccak spends 900 
clocks and uses 2520 GE (Kavun and Yalçin, 2010). 
Thus, Keccak’s computational complexity is over 2.2 
million GE-clocks. The hash functions are known to 
have larger computational complexity values than 
encryption functions (Feldhofer and Wolkerstorfer, 
2009). A lightweight implementation of the popular 
AES function (Moradi et al., 2011) has four times 
less computational complexity than Keccak (Kavun 
and Yalçin, 2010). However, the lightweight KLEIN 
encryption function has the lowest complexity with 
252,540 GE-clocks; almost nine times less than 
Keccak. It is clear that KLEIN based SC-SRP 
consumes less die area and spends less number of 
clocks than Kea. From Table 4, lightweight 
encryption functions (Gong et al., 2012), (Guo et al., 
2011), (Moradi et al.,2011) all appear to have less 
computational complexities than Kea. 
 
Table 4. Gate Equivalents (GE) and Clock Cycles 
used by the compared algorithms 

Algorithm 
Encryp. Load 

(Clock Cycles) 

Chip Area 

(GE) 

Area × Delay 

(Complexity) 

LED-64 1248 966 1,205,568 
KLEIN-64 207 1220 252,540 
Light AES 226 2400 542,400 

AES 1032 3400 3,508,800 
Keccak 900 2520 2,268,000 

 
For a better, direct comparison of SC-SRP 

and Kea, Table 5 is given. The server memory used 
per tag in SC-SRP is higher. But, additional 4llll and a 
counter (total of 9 × 64 + 2 × 8 = 592 bits/tag) is not 
a decisive load on a server with giga bytes of primary  
and secondary memory. Meanwhile, the only 
additional memory that appears to be used on a SC-
SRP tag is llll; which is not critical. Therefore, memory 
requirements are not critically different. Another 
minor difference is in the total number of exchanged 
messages, where SC-SRP transmits only llll additional 
bits. But the decisive factors like the total number of 
clock cycles taken by the protocol and the maximum 
clock cycles of a particular step are very different. 

The same functions are used in both 
protocols except for encryption, which is denoted as 
f() in Table 5. But, that difference results in a big 
advantage on SC-SRP’s performance over Kea’s. 
Even if 21 total function calls are made; 8 more than 

Kea (Table 5’s last row), SC-SRP is still more 
efficient. Simply because the hash function of Kea 
spends hundreds of more clock cycles. For example, 
the total 3 hash calls of Kea requires 3 * 900 = 2700 
clock cycles, compared to SC-SRP’s total encryption 
calls 4 * 207 = 828 clock cycles. The XOR, 
concatenate and PRNG operations spend 2, 1 and 72 
clocks (Özcanhan et al., 2013) respectively.  

 
Table 5. Certain characteristic of study sites 

Characteristic Protocol  

Kea SC-SRP 

Architecture 16 bit 32 bit 
Server Memory 5 l + 1 counter 9 l + 2 counter 
Tag Memory 2 l 3 l 

Exchanged Bits 5 l 6 l 

Functions used 
PRNG, ⊕, ||, 

hash 
PRNG, ⊕, ||, 

encryption 
# of Calls: 

PRNG, ⊕ , ||, f() 
1, 5, 4, 3 2, 11, 4, 4 

 
Both SC-SRP and Kea use their encryption 

or hashing function maximum twice in one step. 
Neglecting the clock cycles of XOR and 
concatenation operations, SC-SRP spends 414 and 
Kea 1800 clock cycles. Therefore, SC-SRP is more 
efficient than Kea both in the overall total and the 
maximum per step clock cycles. 
Security analysis of SC-SRP 

Not only vulnerable, Kea fails to consider 
the possibility of collision of shared secrets. But, SC-
SRP avoids collision of secrets or zero value secrets; 
and resists known attacks, including those launched 
on Kea in this work. 
Resistance to DoS Attack– The above demonstrated 
or other DoS attacks on the server are resisted by two 
counters placed in each tag’s record. After a number 
of failed authentications or ack receptions, alarm 
generation through counters CInpi_1, CInpi_2 and 
blacklist relegation stop the attack. DoS attack on the 
tag cannot succeed either, because tag drops an 
exchange if mS_1 matching fails. Therefore, SC-SRP 
is more secure than Kea, against DoS attacks. 
Resistance to De-synchronization Attack– The 
second counter CInpi_2 in the record for each tag 
dissolves any de-synchronization attack. A tag is 
placed in blacklist after three consecutive failed acks. 
The counter’s maximum value is such that originally 
shared (KInpi, Inpi) pair is never flushed from the tag 
record, shown as row 3 of Table 3. Therefore, a 
blacklisted tag can be promoted back to whitelist 
after administrator intervention. Thus, the tag is not 
lost and medication can proceed. 
Resistance to Full Disclosure or Cloning Attack– 
SC-SRP employs a 64 bit encryption algorithm 
supported with dynamic keys. Therefore, the secret 
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values Inpi, KInpi and IDi are secure until KLEIN is 
fully analyzed. Without capturing the secrets of 
exchanged messages, tag cloning is not possible. 
Cloning through physical tampering of low cost tags 
is outside the scope of this work. The pre-calculated 
table attack of Section 3 fails because of two reasons. 
Firstly, the table length is now 264, therefore the table 
search used to attack Kea is infeasible. Secondly, the 
keys of encryption operations are changed even 
within a single session. Therefore, the brute force 
attacks launched at exposing a constant encryption 
key by ciphertext-only attacks cannot be used on SC-
SRP. Hence, SC-SRP is more secure than Kea 
against full disclosure attacks. 
Resistance to Man in the Middle Attack– This attack 
cannot succeed in SC-SRP because the man in the 
middle cannot conclude an authentication with either 
the tag, or the server. With the secrets encrypted and 
unknown to the adversary mInpi_1, mInpi_2, mS_1 and the 
acknowledgement mInpi_3 cannot be fabricated. 
Therefore, attacks of any adversary playing in the 
middle fail. 
Resistance to Traceability Attack– Tracing the tag in 
SC-SRP is not possible because index pseudonym 
Inpi is updated at the end of every successful 
authentication. The new Inpi is obtained through 
encryption of the old value, obscured with the 
exchanged nonces and with a dynamic key dependent 
on the IDi, nonces and the server timestamp T. The 
tag placed into a blacklist is not traceable either, 
because it is removed from use. 
Resistance to Replay and Parallel Session Attacks– 
These attacks are resisted by the use of the two 
nonces and the server timestamp T, which is absent 
in Kea. The server provides T to prevent replay of old 
successful session values. Also, the use of both 
generated nonces provides mutual message freshness. 
In SC-SRP, a parallel attack is not possible either, 
because of the (KInpi, Inpi) and T timestamp bonding. 
Resistance to Impersonation Attack– Neither the tag, 
nor the server can be impersonated because their 
authentication steps cannot be formulated by an 
adversary. The secrets cannot be decrypted because 
they are dynamically encrypted with keys depending 
on the nonces and the server timestamp T. Therefore, 
even if the exchanged messages are collected, they 
cannot be used to fabricate the authenticators and 
impersonate a party. 
 

Conclusion   
A recent healthcare RFID authentication 

protocol which proposes keeping time on passive tags 
and one way hashing for creating authenticators has 
been analyzed. Analyses reveal that the Kea protocol 
is erroneous and vulnerable to multiple attacks. With 
a generic table and software created by the present 

author; the secrets of the used tags are fully-exposed, 
which makes Kea’s drug administration insecure. An 
alternative protocol SC-SRP complying with the new 
standard version of Gen-2 has been presented. SC-
SRP uses lightweight cryptography complemented by 
database server control mechanisms. In addition, SC-
SRP achieves encryption with varying keys, instead 
of a static key. Comparison shows that SC-SRP has 
overall better performance and higher security than 
its predecessor. Therefore, SC-SRP is a better tool for 
RFID aided ubiquitous hospital applications, based 
on low cost tags. Supported by standards, lightweight 
cryptography can be the mandatory confidentiality 
algorithm for healthcare RFID protocols.  
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