
 Life Science Journal 2014;11(9s) http://www.lifesciencesite.com

453

Computational Ivariants in Applicative Model of Object Interaction

Viacheslav Ernstovich Wolfengagen

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
Kashirskoye Shosse, 31, Moscow, 115409 Russian Federation

jir.vew@gmail.com

Abstract: This paper is aimed to modeling the object interaction using the applicative computational technology. In
this case, starting with a few of generic objects it is possible to study the computational behavior of all the variety of
derived objects. It is shown that the computational properties of generic objects when interacting with environment
stay unchangeable. This gives rise to a system of free and natural computations based on the ideas of object
interaction. The approach in use is significant for data analysis, object recognition and logical forms of determining
the object properties in critical information technologies. This research was accomplished at the Institute for
Contemporary Education “JurInfoR-MSU” in collaboration with NRNU MEPhI and MIPT under the Project
LAMBDA.
[Wolfengagen VE. Computational Ivariants in Applicative Model of Object Interaction. Life Sci J
2014;11(09s):453-457]. (ISSN:1097-8135). http://www.lifesciencesite.com. 92

Keywords: Applicative computational technology, object interaction, Big Data, computational invariants

1. Introduction

Computing and its development puts a lot of
questions, on the most part from which answers
either are incomplete, or unknown. At present an
exhaustive explanation of the properties of
interacting objects as information processes is not yet
reached. Direct transfer of the existing in science
models of interaction from the field of physics to the
area of information objects is impossible.
Implementation barriers are largely due to the
mathematical apparatus used, which is familiar to
physicists, but it is unusual in computer science, not
to mention programmers. In this regard, significant
result may be the development of a kind of
“mathematical adapter” between the two areas.

In this paper the information technology for
natural computations was introduced and studied
with the limitation to the applicative computational
system. Case study for the assumptions of object with
object and object with environment interaction was
evaluated. The first case gives rise to computations in
applicative prestructure while second case leading to
computations in applicative structure. The established
evaluation map helps to verify and discover the
computational invariants.

This is important in an area of Big Data
lacking the direct methods and technologies for the
purposes of data analysis, object recognition and
logical forms of determining the object properties in
critical information technologies.

2. Objects and environment
2.1. Fixing the object.

Attempts to fix object, assume it as
something “ordinary” (and what is meant by

“ordinary”, it remains quite unclear and non-
augmenting) did not bring the expected result. And it
is not negligence of researchers -- they exhibit
complete thoroughness and accuracy, and
technologists made software, which itself is sound.

To understand the phenomenology of the
object the explorer needs more perfect “instrument
base”, and in this case, faced with constraints of
“ordinary” meta-mathematics, which rather
awkwardly reflects real object in its notations.

Object also demonstrates its natural
diversity: it is both prescription, and the result at the
same time. As well can we cope with this?
2.2. Object-as-process.

If we try to imagine object vividly, it turns
out that we cannot say definitely -- quite determined,
-- what is it. At best we can talk about its possible
presentations. These possible presentations can be
computationally observed, and their relationship
forms the framework characterized by special
mathematical properties.

Importantly, the object can show itself in an
infinite many ways: it has a variety of forms.

“Computational distance” between the
individual forms can be described in terms of “redex-
contract” (“redex” means “reducible expression”;
contract is understood as a limitation, convolution).
On the way to the result a reduction of the object is
done in the direction from the redex to contract.

During the implementation of the reduction
the object interacts with the environment, “captures”
disposed therein other objects that are in its sphere of
reach, and these objects are recombined in
applicative structure:

|| || env = c

 Life Science Journal 2014;11(9s) http://www.lifesciencesite.com

454

In contrast, the way from the result, an
object expansion occurs in the direction from object
contract to its redex. During the expansion, the object
is synthesized as a combinator, releasing previously
captured objects which are returned to the
environment, while remaining within its reach and
scope.

Thus, the object is in a state of transition as
redex-contract and is a process.

3. Way of thinking the objects
3.1 Traditional way of thinking.

Entrenched way of thinking is to transfer the
abstract and general mathematical theory on some
given specific problem domain. Tacitly assumed that
all mathematical concepts and the way they interact
are well comprehended, and all explanatory system
has great expressive power. So large that the chances
are good for embedding substantive applied theory
into pure theory, to obtain new results. All this led to
artificial systems of explanation.
3.2. Artificial explanation.

In developing object theories in computer
science, which is performed by such a way, the
researchers stalked a trap. In fact, the objects once
thought of as abstract entities, and strongly linked to
the models and explanatory systems prevailing in the
discipline of data structures.

This resulted in that the artificial computing
began to be explained even with more abstraction and
artificiality. Trap for the researchers was that the
theory of objects were appearing, but were not
productive because these theories overgrown
cumbersome notations and a lot of complications
preventing the perception of details, hence they have
not received the development and application, but for
these reasons become intuitively rejected.

Interest in artificial computing quickly
became lost, and the attractiveness of natural
computing, by contrast, started to grow rapidly.
Return to the “natural” explanatory systems replaces
the culture of formalisms and logical forms of
reasoning.
3.3. Natural explanation.

An idea to explain the objects and their
behavior naturally requires the adoption of certain
principles. Then, based on these principles, the
explanatory system is developing. We have to select
the central beliefs that will fully characterize the
range of the effects, in this case the are computational
ones. So, there is one entity -- object, -- and another
entity -- environment.

Object interacts with the environment so that
the result of evaluation is placed in the environment.
On the other hand an object in the interaction with
the environment receives from environment the
values and/or parameters.

4. Computational environment
4.1. Environment representation.

The construction of environment should
cause quite comfortable feeling: this is the place
where the values of the objects are stored.

Hypothetically, the environment is a
universe where there are both “deep” and
“peripheral” parts. The details of the deep part are
timely unknown, but its structure can help generation
of a reasonable assumption. Peripheral part, on the
contrary, is good “seen” and is known for not only its
structure, but also for all of its components. Talking
about from where the environment was taken, it
could be argued that “at first it was nothing”, but
intuition suggests ideas as to imagine this idea of
nothing.

The empty environment usually is denoted
as a pair of parentheses: ().
4.2. Interaction of an object and environment.
4.2.1. Environment. A thesis, that interaction of
objects needs the intermediary -- environment, is
perceived as obviously. At least, currently it does not
attract doubts. More rigorously, to initialize an
interaction of objects, the structure is needed where
they are localized.

Opposite case -- when some “wandering”
objects “meet”' other wandering objects, -- is
interesting, but this discussion will be postponed for a
while. The area of programming gives a case when
objects, by some way or otherwise, are already
packed by in the environment. Thus a central concept
under development is namely the environment which
is understood as an environment for computations.
Environment is equipped with the programming
system, but not wise versa.

Other circumstance is that an object interacts
not with all environment at once, but with its
partition -- that which will appear “in an area of
action” of the object.
4.2.2. Prestructure. An applicative prestructure is
used for packing objects. Two aspects of an object --
redex (reducible expression) and the contract, --
reveal in it. In other words, the prestructure gives a
representation of computation both in terms of a
reduction -- transition from redex to the contract, --
and in terms of expansion -- transition from the
contract to redex.

 Life Science Journal 2014;11(9s) http://www.lifesciencesite.com

455

The principle of interaction gives some non-
symmetry: there is an object-initiator of action and
there is an object-recipient of action. Influence of one
object on another is stepwise: it is carried out, if and
only if objects are located immediately beside. The
arrangement happens of two kinds: beside and not
beside (distant), and in the second case the objects do
not interact. In case of an arrangement beside, the
objects immediately enter in interaction. The new
object, as a result of interaction, arises and begins its
existence -- result of acting, or applying of the first
object to the second. Now, if there will be an object
located beside thus newly born object, the new act of
interaction begins where are two distinct cases.

In the first of them newly generated object
captures the existing one, which has appeared beside
and acts on it.

In the second case newly generated object is
captured by the existing one which affects this object.

In any of these cases the new object arises
and begins its existence and this object is considered
as a result of such non-symmetrical interaction of two
objects-parents. It settles in prestructure on the equal
rights with other objects. In particular, this means the
following: as soon as the new object-result is
generated, it is possible to speak about the new act of
interaction.

Thus, the inhabitants of prestructure
participate in interaction which evolves by a principle
of a dominoe. The following circumstance is
important: either there are initial atomic objects, or
there are derived non-atomic objects, each having
exactly two ancestors-parents. A question still open:
where are the initial objects from, but this discussion
will be postponed for a while.

5. Analysis of interaction

The object can be reveled in interaction with
other objects if it participates in application. In this
case it can show arity, equal to 0 (constant object) or
distinct of zero. For simplicity we shall consider a
case when the object shows arity, equal to 1 (unary
function).

As interaction is carried out through the
intermediary -- environment, -- then some
metaoperators will be required. For a while, we shall
be limited by two metaoperators:  -- currying and ||
• || • -- evaluation map.

For any object M we shall check up, whether
it can show arity 1 in the environment i. To obtain
this we write down

|| M || i d0,
which represents a value of object M in the

environment i. If value of object M shows arity 1 then
there is a construction of value of object in the
environment

 || M' || i d0,
where M' is the same as object M

everywhere, except for a variable to which we should
assign the value d0: instead of this variable, the
number of de Bruijn 0 is written as a prototype of a
pointer to d0 in environment i'. Environment i' is the
same as environment i everywhere, except for an
image of this substitutional variable, which is now
assigned d0:

|| M' || [i, d0].
Actually, it was necessary to create a

compound metaoperator
 || • || • : object  environment  value,

which is object generating, setting up the
function of arity 1. Really,

 || M' || i d0 = || M' || [i, d0],
where [i, d0]  i'.
For example, if M is an identity

transformation I with the characteristic I d0 = d0 then
it is sufficient to assume, that M' is a substitutional
variable which is assigned the value d0 in
environment i (Table 1) as was expected.

Here  || 0 || i is an image of object I,
obtained as a result of its interaction with
environment. This should be simply a pointer Snd to
d0, located in the modified environment.

Table 1. Invariance of I transformation.

|| I || i d0   || 0 || i d0
 = || 0 || [i, d0], where [i, d0]  i'
 = Snd [i, d0] = d0,

Table 2. Invariance of K transformation.
|| K || i d1 d0   ( || 1 ||) i d1 d0

 =  || 1 || [i, d1] d0, where [i, d1]  i'
 = || 1 || [[i, d1], d0], where [[i, d1], d0]  i''
 = (Snd º Fst) i''
 = Snd i' = d1,

 Life Science Journal 2014;11(9s) http://www.lifesciencesite.com

456

Other example. If M is a cancellator K with

the characteristic K d1 d0 = d1 then it is sufficient to
assume, that M' is a substitutional variable which is
assigned the value d1 in environment i (Table 2) as
corresponds to the characteristic.

And one more example. If M is the allocator
S with the characteristic

S d2 d1 d0 = d2 d0 (d1 d0),
then (Table 3) as was expected.

6. Related works

An idea to drop down the computations into
self-contained blocks with “nameless dummies”
instead of variable was formulated by N. de Bruijn
[1, 2] in 1970s. This early formalism appeared rather
fruitful to solve distinct and complicated text
representation tasks. This approach is known for
researchers in theoretical computer science but is not
used in modern information technologies (IT).
Nevertheless, the related but much earlier ideas of M.
Schoenfinkel [3] which were rediscovered by H.
Curry [4] are successfully used in many branches of
computer science and programming. This approach is
known as a combinatory logic giving rise to
applicative computational systems. But the “natural
manner” of computations with combinators using
then as “wandering” objects was, in fact, not used in
modern IT. The natural computations using
applicative computational systems were used at the
basis of “computational invariants”, formulated by V.
Wolfengagen [5]. Earlier the idea to use combinators
for composing Web-services was used by L. Cardelli
et. al [6] but not became widely used in Web science
and its applications. The new challenges of using
computations with objects were analyzed by H.
Barendregt et. al [7], G. Bell et. al [8] and others
[9,10] but in relation with applicative computations.

The proposal here is based on the direct use
of de Bruijn formalism in connection with
combinatory logic to study the main computational
effects which are promising in applying the models
of natural computations [11, 12]. First, this is a study
of object interaction and, second, the study of
interaction of object with environment. The
generality is in assumption that the environment can

be assumed as an object as well. This assumption is
distinctive from assumptions in use in area of
programming language semantics.

A kind of natural computations was used by
B. J. MacLennan [13] in conjunction with the
information tasks of a molecular synthesis. At last,
the general direction to assume computing as a
natural science was argued by P. Denning [14].
Further studying of general ideas of computations
especially in connection with applicative
computational systems and their spreading was given
by L.Yu. Ismailova [15,16].

7. Conclusion and future work

A computational model of natural
computations is proposed. It is analyzed from a
standpoint of object interaction.

1. A layered structure of computational
environment is proposed describing the
computational activity of the objects. The simplified
assumptions as can be shown lead to a standard
semantic model for programming languages. Less
standard standpoint is argued to subdivide the
environment into “deep” and “peripheral” parts. This
gives rise to the natural computations model.

2. Studying the properties of this model
shows that it can be represented in a step by step
manner which can serve to developing a
computational framework for object evaluation.

3. The proposed computational model can be
used to discover and verify the various
“computational invariants”. As was shown the
invariants are relative to the computational
environment which has a layered structure.

This model can be embedded into host
computational model based on applicative pre-
structure. The simplicity, flexibility and generality of
this model are believed to be useful for semantic and
computational analysis of Big Data discovering and
using the computational invariants. The basic
invariants can be chosen the same as the combinatory
basis. The practically sound invariants can be derived
using the applicative prestructure at the first stage
and applicative structure at the stage of validation.

Table 3. Invariance of S transformation.
|| S || i d2 d1 d0   ( ( || 2 0 (1 0) ||)) i d2 d1 d0
 =  ( || 2 0 (1 0) ||) [i, d2]} d1 d0, where [i, d2]  i'
 =  || 2 0 (1 0) [[i, d2], d1] d0, where [[i, d2], d1]  i''
 = || 2 0 (1 0) || [[[i, d2], d1], d0], where [[[i, d2], d1], d0]  i'''
 = || 2 || i''' (|| 0 || i''') (1 || i''' (|| 0 || i'''))
 = Snd º Fst º Fst i''' (Snd i''') (Snd º Fst i''' (Snd i'''))
 = Snd º Fst i'' d0 (Snd i'' d0)
 = Snd i' d0 (d1 d0) = d2 d0 (d1 d0),

 Life Science Journal 2014;11(9s) http://www.lifesciencesite.com

457

Acknowledgements:
This research was accomplished at the

Institute for Contemporary Education “JurInfoR-
MSU” in collaboration with NRNU MEPhI and
MIPT under the Project LAMBDA. This work is a
generalization of the results, which are associated
with the construction of conceptual and
computational model obtained at different times
during the projects, partially supported by Russian
Foundation for Basic Research (RBRF) grants 14-07-
00119-a, 12-07-00661-a, 14-07-00072-a, 12 -07-
00646-a, 13-07-00716-a, 12-07-00554-a, 14-07-
00054-a.

Corresponding Author:
Prof. Viacheslav Wolfengagen
Department of Cybernetics
National Research Nuclear University MEPhI
(Moscow Engineering Physics Institute)
Kashirskoye shosse, 31, Moscow, 115409, Russian
Federation
E-mail: jir.vew@gmail.com

References
1. de Bruijn NG. Lambda-calculus notations with

nameless dummies: a tool for automatic formula
manipulation. Indag. Math. 1972;34:381-392.

2. de Bruijn N G. A survey of the project
Automath. In: To H.B. Curry: Essays in
combinatory logic, lambda calculus and
formalism, Academic Press, 1980;579-606.

3. Schoenfinkel MI. Uber die Bausteine der
mathematischen Logik, Math. Annalen, 1924;
92:305–316.

4. Curry HB. Functionality in combinatory logic.
Proc. National Academy of Sciences of the
USA, 1934;20:584–590.

5. Wolfengagen VE. Applicative computing. Its
quarks, atoms and molecules, Ed., Dr. Ismailova
L. Yu. Moscow: Center JurInfoR, 2010;62.

6. Cardelli L, Davies R. Service combinators for
Web computing, HP Labs Technical Reports
SRC-RR-148, June 1, 1997;15.

7. Barendregt H, Wiedijk F. The challenge of
computer mathematics. Transactions of the
Royal Society, 2005;363(1835):2351-2375.

8. Bell G, Dourish P. Yesterday’s tomorrows:
notes on ubiquitous computing’s dominant
vision, Personal Ubiquitous Comput.,
2007;11(2):33–143.

9. Berners-Lee T, Hall W, Hendler J, O’Hara K,
Shadbolt N, Weitzner D. A framework for Web
science, Foundations and Trends in Web
Science, 2006;1(1): 1-130.

10. Carpenter B. The Internet Engineering Task
Force: Overview, Activities, Priorities, ISOC
BoT, 2006-02-10, 2006.

11. Wolfengagen VE. Semantic modeling:
computational models of the concepts. The
Proceedings of the 2010 International
Conference on Computational Intelligence and
Security, CIS 2010, Sponsors: Xidian
University, Beijing Normal University, CPS of
IEEE. Nanning, 2010;42-46. doi:
10.1109/CIS.2010.16

12. Wolfengagen VE. Combinatory logic in
programming, Ed. Dr. L. Yu. Ismailova.
Moscow: Center JurInfoR, 2003;336.

13. MacLennan BJ. Molecular Combinatory
Computing for Nanostructure Synthesis and
Control. – IEEE Nano 2003, San Francisco,
August 12-14, 2003.

14. Denning PJ. Computing is a natural science,
Commun. ACM, 2007; 50(7):13-18.

15. Ismailova LYu. Applicative computations and
applicative computational technologies. Life Sci
J 2014;11(x):-

16. Ismailova LYu. Criteria for Computational
Thinking in Information and Computational
Technologies. Life Sci J 2014;11(Xs):-

7/5/2014

