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Abstract. This paper describes a mathematical model the radon (222Rn) transport in a cylindrical layer of porous 
ground, which has fractal properties. With the help of the mathematical apparatus of integral transforms and 
fractional calculus have been obtained their analytical solutions. These decisions depend on the fractional exponent 
included in the original model equation and related to the fractal dimension of the ground. It is shown that solutions 
are generalizations of previously known classical model theory of emanation method. 
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Introduction 

Emanation method is one of the main 
methods of radiometric prospecting uranium ores [1, 
2]. It is the study of the distributions of emanations - 
radioactive substances (for example, radon) in porous 
ground or surface layer of the atmosphere with the 
help of mathematical models of stationary or non-
stationary diffusion-advection. Mathematical models 
such processes are recorded by means of differential 
equations with initial and boundary conditions. Kind 
of differential equations can be varied depending on 
the specific task or area in which it sought a solution. 
In emanation method theory, this method represents 
artificial recesses (generation) of a porous ground, 
which can be of various geometric shapes: 
cylindrical, spherical or horizontal layers. In this 
study, we are interested in the distribution of radon in 
a cylindrical layer of porous ground.  

Unlike classical mathematical models by 
Grammakov A.G and Bulashevich U.P. [1,3], we 
consider the porous ground as a fractal structure [4]. 
One of the basic properties of fractal media - is the 
memory effects in time (subdiffusion) and spatial 
coordinate (superdiffusion). Subdiffusion due to 
"pore-trapped" in the ground, which can be regarded 
as quasi-isolated from the other pores. Emanations, 
getting into such pores accumulate in them. 
Superdiffusion characterized shares wire channels 
between the pores, which emanations freely and 
openly transferred to the surface by diffusion, 
advection or effusion [5]. The part quasi-isolated 
pores and then wired channels depend on the fractal 
dimension of the ground [6], which varies depending 
on the deformation disturbances in the Earth's crust. 

Therefore, radon emanations are learning in order to 
predict earthquakes [7].  

 
Statement of the problem 

Consider the distribution of radon emanation 
in a cylindrical layer of porous soil due subdiffusion 
process. By this assumption, the process of diffusion 
of radon in a cylindrical layer should slow down. 

Subdiffusion can be well described using the 
mathematical apparatus of fractional calculus [8]. 
Under this approach, the time derivative is a limiting 
case of a more general fractional order derivative. For 
example, one-dimensional equation subdiffusion 
volumetric radon activity concentration in the 

cylindrical elementary layer dr  of unit length when 
emanation propagates along the axis z , can be 
written as : 
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Here  ,A r t  - volumetric activity of radon, A  - 

equilibrium volumetric activity of radon, D  - 

diffusion coefficient of radon,   - radon decay 

constant, 
62.1 10  с-1, r  - the circle radius 

cylindrical layer, t  - the time coordinate. Operator on 
the left hand side of equation (1) is understood in the 
sense of Gerasimov- Caputo [8]. 

Note, in the case 1   equation (1) 

becomes the equation of nonstationary diffusion of 
radon emanation theory radiometric prospecting 
method [5]: 
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(2) 

Note, the diffusion coefficient D  
corresponds to a single gradient pore emanations and 

calculated according to the relation D D  , 

where 
*D  - the diffusion coefficient corresponding 

to the gradient of the volume of emanation -   
ground porosity [5]. 

Equation (1) does not account for convective 
(advective) component, which would lead to a 
significant complication of the mathematical solution 
of the original equation. 

Selection Gerasimov Caputo fractional 
differentiation operator of time due to the 
preservation of the initial conditions in the local 
setting , which is more familiar and natural for 
mathematical modeling of classical diffusion. 

 
Decision 

We apply the finite integral Hankel 
transform of zero order in cylindrical coordinates 

 00,r r  for the equation (1) by the formula [9]: 
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Here  0 nJ r  – Bessel function of zero order and 

n  - roots of the equation  0 0J r  .  

Using the transformation (3) and Laplace 
transform in the variable t we obtain at the following 
equation:  
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 .  (4) 
Inverse Laplace transform of (4) to the 

complex variable p  leads us to the special functions 

of Mittag-Leffler [10]: 

 

 
 (5) 

где  ,E z   – function of Mittag-Leffler [10]. 

Inverse Hankel transform to equation (5) can be 
carried out using the formula [11]: 
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Therefore, the general solution of equation 
(1) can be written as: 

 

 (7) 

In the limiting case where 1   solution of 

(7) is a solution of equation (2) and can be written as 
follows: 

 

 
Solution (7) can be used in studying the 

distribution of emanation in a cylindrical borehole 
penetrated into porous ground emanates, as well as in 
the borehole environment. 

 
Some special cases of the distribution of 

emanation in the workings of a cylindrical shape. 
Depending on the specific problem for the equation 
(1) sets the initial and boundary conditions. Consider 
some of the tasks of distribution of radon in a 
cylindrical layer of porous ground, proposed in [5], 
but for the case of non-stationary subdiffusion. 

Problem 1. Borehole with radius 0r  

emanating reveals porous ground. Radon emanation 
is removed from the borehole well during drilling. 
Required to determine the distribution of radon in the 
borehole environment.  

For this problem, characterized by the 
following boundary conditions: 

1)  0 0, 0,A r t r r  ; 2) 

  0,0 , 0, :A r A t r r r    ; 

3) ,r A A   – finite value. 

The solution to this problem, according to (8) can be 
written as: 

 

 
Problem 2. From the dry cylindrical 

production, revealing the body emanate, emanation 
is removed, after which it comes back as a result of 
subdiffusion environment. Find the distribution of 
radon inside production. 

This problem is solved with the following 
boundary conditions: 
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2)  0 0, ,A r t A r r  ; 2) 

  0,0 0, 0, :A r t r r r    ; 

3)  0, 0,r A t  – finite value. 

Taking into account boundary conditions, 
the solution (7) takes the following form: 
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Conclusion 

In this paper, as a first approximation 
proposed generalizations of known mathematical 
models Grammakov A.G. and Bulashevich U.P. 
radon diffusion in a cylindrical layer of porous 
ground when it has fractal properties. We obtained 
the family of solutions in the case when the 
distribution is due to the emanation of subdiffusion in 
a cylindrical porous soil layer according to the initial 
and boundary conditions. 

In the future, some interest is to consider the 
model of radon migration, taking into account such 
transfer mechanisms as advection and superdiffusion 
and transport model of radon in ground- atmosphere 
system or many-layered media [12]. 

Development of mathematical modeling of 
radon transport in ground- atmosphere system may 
allow the development of a methodology to identify 
and interpretation anomalous effects in the time 
series of radon fields obtained on a network of 
stations Petropavlovsk-Kamchatsky geodynamic 
polygon. 
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