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1. Introduction 

Integral equations of the Hammerstein type can be 
an important tool for modeling the various applied 
problems arising in engineering and science [1-4]. 
Many authors studied the existence of the solutions for 
several classes of quadratic integral equations [5-7]. It 
is worth mentioning that, there are a few numerical and 
analytical methods to estimate the solution of the 
quadratic integral equations [8, 9]. El-sayed et. al. 
[10], concerned with Picard and Adomian 
decomposition method (ADM). Adomian 
decomposition method is useful and powerful method 
for solving nonlinear functional equations. Since this 
method was first presented [11, 12] in 1980's, Adomian 
decomposition method has led to several 
modification[13, 14] in attempt to improve the 
accuracy of the original method. Behiry et. al. [15], 
introduced a discrete version of the (ADM) and applied 
it to nonlinear Fredholm integral equations. This 
method is called a discrete Adomian decomposition 
method (DADM). Bakodah and Darwish [16] 
proposed an improvement of (DADM) by using some 
identified Clenshaw-Curtis quadrature rules. This 
method is called new discrete Adomian decomposition 
method (NDADM). The aim of this paper is to concern 
with the application of ADM and some of its 
modification to approximate the solution of a quadratic 
integral equation of Hammerstain type of the form 

( ) ( ) ( , ( )) ( , ) ( , ( )) , , (1)
b

a

x t g t f t x t k t s u s x s ds a t s b   

 
and a quadratic integral equation of Hammerstain-

Volterra type 

( ) ( ) ( , ( )) ( , ) ( , ( )) , , , (2)
t

a

x t g t f t x t k t s u s x s ds a t s T   
 

where )(tx is an unknown function, ( )g t , 

( , )f t x and ( , )u t x are given functions. 

Quadratic integral equations of the forms (1) and 

(2) create generalization of several kinds of quadratic 
integral equations. The necessary and sufficient 
conditions for existence and uniqueness of solution of 

Eq. (1) could be found by Argyros, Banaś and Darwish 
[ 5, 6, 7]. 
 
2- Description of the numerical methods. 

In this section we consider the quadratic integral 

equation (1) . Recently, a great deal of interest has 
been focused on the applications of Adomian 
decomposition method. In this method the solution is 
considered as an infinite series which usually 
converges rapidly to the exact solutions. Applying 

ADM, the solution ( )x t of equation (1) is given by 
the following series form 
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where the components
0),( ktxk , can be 

computed later on. We represent the nonlinear term

)),(( ttxu  by the Adomian polynomials, 
)(tAk , as 

follows 
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where 
)(tAk  can be evaluated by the following 

formula [12] 
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By substituting from (3)  and (4) into (1) we 
obtain 
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0 0 0

( ) ( ) ( , ( )) ( , ) ( , ( )) , , (6)
b

k k k
k k k a

x t g t f t x t k t s u s A s ds a t s b
  

  

     

 
Now, we can compute the components

0),( ktxk , by the following recursive relations 
[13]. 

0

1
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This method was modified by Wazwaz [13], the 
modified form was established based on the divided 

into two parts, namely 0g
and 1g

. Using Wazwaz's 

modified method, the recursive relation (7)  takes the 
form 
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In the new modification by Wazwaz and El-

Sayed [14], we can replace the process of dividing 

)(tg into two component by a series of infinite 

components, i.e., 0

( ) ( )k
k

g t g t




 
. A new recursive 

relationship expressed in the form 
0 0

1 1
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It is important to note that if )(tg consists of one 

term only, then scheme (9) reduces to relation (9) . 

Moreover if )(tg  consists of two terms, then relation 

(9) reduces to the modified relation (8) . If the 

computation of the integral in equation (7) is very 
complicated we can consider the Taylor expansion of 
the integrand and consider a few first terms of the 

expansion. We can observe that algorithm (9) reduces 
the number of terms involved in each component , and 
hence the size of calculations is minimized compared 
to the standard Adomian decomposition method only. 
The new modification overcomes the difficulty of 

decomposing )(tx  and introduces an efficient 
algorithm that improves the performance of the 
standard Adomian decomposition method. 

If the evaluation of integral in (7)  is analytically 
impossible, the (ADM) cannot be applied. Discrete 
Adomian decomposition method (DADM) arises when 
quadrature methods are apply to compute the definite 

integrals (7)  which cannot be computed analytically 
to get a numerical solution at the quadrature rule 

abscissa. Let us consider 

1

3 Simpson rule to 
approximate the integral numerically from the formula 
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Approximating the definite integral in Eqs. (7) , 

(8) and (9)  by applying formula (11) to get the 

approximate solution of Eq. (1) . To approximate 

solution of Eq. (2) , we rewrite it in the form 

( ) ( ) ( , ( )) ( , ) ( , ( )) (12)
it
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Let is t v
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Then we approximate the integral by applying 

formula (10) . After discretize the independent 
variable at the nodes used for the quadrature rule in 
Eq.(10), the solution can be obtained by summing the 

approximate values to the component
1),( ktxk

represented by one of the equations (7) , (8)  and (9)  

at the nodes ,n is a ih 
, 0 ,1, 2 , . . . ,i n and

n

ab
h




. 
As we know, when applying the Clenshaw-Curtis 

rule to compute definite integrals it gives better result 

than 3
1

Simpson rule, [17]. The Clenshaw-Curtis 

method essentially approximates a function )(xf over 

any interval [ 1,1]  by using the Chebyshev 

polynomials )(xTr  of degree n , i.e., 
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where ra
 are the expansion coefficients and 

'
denotes a finite sum whose first term is to be halved 



 Life Science Journal 2014;11(9)       http://www.lifesciencesite.com 

 

75 

before beginning to sum. Collocating ( )f x  at the 

1n   points, 
i

i
x cos

n




, 1, 2,...,i n , one can 

evaluate the expansion coefficients ra
. Thus 
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In order to use this numerical method to compute 

definite integrals in any one of the equations (7) , (8)  

and (9) , we transform the interval [ , ]a b  into the 

interval [ 1,1] by using the transformation 
1
2 [( ) ]b a x a b    

. 
Now, we will make use of the following 

quadrature rules [16]. For example Clenshew-Curtis 
five point rule 
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To illustrate the description above and to show 

the efficiency of each method for solving Eq. (1) , we 
introduce some examples with known analytical 
solutions. 
 
3.  Illustrative Examples 

In this section, some numerical examples are 
studied and applying the numerical methods, then 
comparing the results with exact solutions. The 
computations associated with the examples were 
performed using Mathematica 7.0 software. 
Example 1: Consider the nonlinear Volterra quadratic 
integral equation 

10
2 2 21

( ) ( ) ( ) ,
35 5 0

tt
x t t t x t s x s ds   

 

where its exact solution is given by 
2)( ttx  . 

By applying the first modification on ADM 

introduced by Wazwaz, Eq. (8) , and comparing the 
results with standard ADM, we have 
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The first few Adomian polynomials for nB
 can 

be given by 
2

0 0

1 0 1

21
2 1 0 22

1
3 1 2 0 36

( )

2 ( ) ( )

(2 ( ) 4 ( ) ( ))

(2 ( ) ( ) 12 ( ) ( ))

B x t

B x t x t

B x t x t x t

B x t x t x t x t





 

 

  
and so on. 
In Table 1, the absolute error 

.approxexactm xxe 
, where m is the number of 

components, is given. 
 

Table 1: comparison of the absolute error between 
ADM and the first modification, Eq.(8). 

 

t  

The modified ADM Standard ADM 

5m   5m   
0.2 2.92175×10-23 4.13724×10-16 
0.4 1.96074×10-15 1.08453×10-10 
0.6 7.42611×10-11 1.60199×10-7 
0.8 1.31479×10-7 7.35011×10-4 
1.0 0.0000433099 6.84836×10-3 

 
Example 2: Consider the following nonlinear quadratic 
integral equation 

19 20
3 3 2 31

( ) ( ) ( 1) ( )
100 110 10 0

tt t
x t t t x t s x s ds    

 

with exact solution 
3)( ttx 

. 
By applying new modified ADM, we get 

3
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3 2
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The first few Adomian polynomials for nA
and nB

 
are given as 
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and so on. 
 

Table 2 shows the absolute error 

.approxexactm xxe 
, where m  is the number of 

components. 
 

Table 2: comparison of the absolute error between 
ADM and the second modification, Eq.(9). 

 

t  

The new modified ADM Standard ADM 

5m   5m   
0.2 2.98711×10-33 9.58466×10-29 
0.4 7.26011×10-27 4.39063×10-18 
0.6 3.06194×10-23 8.21177×10-12 
0.8 8.48642×10-15 2.42074×10-7 
1.0 4.97888×10-8 0.000731679 

 
Example 3: Consider the quadratic integral equation 

 



1

0

22 ]1,0[,,)()tanh(
)sin(

)(
)()( stdssxts

et

txt
tftx

t

 

where )(tf  is chosen such that the exact solution 

is given by 
tetx t sin)( 

. 
In this example we used Simpson's rule to 

approximate the integrals, then comparing the results 
with exact solution. Table 3 shows the computed 

absolute error .approxexact
n
m xxe 

where m is 

the number of components and 2,4,8n   are the 
number of the nodes of the quadrature rule. 
Example 4: Consider the quadratic integral equation 

2

2

11 ( ) ( )
( ) cosh( ( )) , [0,1].

10 30 5 10

tt x t x t s
x t e x t ds t

t s


   
 

 

Table 3: The absolute error of DADM, Eq. (11) with 
2,4,8n  . 

 
t  

The DADM 
1/3 Simpson rule 

2n   4n   8n   
0.2 0.000881111 0.000059901 3.764990×10-6 
0.4 0.006147350 0.000416844 0.0000261963 
0.6 0.018244400 0.001233880 0.0000775313 
0.8 0.037941300 0.002560360 0.0001608610 
1.0 0.064537800 0.004348130 0.0002731580 
 

In [18] Salem proved that, the above equation has 
at least one continuous solution x(t) with 

3.0)(1.0  tx . Using new discrete Adomian 
decomposition method to approximate the integrals 
eq.(15). Since the exact solution is not known, we 

compute the absolute error between 1mm xandx
. 

Table 4 shows the computed absolute error 

mm
n
m xxe  1 where m  is the iterative number 

and n  is the number of the nodes of the quadrature 
rule. 

 
Table 4: the absolute error example 4. 

 
t 

The new DADM, n=5 
[16] 

� = 1 � = 2 � = 3 
0.0 0.00216759 1.5701×10-7 1.03796×10-15 

0.14644661 0.0137835 5.47716×10-6 8.65306×10-13 
0.5 0.0171361 5.9443×10-6 7.16267×10-13 

0.85355339 0.0100062 1.42369×10-6 2.98254×10-14 
1.0 0.00161367 3.21519×10-8 1.35733×10-16 

 
The approximate solutions ��(�) at these value of 

t recorded in Table 5 and it verify the condition proved 
in [18]. 
 
Table 5: the approximate solution of example 4. 

 
t 

The new DADM, n=5 
[16] 

��(�) 
 
 

3.0)(1.0  tx
 

 

0.0 0.102168 
0.14644661 0.128439 

0.5 0.167148 
0.85355339 0.195364 

1.0 0.201614 

 
4. Conclusion 

Some practical problems lead to quadratic integral 
equations. These types of equations are usually difficult 
to solve analytically. In many cases, it is required to 
obtain the approximate solutions. For this purpose, 
using some modified numerical methods to 
approximate the solution after applying Adomian 



 Life Science Journal 2014;11(9)       http://www.lifesciencesite.com 

 

77 

decomposition method. (ADM) has many advantages 
such as simplicity, high accuracy and the solution when 
it exists is found in rapidly convergent series form. For 
cases that evaluation of integrals analytically is 
impossible or complicated the (ADM) cannot be 
applied. Thus, we used to convert the non-numerical 
(ADM) to a numerical results state that the method has 
good accuracy and remarkable performance. Also, 
approximate solution may be more accurate using 
larger n . 

In this paper we proposed some numerical method 
for solving the quadratic integral equations. The 
obtained results showed that these modification of the 
Adomian decomposition method can be flexible to 
solve many different problem effectively. 
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