
Life Science Journal 2014;11(8s)      http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com         lifesciencej@gmail.com  344

On an implicit iterative splitting scheme for the problems of free thermal convection 
 

Perizat Beisebaykyzy Beisebay 
 

D. Serikbayev East Kazakhstan State Technical University, А.К. Protozanov Street, 69, Ust-Kamenogorsk, 070004, 
Kazakhstan 

 
Abstract. This paper considers some implicit iterative splitting algorithms for the difference analogues of the 
system of free convection steady-state equations in variables “velocity vector and pressure”, written to shifted grids 
with symmetric approximation. The problems of stability of the difference problems according to the initial data and 
the right member, convergence and estimate of the linear algorithm degree of convergence were studied. 
[Beisebay P.B. On an implicit iterative splitting scheme for the problems of free thermal convection. Life Sci J 
2014;11(8s):344-349] (ISSN:1097-8135). http://www.lifesciencesite.com. 76 
 
Keywords: thermal convection, incompressible liquid, convergence of iteration, finite difference grid, difference 
equation, difference algorithm 

 
Introduction 

Sufficient number of papers [1-9] is devoted 
to numerical study of thermal convection differential 
problems described by equations (24) - (26). 
Computational algorithms to study the convective 
currents of incompressible liquid in a broad range of 
medium parameters were developed. However, there 
is no mathematical justification of the applicability of 
algorithms used in practice. 

Works [10], [11] considered iterative 
schemes based on the approximation of the 
convective sums by Samarskiy formula [6] for the 
numerical solution of difference equations of heat 
convection corresponding to difference analog of a 
differential problem (24) - (27), and [7] there were 
also investigated the questions of sustainability and 
numerical implementation. It’s rather difficult to 
study the convergence of iterative algorithms 
proposed in works [10], [11], in view of the fact that 
the coefficient of system viscosity nonlinearly 
depends on the values of the velocity components. 

 
The main part 

When  Tt0  the cube of 

}3,2,1   ,10{  xD  let’s consider 

thermal convection equations in the Boussinesq 
approximation, written to non-dimensional variables. 
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- prescribed functions, Gr  – Grashof number, Pr  - 

Prandtl number,  xt,  – temperature, 
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 - velocity vector 
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 xtp ,  – pressure, g
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 - gravitation force. 
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To define a grid difference: 
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Approximation values of pressure and 

temperature we determine in hD  grid nodes, and 

the components of the difference velocity vector 
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we find in 
hwhvhu DDD ,,  grid nodes 

respectively. 
Boundary values for the standard 

components of the velocity vector we suppose to be 
equal to zero on a half-step from the domain wall, id 
est: 
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Let’s note that the change of boundary 

conditions on the border, considering the continuity 
equation, corresponds to the second order of 
approximation. 

To approximate the system of equations (1) - 
(3), let’s consider the following splitting scheme 
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with appropriate initial and uniform boundary 

conditions, where  
321

,, xxxh рррpgrad  , that 

is, to approximate pressure derivatives there were 
used “right-hand” difference formulas; 

321 xxxh wvuudiv 


, that is, to 

approximate the divergence operator there used the 
“left-hand” difference formulas. 

h
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 - corresponds to Laplace difference 

operator when approximating the convective sums by 

Samarskiy formula, 
,, , huh LL   - difference 

operators related to the approximation of the 
convective sums and meeting the conditions of 
energy neutrality, id est 
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We show that the solutions of the difference 
problems (6) - (9) are stable in the sense of the initial 
data and according to the right member. 

Multiplying scalarly both members (6) by 
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                                                                  (12) 
Summing up partially (12) and (11) and 

applying Cauchy-Bunyakovskiy estimate for scalar 
products we have 
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  - minimum eigenvalue of Laplace 

difference operator,   - certain positive number, we 
obtain 
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                                                                 (13) 

where 21,   - certain positive numbers. 

Multiplying scalarly both members (9) by 
12 n  and keeping analogous transformations we 
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where 3  - certain positive number. 

Multiplying both members (14) by 
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where 21 ,   - certain positive numbers, 

10 3  . Let’s choose 21 ,   from conditions: 
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this means, we have established the theorem stating 
stability of problem solution (6) - (9) by initial and by 
right member. 

Theorem 1. If ,, , huh LL   are 
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c  - positive constant. 
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 and 0g , then the inequation 
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Passing into (16) to the limit we obtain that 
the solution of (6) - (9) with uniform right members 
converges to zero stationary solution for any given 
initial data from )(
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DL . 

Next, we consider the stationary problem. 
For stationary difference problem 


















 

)19(),(
~1

)18(0

)17(),(
||

~_______

,

hh

hhuh

Dxxg
Рr

L

udiv

xf
g

gGr
upgraduL














                                                               (17), (18),(19) 

0||   DDh
u               (20) 

the following theorem is valid. 
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The proof: 

Multiplying scalarly by u  (17), taking into 
account (18) equalities, 
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The theorem is proved. 
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Next, we consider the question of 
convergence of the iterative splitting algorithm. 
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with initial uniform zero boundary conditions to the 
solution of the difference analogue of the stationary 
problem. 

Introducing iteration errors 
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where ,, pu


 - solutions of corresponding grid 

stationary difference problem. 
Let’s first analyze linear situation. 
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The following theorem is valid. 
Theorem 3. Iterative algorithm (32) - (35) 

with uniform boundary conditions converges to the 
solution of the corresponding stationary difference 
problem with geometrical progression velocity, in 
this connection there is the estimate 
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with uniform boundary conditions for the component 
of the velocity and temperature. 

At first we examine temperature error. 
Multiplying both members (39) by 
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Substituting these values into (41) 

inequation we obtain 
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Applying the already known estimates for 
(42) we obtain 
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Squaring both members (46) and applying 
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where BA   ,  - certain positive numbers, 
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Multiplying the last inequation by certain 
positive number  and adding to (45) we get 
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Applying the estimate 
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Introducing the notation 
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at any n , where 
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Since, 10  q , then (47) implies the 

convergence to zero 
nz


, 
n  and 

nT  

with geometric progression velocity. The theorem is 
proved. 

Note that, if you choose )(hO , then the 

fulfillment of the condition 01 0  L  is 

equally matched to the choice of the iteration 

parameter  complying the formula Lh , 

where 0L  is an equibounded constant and the 
degree  of convergence will have the first order in 
extensive difference interval. 
  
Conclusion 

The results of this paper have theoretical and 
practical significance. The methodology of getting of 
prior estimates can be useful in studies of difference 
schemes for the numerical solution of nonlinear 
equations of hydrodynamic by finite - difference 
methods, and they make a significant contribution to 
the further development of the theory of numerical 
solution of mathematical physics problems. 

 
Conclusions 

The implicit difference splitting schemes for 
thermal convection problems in “velocity vector, 
pressure” variables were investigated in this paper 
and there were also determined: stability of 

difference problem in 2L according to the initial data 

and the right member; convergence of uniform 
problem solutions to a zero stationary solution; prior 
estimates, illustrating the boundedness of solutions of 
stationary problems; convergence and estimate of 
convergence degree of the linear algorithm written to 
displaced grids with symmetric approximation, to 
solve linear steady difference problem corresponding 
to a linear scheme of steady-state equations of free 
convection. 
 
Corresponding Author: 
Dr. Beisebay Perizat Beisebaykyzy 
D. Serikbayev East Kazakhstan State Technical 
University 
А.К. Protozanov Street, 69, Ust-Kamenogorsk, 
070004, Kazakhstan 

 
References 
1. Tarunin, Y.L., 1977. Convection in a closed 

cavity, heated below, under violation of 
balance state conditions. Proceedings of 
USSR AS. MZhG, 2: 203-207. 

2. Zhumagulov, B.T., Sh. Smagulov and N.М. 
Теmirbekov, 1989. Numerical methods of 
Navier-Stokes equations in intricate regains. 
III international seminar on flame structure, 
pp: 8-18. 

3. Bahvalov, N.S., 2005. Numerical methods to 
solve the problems mathematical physics. 
Today problems of computational 
mathematics and mathematical modelling. 
Moscow. Nauka, pp: 310. 

4. Batchelor, G.K., 1954. Heat transfer by free 
convection across a closed cavity between 
vertical boundaries at different temperatures. 
Quart. Appl. Math. Vol. 12, 3: 209-233. 

5. Berkowsky, B.M. and V.K. Polevikov, 1977. 
Numerical study of problems of high-intensive 
free convection. Heat Transfer and Turbulent 
Buoyant Convection. Washington. 
Hemisphere Publishing, 1(15): 443-445. 

6. Samarskiy, А.А., 1977. The theory of 
difference schemes. Moscow. Nauka, pp: 656. 

7. Samarskiy, А.А., and P.N. Vabischevich, 
2003. Computational heat transfer. Moscow. 
Editorial URSS, pp: 784. 

8. Danaev, N.T., 2006. On solution of Nafier-
Stokes auxiliary grid equations for 
incompreeible fluids. Notes on numerical fluid 
mechanics and multidisciplinary design. 
Springer-Verlag Berlin. Heidelberg, Vol. 91: 
55-65. 

9. Catton, I., 1978. Natural convection in 
enclosures. Heat Transfer. Washington 
Hemisphere Publishing, Vol. 3: pp: 13-31. 

10. Beisebay, P.B. and N.T. Danaev, 2007. One 
difference scheme for the equations of heat 
convection. Journal Vesnik KazNPU, 1(17): 
56-61. 

11. Beisebay, P.B. and N.T. Danaev, 2007. About 
the numerical decision free convection carried 
out at warning sideways. Journal Vesnik 
KazNU, 1(52): 71-80.  

 
 
5/23/2014 
 


