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Abstract. This paper considers some implicit iterative splitting algorithms for the difference analogues of the
system of free convection steady-state equations in variables “velocity vector and pressure”, written to shifted grids
with symmetric approximation. The problems of stability of the difference problems according to the initial data and
the right member, convergence and estimate of the linear algorithm degree of convergence were studied.
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Introduction

Sufficient number of papers [1-9] is devoted
to numerical study of thermal convection differential
problems described by equations (24) - (26).
Computational algorithms to study the convective
currents of incompressible liquid in a broad range of
medium parameters were developed. However, there
is no mathematical justification of the applicability of
algorithms used in practice.

Works [10], [11] considered iterative
schemes based on the approximation of the
convective sums by Samarskiy formula [6] for the
numerical solution of difference equations of heat
convection corresponding to difference analog of a
differential problem (24) - (27), and [7] there were
also investigated the questions of sustainability and
numerical implementation. It’s rather difficult to
study the convergence of iterative algorithms
proposed in works [10], [11], in view of the fact that
the coefficient of system viscosity nonlinearly
depends on the values of the velocity components.

The main part
When 0<?<T <o the cube of
D={0<x,<1, a=123} let’s consider

thermal convection equations in the Boussinesq
approximation, written to non-dimensional variables.

gﬁ+(ﬁ V)i + gradpzAﬁ—GTrg0+}(t,x), ()
g gl
divi =0, )
1

00

g + V)0 = P AO+ g(t,x), (3)

where x = (x,,X,,x,), f(t,x), g(t,x)
- prescribed functions, G7 - Grashof number, Pr -
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Prandtl  number, Q(Z , X ) —  temperature,
u= (u,v,w) - velocity vector
(u=u(t,x),v=v(t,x),w=w(t,x)) and
p(l‘ ,x) —pressure, & - gravitation force.
Boundary conditions: # = @ = 0 npu
x e oD 4)
Initial conditions:
1(0,x,%,,x) =0"(x,,x,,x,), &0.x,
To define

x.x)=60(x,x,x,)> (5)
grid difference:

a
Z:M:

T

t =mm, n=0,..,

Dh: (kh,lh,mh )7k:l>m:m,Nh =1

D,

. kh LU+ o), mh)k,m 0,N, 1=0,N -1

|

D,, —{(k+/)hlhmh)k—0N—ll O,N}
|

P |

(kh Ih (m+/)h) =0,N, m=0,N -1

/1w
Approximation values of pressure and

temperature we determine in [, grid nodes, and
the components of the difference velocity vector

e '
U= (uk+y1m ’vk1+ym’ Wklm+%)
wefindin D, , D, ,D, gridnodes
respectively.

Boundary  values for the standard
components of the velocity vector we suppose to be

equal to zero on a half-step from the domain wall, id
est:
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= uN_%lm =0, [,m=

- ka—%m = 07 kam = O,l,..., N,

W/d% -

Let’s note that the change of boundary
conditions on the border, considering the continuity
equation, corresponds to the second order of
approximation.

To approximate the system of equations (1) -
(3), let’s consider the following splitting scheme
w+LM[/”% +grad, p" = K" —%9”*' ey ©

_ am%

k,l=0,,.., N.

WldN—% = 0’

—n+l

+gr71h(p”” —p”)=0, (7

. . 1
div ,u"" =0,

n+l n
u-l— Lh ggrwl — 17
T ’ Pr
with appropriate initial and uniform boundary
conditions, where grad WP = {pxl s Py, Py, }, that

is, to approximate pressure derivatives there were
used “right-hand” difference formulas;

div,u=u- +v- +w-
E— X1 X X3

®)
507 g O

, , that is, to

approximate the divergence operator there used the
“left-hand” difference formulas.

~

A, - corresponds to Laplace difference
operator when approximating the convective sums by

L -

has he
operators related to the approximation of the
convective sums and meeting the conditions of
energy neutrality, id est

(Lh,aﬁ’ )= (Lh,e‘ga 6)=0. (10)

We show that the solutions of the difference
problems (6) - (9) are stable in the sense of the initial
data and according to the right member.

Multiplying scalarly both members (6) by

12
d

Samarskiy formula, L difference

n
27T

2
ﬂ_]’H»% ‘

and taking into account (10), we get
2 TS nt
" g +21'[gradkp",ﬂ‘ %j+

U

2 G n+ - n+
:—zr%(ge"“,a %)+ Zr(f",z? %]

\g\ (11)

Here and below H - || - norm function in L, .

2r Vhﬁm%
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() by

n+ ! — e
a " +12(gradh p" +grad, p”j and

Multiplying

taking account (8) we get

2

2 2
+77

— o+l

i

|
(12)
Summing up partially (12) and (11) and
applying Cauchy-Bunyakovskiy estimate for scalar
products we have

o +2lgrad,p| +| o] +2q9, 07 <
| +(grad, | +2GH |0 ||+ 27|
Using the known inequations
ol < Val m
2
a-b<ea’+ ",
4¢
where O , - Mminimum eigenvalue of Laplace

difference operator, & - certain positive number, we
obtain

TR I e P &G £, Y P
T e Z[ITF] v, <
IR Y St " ? G = el |2 a2
< Hﬂ H +7°|grad , p"| + 25‘;0 Hth ‘H + 28:/5”.7 H s
(13)

where &), &, - certain positive numbers.
Multiplying scalarly both members (9) by

276" and keeping analogous transformations we
have

9n+]

2 2

=nll7,

2 Pr
< B
26,&,

| e - -0

(14)
where &5 - certain positive number.

(14) by

, taking 0<e&; <1 , where

Multiplying both  members
Ra

4e,(1-¢&5)0,

Ra = Gr Pr - Rayleigh number, adding obtained
inequation partially to (13), in which the following
representation is applied

GG 0 =21y
2g,0, Pr

and introducing the notation

GrPr
4e,(1-¢5)0,

>

2
\V/ n+l
Vis0

2
2

—n n

Ra
i |

+7
4e,(1-¢,)0,

n o__ 2 2
E" = +7

grad , p"

we obtain
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i _&Gr wy Ra i gl
E +z{1 s ﬁj R R R A
B T RaPrr [
<E 2 ? H 8¢,(1—5,)0¢, " H ’
(15)
where &,, &, - certain positive numbers,

0<g; <1. Let’s choose ¢,, &, from conditions:

e, Gr £
l-—L——-—2>65>0.
o, o
Then from (15)
E"<E° nt 2 Ra Pr 2
EENEWS 71 + 8o (-z00s, "7 lel:

If it is remembered that by the construction
ofgrid nt <T, then from the last inequation

Ra Pr 2
E"<E° T ’
2A/ 0 €2 881(1—53)50283 lel-
where
= max | = max H ”H B
Hf * OSnSM‘ ' 0<n<M g Y

this means, we have established the theorem stating
stability of problem solution (6) - (9) by initial and by
right member.

Theorem 1. If L, ., L,,
energetically neutral, then there are positive constants
M |, M ,, which are independent of hoand T , and
whereby the following estimate is valid

E"<E"+ M |f

where

are

2
o Mle

2
()’

gmd P

=ma
0<n<M

=maxg"|’

£ =l
0<n<M

C - positive constant.
If f:O and g = 0, then the inequation
(15) takes the form

2

1 2 ME— :
= izn% i +7 g?‘a‘a{,(p*l -p) +
: _&Gr & Y g _
2{1 % x/gu]vhu 45(1 6)6 - i

(16)

Passing into (16) to the limit we obtain that

the solution of (6) - (9) with uniform right members

converges to zero stationary solution for any given
initial data from L2 ( Dh ) .

Next, we consider the stationary problem.
For stationary difference problem
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L, ﬂ+gmd,p Aﬂ——@-ﬁ—](v) 17
Fe
divii =0 18)
LMH:L~N +g(x),xeD, 19)
r
(17), (18),(19)

u |6Dh: 0 |aD: 0
the following theorem is valid.

Theorem 2. For solution of # and & of the
problems (17) - (20) prior estimates are valid

(20)

v ,00< el an
<9
Ra 1
Vi< ——|g|l+ —|f| (2
7.al< 5 2o lel 7]
The proof:
Multiplying scalarly by # (17), taking into
account (18) equalities,
(Wh p,i) =—(p,div, i) and

(L, f,i) =0, we obtain

Gfg 0, |+(7.a)

¥4
Using Cauchy-Bunyakovskiy

(vhaavha) ==

inequalities

and . /&, HIZH < we have
— Gr |~ 1
v a|< 2w o)+ ——|7]. @3
V| : v,.0)+ o |71

Multiplying (19) scalarly by @ taking into
account the equality (10) we obtain

o~ 2
HVhHH =Pr(g,0).
Therefore, applying Cauchy-Bunyakovskiy

=
inequality (21).

Estimate (22) follows from (23) and (21).
The theorem is proved.

inequalities and ‘QH < ‘v hQH we arrive at the

(@#V)ia + gradp = Ai— g-Gr6’ + f(x), (24)

2
div u = 0, (25)
1
(#V) =— A0 + g(x), (26)
Pr
ilp=0, @n
Next, we consider the question of

convergence of the iterative splitting algorithm.
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A 1
+L/1,l;ﬁ} /+g}"ad/1p 7A/1~n+/ G‘r‘g gnﬂ +f(x)
T
(28)
ﬁnﬂ ~”+12
+grad ,(p"'-p")=0 (29
: — 1
div ,u"" =0, (30)
n+l1 _ n 1
H H +Lhﬂgﬂ+1 Ah9n+1+g(x)’
v r
(31D

with initial uniform zero boundary conditions to the
solution of the difference analogue of the stationary
problem.

Introducing iteration errors

B 1’) B 1’) n n n n n n
2 g g, zt=at—a, x'=p'—p, T'=0"-0

where U , P, 6 - solutions of corresponding grid

stationary difference problem.
Let’s first analyze linear situation.

n+%__.
a . + grad , p" =Ahﬂn+% _G;§€n+1 +f(x)

(32)
— n+l1 _ *”*’%
“ “ +gradh(p””—p”)=0 (33)
div ,u""' =0, (34)
0n+1 0/1 1

= —A,0"" + g(x) (35
T Pr

The following theorem is valid.

Theorem 3. Iterative algorithm (32) - (35)
with uniform boundary conditions converges to the
solution of the corresponding stationary difference
problem with geometrical progression velocity, in
this connection there is the estimate

F"'<gF", 0<gqg<l,
where
n n 2 2 n 2 n 2
F" = cl‘Z +7 ngadhﬁ H +(c, + c;j‘T
¢,, C,, C, -positive constants.
The proof:

In linear situation the equations for error are
given by

o l
z2r-z . z +grad,x" = A, Z'H/ Gr gT”*l (36)
Z,n+l _Z.”'*'% |
+grad, (7" —7")=0  (@37)
|
leth+ =0 , (38)
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n+1 n
T T LA Tn+l
T Pr

with uniform boundary conditions for the component
of the velocity and temperature.
At first we examine temperature error.
Multiplying both members (39) by

(39)

1
277" scalarly we obtain
HTn+1 2, HTn+l P s Z—T“VhT"*‘ 2 _ HT 2
T
(40)
Multiplying (36) scalarly by
Lon+ !
272 A we obtain the following inequation
Fa +HZ”% —z7 +2r(gradh7r”,2”%)+
aet/ | i ,,_
-2THth’ Al <206 & 2
8
(41)
From equalities
_.’H'% _.n+1 n
Z +rgrad (""" = x") | got
from 37), and

( "”,grad 7z_n+1) (leZn+1 n+1):0’

got from (38), the next equations are followed

2
|
= |l

|

2r(z™ grad " )-27*(grad, n™ grad, z" )

ZT(MQ””J”—%): 2t(grad, n",2"" )+

3¢ (grad " grad, m" )— 2 Hg;— .

Substituting  these values into (41)
inequation we obtain
-1l & | net | -rn_l/g - ’ -
Z +T_Hgf"adhﬁ +|(Z -z" +2 VhA
‘an T—‘( T™ 2 n—/}
(42)

Applying the already known estimates for
(42) we obtain

yl
2 1 =
pf e oz

i

_|_
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SG?" i a1 [
(- v < .
(43)
where & - certain positive number.
Write over the equality (40) as
2 2T 2
Tn+1 i Tn+1 _FE —(l —c Tn+1 +
Pr 2| Y n
Zi Tn+1 2 —
Pr !

with certain &£, € (0;1].
Multiplying both members of the equality by

Ra
——— , where Ra=GrPr - Rayleigh
40,8,&,
number, we obtain
45RZS HTIHI 2 * Z;Gsrs (l_gl) K l 28,8, HV < 45R:s HT“ i
(44)

Adding (44) and (43) we obtain the
inequation

v, 2" %3+1Gr(1—£2)

Pl P 4"”2 +2r[ £,Gr J v, o[ <E".
S5, 26,¢,¢,

(45)
where

2 - 2 Ra 2
E" = +7° +— 7"

! 46
06162
. 50 .

Therefore, setting () < g <=+ we obtain

7
O<E"™ <E" for any 71, id est the convergence
of sequence £ .
Expressing rgradhﬁ” from (36) and carrying on
the known estimates we get

el Gr
HA,,Z g

[

et

Applying estimates

Az < Coly 2

>

where ¢, invariable which is independent of Z and

, we arrive at the

inequality

(46)

— c,T
ngmd W HS “7

o e

Squaring both members (46) and applying
inequation (a+b+c) <3(a*+b° +c?)
obtain

we
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R b e R
Ah
SL(HZ”‘%’Z“HZ N . TBHV,,T""\“),
where A, B - certain positive numbers,
2 2
c, 7 1Gr
L=31+ "+~
AR BS

Multiplying the last inequation by certain
positive number O and adding to (45) we get

n : w Y| 1-
E”*'+‘z %—z”H +27 1——5'Gr v,z % TGF( iz )H
o, 26,¢,€,
<E’ +aLUz“*%fz"H‘ +rAHV,,z“*% By, )

Setting 4 = 2[1 - 81Grj, g oll-a)

0 26,¢,€,
choosing &, from conditions 0< g < 1,
I—OLZ% >(), we obtain
1 = 1/ |
E™ +a, PR +tda, "

+1Ba, |V, I <E"

n+1

and

Applying the estimate 0, ‘

substituting the values E ", E "' we get

Ra [1 g 41?96(};?8182 J HTMH;

i+l n+
(1+7:4a51‘2 ‘| +7 "gradﬁ H + pr

liddas)— T+
( 25) |

1+ #e,9,

+7°(1 - a )grad atf +

al?

Ra 4B e 6,6,8, 1
1+ ‘
PoEE Ree  AeBm SEE,

01™2
Ra
Introducing the notation

2

F"=(0+1da,s, ]‘Z“HZ + rZngWhn“Hz + "

Ra 4tBa,d,¢, ¢,
. 2
46,88, Ra
we obtain

Fn+l < an
at any n ,

(47)

where

1

=max{———,1l-a, ———a——+.
9 1+ 74 (1050 1+ 4TB(1050€1€2
Ra
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Since, 0<g<1 , then (47) implies the

Tn

with geometric progression velocity. The theorem is
proved.

Note that, if you choose & = O(h), then the

fulfillment of the condition 1—al>a, >0 is
equally matched to the choice of the iteration

= n

z

convergence to zero and

ﬂ”‘

parameter T complying the formula t<Lh ,

where L >0 is an equibounded constant and the
degree of convergence will have the first order in
extensive difference interval.

Conclusion

The results of this paper have theoretical and
practical significance. The methodology of getting of
prior estimates can be useful in studies of difference
schemes for the numerical solution of nonlinear
equations of hydrodynamic by finite - difference
methods, and they make a significant contribution to
the further development of the theory of numerical
solution of mathematical physics problems.

Conclusions

The implicit difference splitting schemes for
thermal convection problems in “velocity vector,
pressure” variables were investigated in this paper
and there were also determined: stability of

difference problem in L, according to the initial data

and the right member; convergence of uniform
problem solutions to a zero stationary solution; prior
estimates, illustrating the boundedness of solutions of
stationary problems; convergence and estimate of
convergence degree of the linear algorithm written to
displaced grids with symmetric approximation, to
solve linear steady difference problem corresponding
to a linear scheme of steady-state equations of free
convection.
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