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Introduction 

When such widespread methods as the finite-
difference method, the grid-projection method and 
many others are used for numerical solutions of 
boundary value problems of differential equations [1, 
2, 3, 4 and 5], it leads to the use of the sweep method. 
Thus, the sweep method occupies an important place 
among the most commonly used numerical methods. 

The sweep method is specifically intended 
for difference equations that appear while writing 
difference relations for differential equations. The 
computational stability of the sweep method is 
guaranteed if there is a diagonal dominant matrix of 
difference equation system. In turn, for corresponding 
differential equations, this characteristic means that 
the coefficient must be positive for a desired solution. 
When there is a good computational stability, the 
sweep methods show themselves as a widely 
applicable way for the numerical solution of boundary 
value problems of second-order differential equations. 
Currently, there are various estimates for stability 
conditions of the sweep method (up to strong criticism 
[6]), but, nevertheless, this class of methods positively 
is received and is one of the main tools for computing 
specialists, as evidenced description of these methods 
in educational books. 

No doubt, the decisive role belongs to the 50-
year practice in the application of the sweep methods 
to specific problems. 

Unfortunately, the rigorous substantiation for 
the application of such methods leaves much to be 
desired because there is a significant gap in a set of 
strict results. For example, in [7] (с. 560-565) one can 
find a detailed analysis of sweep formulas and a 
description of difficulties in the closure of a 

computational algorithm, because in starting point, 
forward-sweep formulas act as a quantity inverse to 
grid step. 

In various sources, there are many examples 
where the sweep method does not give unsatisfactory 
results for boundary value problems. In particular, 
such examples can be found in [8]-[9]. An 
unsatisfactory result can occur in the case when all 
conditions of sweep method applicability are met. 

Such unfavourable situation can be caused by 
the accumulation of computational errors. One can 
ignore the influence of computational errors on the 
decision in the calculations with relatively large steps 
h. But it is still worth bearing in mind that 
computational errors can accumulate while using the 
sweep method for solving boundary value problems of 
a difference equation system. It is well-know that 

if 0h , a computational error can increase in 

proportion to
2/1 h

.
 So, a catastrophic loss of 

accuracy is possible at quite small values of step h. 
Such unacceptable loss of accuracy occurs due to a 
significant distortion of the desired value at the stage 
of working out difference equations ([8], p. 499). That 
is, the situation is caused by lack of the finite-
difference method, but not the sweep method. This 
fully accords with K.I. Babenko’s book [6]. 

From the above we can conclude that, in the 
toolbox of computational mathematics, it is necessary 
to have a series of recurrence formulas similar to 
sweep formulas but at the same time alternative to 
classical sweep formulas. Besides, it is desirable that 
suggested formulas are more computationally stable 
for a wide range of problems than it is for known 
types of sweep methods. 
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This paper is aimed at deriving recurrence 
formulas similar to sweep formulas for the numerical 
solution of boundary value problems of second-order 
differential equations when the sweep method can 
lead to disappointing results. In particular, the most 
important question is the presence of sweep formulas 
while the coefficient is negative in the equation, and 
boundary conditions do not satisfy the stability 
conditions of widely used sweep method. 

 
2. Problem definition 

Let us consider a second-order differential 
equation 

f(t),=q(t)y(t)(t))(k(t)y ''   10  t  (1) 

with the following boundary conditions 

00 )0()0(0 β=yy)k(    (2) 

11 )1()1(1 β=yy)k(    (3) 

where 1010 ,,,   − real numbers. 

Where   ,10 =β,β . Suppose 

coefficients of equation q(t)f(t), are continuous 

on segment   ,1 0,  coefficient k(t)  continuously 

differentiable on   ,1 0, and 0.0 >kk(t)   

In order to study the questions of the 
numerical solution of this boundary value problem, we 

will divide segment  1 0, into N equal parts by 

introduction of nodal points 

.1t0 10  Ntt=   If we mark h  as the 

distance between nodes (the grid spacing), then 

,
N

=h
1

 ,
N

n
=tn ( N,=n ,,20  ), where N is 

integer number of segments of the partition (grid 
spacing might be uneven). Later on we denote by 

)y(tn  value of exact solution of the boundary value 

problem (1) - (3) at nt , and by ny and ny - 

corresponding to the approximate solution and its 
derivative constructed by the numerical method under 
consideration. Also, for convenience, we shall use the 
notation of the form  

,nn k=)k(t  ,dttq=μ
n

n

t

t

n 
1

)(  ,dttf=
n

n

t

t

n 
1

)(  

,
tk

dt
=l

n

n

t

t

n 
1

)(
 .,21 N,=n   

 
It is necessary to derive recurrence sweep 

formulas of numerical solution of the boundary value 
problem (1)-(3) and study them for consistency and 

stability, thereby stating the conditions for the 
applicability of derived formulas. 

 
3. Recurrence formulas for the numerical solution 
of boundary value problem (1) – (3), in case when 

0,0 0  q(t) .  

Description of the algorithm 

In case when 0,0 0  q(t) , the 

following recurrence formulas can be used for the 
numerical solution of boundary value problem (1) – 
(3): 

 
Forward formula: 

,00 =a  
nn

nn
n

la+

μ+a
=a

1

1

1 


, (4) 

,00 =v   
nn

nn
n

la+

σ+v
=v

1

1

1 


 (5) 

For all N,=n ,,21  . 

 
Backward formula: 

1

1









N

N
N

a

v
=y ,

)1(1
11

nnn

n
n

nnn

n
n

lak

hv
y

)la+(k

ha
=y













, (6) 

For all 1,1, NN,=n , provided 

that .1Na  

 
Consistency proof 

In order to prove consistency, we will show 

that if 0h , then, from above recurrence formulas 
(4) - (6) we can get a Cauchy problem for three first-
order differential equations. This problem, in its turn, 
is equal to original boundary value problem (1) – (3). 

From formula (4) we get  

nnnnnn +a=laa+a 11  or 

nnnnnn laa=aa 11    . 

If we divide both parts of this expression by 

h  and pass to the limit while 0h , we can get 
differential equation which is called Ricatti 

q(t)=(t)a
k(t)

+(t)a' 21
, 00 =)a(  (7) 

Reasoning quite similarly, we can become 
convinced that the following differential equations are 
the differential analogues for respective recurrence 
formulas (5) - (6):  
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f(t)=a(t)v(t)
k(t)

+(t)v' 1
  00 β=)v( , 

    (8) 

v(t)=a(t)y(t)(t)k(t)y'   
)1(

)1(
)1(

1

1

a

v
=y









    (9) 

Provided that 11 )a( , where the latter 

equation of the system is integrated from right to left.  

Justification that the solution y(t)  of the 

resulting differential system is also a solution of 
boundary value problem (1) - (3) that can be found in 
the book [10]. There's also conducted some analysis of 
this system, however, corresponding to them discrete 
formulas for the numerical solution are not given. This 
paragraph of this article, in a sense fills this gap. 

 
Stability proof 

Now let us receive evidences that the above 
recurrence formulas are computationally stable. It 
should be noted that by condition 

   ,dttq=μ
n

n

t

t

n 0)(
1




 00    

and hence, as seen from the formula (4) it 

follows that 0na , so, inequality 1
1

1

1


 nn la+

 is 

satisfied for all N,=n ,21 . This fact ensures the 

stability of calculation by formulas (4) – (5). In 

formula (6) if ny , the factor can be rearranged in the 

form 
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Since by condition 



n

n

t

t

n dt
tk

dt
=l

1

0
)(

 and 

0na , then inequality 1
1

1


nnla+
 will be 

satisfied for all 1,1, NN,=n . This guarantees 

the stability of calculation by backward formula (6). It 
is notable that the above recurrence formulas (4) - (6) 
approximate the original boundary value problem with 
the first order of accuracy. If necessary, recurrence 
formulas similar to (4) - (6) can be written. These 
recurrence formulas provide a higher accuracy than 
the above ones, but this paragraph is aimed at 
justifying the correctness of formulas (4) - (6) that 

form a basis for the algorithm of the numerical 

solution of problem (1) - (3), in case when .0q(t)  

The reduction of boundary value problem (1) 
- (3) to Cauchy problem (7) – (9) and its subsequent 
solution is called a differential sweep method or 
simple factorization method. When in equation (1) 

0q(t) , this method was studied by many authors, 

such as Gelfand, Lokutsievsky, Marchuk, Ridley etc. 
Many distinguished mathematicians contributed into 
the development of the sweep method in relation to 
different problems. They include: A.A. Abramov, N.S. 
Bakhvalov, V.S. Vladimirov, A.F. Voyevodin, S.K. 
Godunov, L.M. Degtyarev, I.D. Safronov etc. 

As a result, today there are many 
modifications of the sweep method, such as: classical, 
flow, cyclical, orthogonal and non-monotonic 
modifications. All of them are designed for solving 
equation systems that appear in the course of the 
approximation of boundary value problems. Besides, 
they are modifications of classical sweep method. 
Each of them can be chosen to solve a specific class of 
problems. 

 
Numerical examples 

As a numerical example, we will consider 
boundary value problem  

   0,25 =y(t)(t)y ''   

10  t , 1y(0)0  )(y , 1)1(1  y)(y . 

In the conditions of this example 1k(t) , 

25q(t) , 0f(t)  11010   = . In 

numerical calculation with step 100=N , by 
formulas (4)-(6), the greatest absolute error is 

0.003=δ . 
 

4. Recurrence formulas for the numerical solution 
of boundary value problem (1) – (3) in case when 

0,0 0  q(t) . 

Description of the algorithm 
Forward algorithm organization.  

We will begin calculations with the following 
formulas calling them forward formulas for a negative 
“entry” 

,
μb+

l+b
=b

nn

nn
n

1

1

1 

  ;=b
0

0

1


 ,

μb+

σb+d
=d

nn

nnn
n

1

11

1 

  

;=d
0

0
0 


 .1,.... 1θ=n    (10) 

where 1θ  is such a number that for all 

11,..., 1θ=n , values 0,nb  and 0
1

>bθ . That 
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is, here the value of number n , for which 0
1

>bθ , 

for the first time, is denoted by 1θ  (if there is not such 

a number ,θ1 , then the calculation by these formulas 

will be conducted to the right end of the segment). 
As formulas (10) are designed for a negative 

“entry”, thus we will take 0
1

1

1
>

b
=a


 , 

1

1

1






b

d
=v , and continue the calculations with the 

following formulas calling them forward formulas for 
a positive “entry”: 
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1 
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b
=a ; 
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1 
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b

d
=v ; .1,..., 21 θ=n    (11) 

where ,θ2  is such a number that for all , 

values  0,na  and 0
2

<aθ . If the input value 

,na  for formulas (11) on a number 2θ  are becoming 

negative, using the relations 

2
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θ

θ
a
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2
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θ
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θ
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v
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then we will move to formulas (10). That is to say the 
calculation will continue by forward formulas for a 
negative “entry”:  
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θ
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v
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.1,..., 32 θ+θ=n  

where 3θ is such a number for all , values 

0,nb  и 0
3

>bθ  (if there is not such a number, 

then calculations by formulas ,θ3  then the calculation 

by these formulas will be conducted to the right end of 
the segment). Then, if needed, the above procedure is 
repeated in the next possible transition points. 
Thereby, this method is suitable for many transitions 
between forward formulas of positive and negative 
“entries”. The number of such transitions depends on 

the value of function .q(t)  

 If we denote kθ  is the number on which the 

latter transition from formulas (10) to (11) was 

performed, or vice versa, then  k21 ....,θ,θ will 

be a set of indexes that are “transition step numbers”. 

And accordingly, a set of indexes from 1 to N,  is 

divided into subintervals;  10, θ ,  21 ,1 θθ  , 

 32 ,1 θθ  , …,  1-k2-k ,1 θθ  ,  k1-k ,1 θθ  , 

 Nθ ,1k  . In terms of this notation can be argued, 

that transition from (10) to (11) and back, is done by 

means of relations 

jθ
jθ

b
=a

1
, 

jθ

jθ

jθ
b

d
=v , where jθ  

is the index number from which transition 

( .1,2,...k=j ) is performed, and j  is the number 

of transition.  
So, the alternate use of forward formulas (10) 

and (11) for negative and positive “entries” allows us 
to calculate to the right end of the segment and 
thereby to complete the “forward stroke”. At that, on 
last segment, where it is conducted the calculation of 

forward formulas, that is on  Nθ ,1k  , two 

mutually exclusive cases are possible: 
1) Calculations by forward formulas 

(10) for a negative “entry”; 
2) Calculations by forward formulas 

(11) for a positive “entry”. 
 

Backward algorithm organization 
In the first case, we will set 

N

N
N

b

d
z

1

11

1 






 (provided that 

1

1


Nb ) and 

begin backward calculations by the following 
formulas calling them backward formulas for a 
negative “entry”. 

nn

nnnn
n
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σdμz
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1 


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

, 1111   nnnn dzb=y
; 

1.2,1,.... +θ+θNN,=n kk
    (12) 

Then, beginning with step kθ , we continue 

calculations by the following recurrence formulas that 
can be called a backward formulas for a positive 
“entry”.   
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11

nnn

n
n

nnn

n
n

lak

hv
y

)la+(k

ha
=y












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1.2,...... 11 +θ+θ,θ=n kkk     (13) 
In order to continue calculations for index set 

 1, 2-k1-k θθ ]θ[θ kk 1, 21  , backwards, we 

need a turn to backward formulas for a negative 
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“entry” (12). The latter two values 11kθy and 

1kθy calculated by formula (13), make it possible to 

find 
1kθz by formula 

1

111

1









kθ

kθkθ

kθ
hk

yy
=z . 

Then, for all indexes from 1 kθn  to 

12 +θn k  , calculations are conducted by formulas 

(12). At the next interval  1, 3-k2-k θθ  calculations 

are performed from right to left by formulas (13). 
Thus, by alternating backward formulas for a negative 
“entry” (12) and backward formulas for a positive 

“entry” (13), we can find all desired values ny , 

.1,...,1)N=(n   Besides, if it is necessary to turn 

from (13) to (12), it can be made by formula 

jθ

jθjθ

jθ
hk

yy
=z

1

, where is the number of index 

from which transition )kk,=(j 1,...0. , and j  is 

the number of transition. 
In the second case, we assume 

that
1

1









N

N
N

a

v
=y , (provided 1Na ) and 

calculations continue by formulas (13) that is by 
backward formulas for a positive “entry” from index 

N  to 1+θk . On index kθ , when it is necessary to 

turn to (12), we calculate by formula; 

kθ

kθkθ

kθ
hk

yy
=z

1
, and calculations will continue 

by the formulas (12) for all indexes of interval 

 1, 1-kk θθ , from right to left. Then we organize 

this backward numerical process in perfect analogy 
with the previous case that is we alternate backward 
formulas for a negative and a positive “entry”. This 

can let us obtain all desired values 1ny , 

.1,...,1, )NN=(n    

 
\Consistency proof 

Now we will study the following system on 
the first-order differential equations: 

k(t)
=(t)q(t)b+(t)b' 12

,  
0

1
0


=)b(   (14) 

b(t)f(t)=t)q(t)b(t)d(+(t)d'
, ;=d

0

0)0(



. 

     (15) 

q(t)d(t)f(t)=t)q(t)b(t)z((t)z'  ,  

)1(1

)1(
)1(
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
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


 .     (16) 

when  
1

1
1


)b( . Here the latter equation of 

the system is integrated from right to left. If we know 
the solution for this system, we can write the solution 
for original boundary value problem in the following 
form: 

d(t)b(t)z(t)=y(t)      (17) 

It is true that if we differentiate this 
expression and use equations of the system (14)–(16), 

we will get 
k(t)

z(t)
=(t)y'

 or z(t)=(t)k(t)y'
. Thus, 

we obtain an original equation: 
  q(t)y(t)+f(t)=d(t)b(t)z(t)q(t)+f(t)=t)q(t)b(t)z(+q(t)d(t)f(t)=(t)z=(t))(k(t)y ''' 

Now if we take 
0

1
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
=)b( , ;=d

0

0)0(



 then the 

boundary condition at the left end of the segment is 
satisfied automatically. In order to determine the 

initial value for z(t) , when 1=t  we have 

)d())z(b(=y(t) 111   и 
)k(

)z(
=)(y'

1

1
1 . Hence, 

with the boundary conditions (3), if 
1

1
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)b( , we 

have 
)1(1

)1(
)1(

1

11

b

d
z


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


 . Thus, we show that 

function d(t)b(t)z(t)=y(t)   is a solution for (1)-

(3), where b(t) , d(t) , z(t)  are the solutions of 

differential system (14) – (16). Backwards, from 
boundary value problem (1) – (3), we get system (14) 
– (16), as follows. 

 The desired solution will be sought in the 

form d(t)b(t)z(t)=y(t)  , where b(t) , d(t) - yet 

unknown functions (the sweep coefficients) for which 
it is necessary to obtain the differential equation. So, if 

in this equation (1) we take z(t)=(t)k(t)y'
, then we 

will get the equation (16). Further, considering just 
introduced relations and equations (16) we have 

 
=(t)]d(t)b(t)z+(t)z(t)k(t)[b=d(t)]z(t)k(t)[(b(t)=(t)k(t)y ''''' 

)()()()()()()()( 2 tdb(t)f(t)tdtbtqty(t)]btqtk(t)btk(t)[k    
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After leading to similar terms we have the 
equality 

.0)()()()()(1)()()( 2  tdb(t)f(t)tdtbtqty](t)btqtk(t)bt[k  

Equating the coefficients to zero by (t)y'
, 

and to unity, we obtain two differential equations for 
the sweep coefficients, i.e. equation (14)-(15). From 

expression (17) if 0=t  and left-end boundary 
condition we get 

000 0)01(0 β=)d()b()z(   . Here, 

considering 
0

1
0


=)b( , we get ;=d

0

0)0(



. The 

initial value for z(t)  is obtained by analogy. Thus, it 

was shown that the boundary value problem (1) - (3) 
and a system of differential equations (14) - (16) have 
the same solution. In system (14) – (16) we can make 
the following substitution in points where function 

b(t) , do not become zero. 

b(t)
=a(t)

1
,  

b(t)

d(t)
=v(t) , 

d(t)b(t)z(t)=y(t)  .    (18) 

As a result, we come to another system of 
first-order differential equations: 

q(t)=(t)a
k(t)

+(t)a' 21
  (19) 

f(t)=a(t)v(t)
k(t)

+(t)v' 1
   (20) 

v(t)=a(t)y(t)(t)k(t)y'     (21) 

As the previous one, this system is equal to 
the original boundary value problem (this can be 
shown similarly to how it was done with system (14)-
(16)). Initial values for differential equation system 
(19)-(21) are determined from relations (18). As it 
follows from (18), if necessary, we can perform a 
backward transition from system (19)- (21) to (14)-
(16), using relations 

a(t)
=b(t)

1
,  

a(t)

v(t)
=d(t) , v(t)+a(t)y(t)=z(t) . 

Passing to the limit when 0h , in 

recurrence formulas  nn d,b  from (10) we obtain 

differential equations (14)-(15). Similarly, in the limit 

when 0h  in recurrence formulas (12) we obtain 
equation (16). In the same way, we can become 
convinced that differential equations represented by 
system (19) - (21) are the analogues for corresponding 
recurrence formulas (11), (13). The equivalence that 

the decision )(ty of each of systems (14)-(16) and 

(19)-(21) to original boundary value problem (1)-(3) 
was shown above.  

 
Stability proof 

According to the condition 

,dttq=μ
n

n

t

t

n 



1

0)(  and to the construction of the 

algorithm, in formulas for  nnn zd,b , which 

means that inequality 1
1

1

1


 nn μb+

 is fulfilled for 

all 01 nb . This fact ensures the stability of 

calculations by formulas (10) and (12). Similarly, the 
stability of calculations by formula (11) guarantees 

inequality 1
1

1

1


 nn la+

, which is always which is 

always satisfied by virtue of the fact that according to 

the problem we have the inequality 0
)(

1




n

n

t

t

n
tk

dt
=l  

and the condition of the algorithm 01 na . Thus, 

the condition of stability can be seen in all the 
formulas directly except formula (13). In formula 

(13), the factor at ny  can be converted to the form: 

   22

1

1

1

1

1

1
1 hO+

la+
=hO+

)la+(k

ha
k

ha
+k

=
)la+(k

ha)la+(k
=

)l+(ak

ha

nnnnn

n

n

n
n

nnn

nnnn

nnn

n













 
Since, in the construction of the algorithm 

0na , then the inequality 1
1

1


nnla+
 is 

performed.  
From the above considerations it follows that 

the above algorithm is correct, if the condition is 

1

1


Nb  under the first of these possible cases. But 

the condition 1Na , guarantees the correctness of 

the algorithm in the implementation of the second of 
the cases at the end of the billing interval. If these 
conditions are not met, then we can start the 
calculation from the right end of the segment that is to 
organize the process of “backward sweep”. 

 
5. Recurrence formulas for the numerical solution 
of boundary value problem (1) – (3) in case when 

0,0 0  q(t) . 

In this case, the calculation begins by 

formulas (11) with initial values 00 a , 00 v  
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and then the process of numerical solution is 
organized similarly to the previous case, that is when 

0,0 0  q(t) , which was described in detail 

above. 
 

Numerical examples 
1. For a numerical example, let us study 

boundary value problem 0,81 =y(t)(t)y ''   

10  t , 1010y(0)0  )(y , 

1)1(1  y)(y . In the conditions of this example, 

1k(t) , 81q(t) , 0f(t)  010 = , 11 =  

010 =β , 11 =β . If we perform numerical 

calculations with step 100=N , then, according to 
the above algorithm, the greatest absolute value is 

0.436=δ . Such low accuracy is caused by the fact 

that function q(t)  and the number of steps N  are 

the values of the same order in this example. 
Nevertheless, such accuracy does not contradict the 
first accuracy order guaranteed by the stated method. 

And if we calculate with step 0100=N , the same 

error is 0.058=δ . 
2. For the next numerical example, let us 

study boundary value problem 0,81 =y(t)(t)y ''   

10  t , 10100y(0)0  )(y , 

1)1(1  y)(y . In the conditions of this example; 

1k(t) , 81q(t) , 0f(t)  0010 = , 11 =  

010 =β , 11 =β . If we perform numerical 

calculations with step 100=N , then, according to 
the above algorithm, the greatest absolute error is 

0.085=δ . And if we calculate with step 

0100=N , the same error is 0.021=δ . 
 

6. Conclusion 
In this paper authors suggest recurrence 

formulas for the numerical solution of boundary value 
problem (1) - (3). These formulas have a wider field 
of application in solving boundary value problems of 
second-order differential equations. They work both 

with positive and negative coefficients q(t) . Besides, 

these formulas can be used with discontinuous 
coefficients of equations. The results obtained in this 
article are proved by computational data. These results 
and ideas of this paper can be generalized for 

numerical solutions in case, where )(tq  is an 

alternating function, and other kinds of boundary 
conditions for higher-order differential equations.  

After a slight modification method presented 
here can be used for solving linear partial differential 
equations. The above algorithm does not directly work 

in the case, when 0,0 0  q(t) . In this case, 

if 01  , then numerical solution process can begin 

at the right end of the segment using formula (4)-(6). 

But if condition 01   is not performed, then 

foregoing algorithm becomes numerically unstable, 
and thus its use can lead to disappointing results. 

Drawbacks and benefits of this represented 
method can be clarified on the basis of practical 
application of this method by specialists in 
computational mathematics. 
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