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1 Introduction: — ;
®(x,y)dxdy = P, (P is a constant
The mathematical formulation of physical fo () Y ( )

phenomena, and contact problems in relationships the
theory of elasticity, often involves singular integral
equation with different kernels. In Mkhitarian and
Abdou [1,2], using Krein’s method, Mkhitarian and _ :
Abdou obtained the spectral for the integral operator (? g _ i(x’ y,z) € g IXI < | |}|’ |>< ai ||Z|_<O§O}
containing logarithmic kernel and Carleman kernel, B) @={(x.y,2) €Qlxl <eolyl 22,z = (1.4)
resp cctively. The .monogra.phs [375] contain wany The physical meaning for the contact problems and
different SRs for different kinds of integral equations, ) . . .

in one, two and three dimensional. The generalized the sp e(.:trall relationships was explained in the work
potential theory method is applied and used, in ;)ka(lintartlan and A‘tt)dout}[19, 10]'.t ¢ .
Abdou [6-7], to obtain the SRs for three-dimensional nl order (; g]; aralnlee e Lexgence ob @ um(gie
semi- symmetric contact problem. The Hertez contact i.oﬁl tion 0 dq( '_) in L(Q), we assumethe
problem contains two rigid surfaces, having two ollowing conditions :

different elastic materials and occupying the contact (i) The d.lf[.ernel k(x =&,y —n) satisfies in L, the
condition

(1.3)
will be obtained in some different domains of
integration €, where
(D Q={(x,v,2) € Qx| <0,0<y<o0,|z| <0}

domain .(2={(x,y,z)EQ:,/x2+y2Sa, z=0} 1
with potential kernel and generalized potential kernel, { f fQ f fg k(x — &,y — n)®(E,1n)dE dn dx dy}z =

respectively. Also, in Abdou , Salama [8], the
orthogonal polynomials method isused to obtain
many different SRs in one, two and three
dimensional, for Volterra-Fredholm integral equation
of the first kind in the spaceL,(Q) x C[0,T],T < 1,
where the Volterra integral term is considered in
time, while the Fredholm term is considered in
position.

In this work, the eigenvalues and eigenfunctions of

A (A is a constant)
(ii) The given function f(x,y) with its first partial
derivatives are continuous.
(ili) The unknown function ®(x,t) satisfies
Lipschitz condition for xand y.
2. Potential theory method, see [10,11]
The integral equation (1.1), with the kernel
(1.2), after using the complex Fourier integral

the integral equation zIr)ar(le/f)or_m}w O(x, y)eFdx
S - —0 ’ ’
[ kG =&y —=meE,mdidy = f(x,y) (1.1 ) = [ floy)eistdx 2.5)
k(=4 y—n) = (u+1/2) and the fa;rolcous definition of the generalized
2 21-(u+1/2
(e =8+ —-m*™™ O=pn<1/2) 19 Macdonald function Eq.(3.773.6). p.433, of Gradstein
(1.2) , Ryzhik [12], takes the form

under the condition

968



Life Science Journal 2014;11(8)

http://www.lifesciencesite.com

fKM(IsIIy—nI)d)s(n)d — )

ly —nl*
1
yEL,0Su<z,0,() =00,s)

f) =
_1 1
72201 (0 +3) 114 £0), (F0) = £(.9))
(2.6)
where KP_(|S| [. ) is the generalized Macdonald kernel
, s is the coefficients of Fourier integraland I'(.) is
the Gamma function.
Now, Eq.(2.6) is equivalent to (1.1), where the
domain of integration L is defined in theforms
1YL ={(y,2) EL:0 < y < o0,|z| < 0},
@) L={(n,2) €eL:lyl <alz| <},
GBI ={(,2) €L:lyl 2 a,lz] <}
Using the principal idea of the potential theory
method, see [10,11], we can write the integral
equation (1.1) in three dimensional form
A WD dgdn = U(x,y,2)
(-2 r-m)2+22)"*2
The integral equation (1.1) or (2.7), is equivalent to

2.7)

the following BVP
AU( )+ 210U _ 0
x y’Z az - ’
02 02 02
A= 6x2+6_y2+ﬁ((x’y'z)eg)

U(x,y,z)|z=o - f(x,J/) ) ((x'y' O) € Q)
U(x,y,z) ~Pr-172¢ > finites r - oo,
r=,/x?+y2+42? (2.8)
After constructing the solution of the BVP (2.8), the
solution of (1.1) is completely determined from the
equivalence condition
_Zﬂd)(x' J/) =
sgnzli rpqozlzlzi‘% ,((x,y,0) €Q)

(2.9)
Using the complex Fourier integral transform, with
respect to x, the BVP (2.8) and the integral equation
(2.7), respectively, become

0% 0?2
<a—yz+ﬁ+ )Us(y,z)=0

(y,2) ¢ L)
U, 2)|3=0 = £;»),((,0) € L)
Us(y,z) » 0asy? + 22 > oo; (Us(y,2) =

FXrae

U(y,2,5)) (2.10)
and
US (y’ Z) =
Vrls|# Ku(IsW=m)7+22)s () dn @.11)

A (5 A T
Also, the equivalence condition (2.9) takes the form

969

_Zﬂ(ps(Y) =
sgnzli rpqozlzlzl‘M (yvel)

To eliminate the term E’ from the formula (2.10),

(2.12)

we set

V.(y,2) = |z|*U(y, 2) (2.13)

to obtain

% +62 1 ) 2y, =0,( L),

ayz 6 l'l S - (y’ Z) E

|21V, (5, 2)],=0 = £, , ((,0) € L),

|z|~#V,(y,z) - Oasy? + z% > o (2.14)

3 Method of solution:

Here, we will discuss the solution of the BV
P (2.14), when the domain of integration takes the
three cases (1), (2) and (3").
Case (1'):Consider the complex plane w =1y +
iz,i = v/—1and the transformation mapping
w=%52,f=u+iv
Hence, we get
y=%(u2—v2),z=uv; (—o<u<w;0<v<
o) (3.16)
Using the transformation mapping (3.15), the BVP
(2.14), yields
*W, 9*W, 1 1
T g 0 (G )W

—s?(u? +v)W, = 0(u > 0)
uZ
(|u|v)_”W's(u, v)lv:O = fs 7

(ulv)#*W,(w,v) >0 as u?+v?->owo,
W, (u,v) = ( (u? —v?), uv) (3.17)
Also, the equivalence condition (2.12) becomes
U (u, v)
ov '’

u2
(y=7,u>0>,

U(u,v) = ( (u? —v?), uv) = (lulv) " *W,(u,v)

(3.18)
To solve the BVP (3.17) we use the separation of
variables method
W;(w,v) = X(WY ()
Hence we have

L [M(i W _ 522 +/12]X(u) =0, (~o<u<

(3.15)

, o< U<

—2n@.(y) =u?#"11 ionm2”
v

(3.19)

clu2

) (3.20)
2 —
Z,; [M(—lzm —-s?v? + ’12] Yw)=0, (0<v <o)

(3.21)
where A2 is the constant of seperation.
To solve the formula (3.20), we use the substitution

(2c-1) 2
Xw =t + e zF(t),t = |s|u? (3.22)

to get (see [13].P.237),



Life Science Journal 2014;11(8)

http://www.lifesciencesite.com

td2F+( t)dF F=0 0<t<w)
ez T dt w=" =S

1 A 1
a—z(4,u+1)—m(c—,u+g) (3.23)

The ODE (3.23), has a regular point at ¢ = 0 and its
solution can be represented in thehyper-geometric
functionF (t) = ¥(a, b; t). Hence, the solution of
(3.20) becomes

B o faps1 A2
X = (Visllul ) e ™oy (2 -2+
%: ISIuZ) (3.24)
The function X(u) of (3.24) is bounded for u =0
and 0<pu <% , while , for |u| -, X(u) is

unbounded. Therefore, to obtain bounded solution in
the hyper-geometric formy(a, c; |s|u?), we assume
(see [14])
A, =Un+1+2wls|l(n=0,12,..) (3.25)
Then, we use the famous formula (see [14] p.189).

1

1 1
u _Z
L 2(y) = (n +u 2>¢(—n,,u +E,u),
R n

where Ll:l_E (u) is the Chebyshev-Hermit function
(Laguere function), to get

B _lshe? 2
X@) = (VIsllul) e L, *(Ish?) (n =
012,.,0<p<3) (3.26)
The second linear solution of (3.23), F(t) =

1
tz"yP(a—c+1,2—c,t), is unbounded when
t > . Hence, the bounded function (3.26), for
—oo < u < oo, represents a unique solution of the
ODE (3.20).
Also, when 0 < v < o, we can obtain the unique
solution of the ODE (3.21) in the form

uo_lslv? 1
Y(v):(,llsllvl) e 2 T(n+,u+z,/1
yi1slv?)
_. 2
+2,|s|v
(0<v<ow,0sp<i,n=012..) (3.27)

where T(c,B;y) is the Tricome function. The
relation between Tricome function and thehyper-
geometric function is (see [13] p.245)

. ra-o )
Tk = rg ey pP@cv)
(c%n) (3.28)

Now, using (3.26),(3.28) in the fourth formula of
(3.17) we completely determine the potential function
W, (u, v), then using the result in the second formula
of (3.18), we obtain
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_Isle2ip2y) 1
U(u,v) = |s|“e< 2 (% ))Ll:l 2(IsIuZ)T(n+/1

1 1
+E,,u+§;|s|v2)
(—oo<u<oo, 0<v<oo,lul <%,n=0,1,2,...)
(3.29)

Also, if we use (3.29) in the first formula of (3.18),
we have

(DS(Y) =
1 1
2n+2u+1 H_EF(;HE)M PSR
(=) Feard) Y 26 @ISO <
y <) (3.30)

With the aid of (3.29) and (3.16), when z = 0, the
second formula of Eq.(2.10) or (3.17),becomes
1 1
) = Uy, 0) = == |slels )2 2]s1y)
(3.31)
Using the two formulas (3.30) and (3.31) in (2.6), we
have the following spectral relationships with the

generalized Macdonald kernel

[ Ky —nDe™ u-1 -
[ A i = e ()
o ly—nlmz*
VT 1 1 1
an =Gl G=1)1 (n+5=) (Il <3n = 0)
(3.32)
For obtaining the SRs when y < 0, we let, in (3.29),

2
u=0y=- 1%,hence, we can obtain
_1
[ LG ) g (n+u+
0 ly-nl# e’ln%_“ vzr(u+s)

S H+3,-2y) (3.33)
Case(2"):To obtain the solution of the BVP (3.16)
we use the elliptic coordinates [14]

@ =y+iz=acoshé, E=u+iv,
i=v-1

ie.
y=acoshucosv,z=asinusiw,(0<u<w,
—T<v<m) (3.34)
The conformal mapping (3.34) transforms the
complex plane @ of the domain

L={lyl<a,lz| <o} into the domain II=
{0<u<ow,—mw<v<m} Taking the

transformation mapping (3.34), into account, the
solution of the BVP (2.14),can be written in the form
V.(y,z) = V,(acoshucosv,asinlusimw) =
Vo (u,v), % (u, v) = F(W)G (v) (3.35)
Substituting from (3.35) into the first formula of
(2.14), after certain elementary manipulation, we
have the following two ODEs
F'(uw) — [a + 2q cosh2u — u(1 — u) si nh? u]F =

2

0,(0<u<ew,q=2), (3.36)




Life Science Journal 2014;11(8)

http://www.lifesciencesite.com

G'(v) + [a +2qcos2v + u(1 — p)si n?v]G =

0 (-m<v<wm) (3.37)
where « is the constant of seperation.

The formula (3.37) reduces to (3.36), if we assume

v =1iu,i =+V—1; hence, we can limitourselves to

(3.37). For this aim, we assume G(v)=
JIsi w|H@w), to get
d—+cotv— +[A+4ysiAv—v?sin?v]|H =

dv2
O,(A:a—z+2q,y:—q,v:%—,u) (3. 38)
After obtaining the solution of (3.38), the general
solution of (3.37), for m=>0,0 <v <m, can be
written in the forms (see[10])

Gy (v) = V51 Py (cosv,H)
_ i w)2°r(1 — 2v)
B ra-v)
—Drm@r)! 1,
o m me—V,r—m (H)CZr (COS ‘l))
(n = 2m) (3.39)

and
Gr(v) =

, (1 m)2 I (1 = 20) X (=17 2r +1)!

F(l—v) r2r+2-2v)

X Dimi1-vr— m(H)C2T+1(COS v),(n=2m+1)
(3.40)

where GY(x) is the Gegenbaur polynomial, and the

recurrence  coefficientsby). (8)can bedetermined by

using the following orthogonal relation [14],
n!

SR W)1?dv = hy, = {”"H—Zﬂ-(n%—v) =D
{r-2v)}?* (m=0)
(3.41)

Using the two formulas (3.39) and (3.40) in (3.41),
we obtain
2 n
S0 [y @] =hui [2] =
- neven
%(n —1) n odd
Where

(3.42)

Anr
i{ @2r)! [F(Zr +1-2v). (Zr + % - v)]

(n=2m,m=0)

-1

as

i(2r+1)![r(2r+2—2v). (2r+%—v)]
k as(n=2m+1,m=0)

-1

(3.43)
Since the unique solution of the ODE (3.36) is
bounded in the interval u € [0,0) andvanishes at
infinity, then it can be assumed in the form

971

FP(w) = Vsinh S*® (coshu, 0)(0 < u < ©)
(3.44)

where 1’(3)(coshu @) are spheroidal wave

equations of the third kind, see [10,14].
By following the same way of [10] p.90-91, we can
arrive to the spectral relationships.

a Ku(slly-ul) @ — u? -z _
f—aly—uli‘—( )2PY _ (u,0)du =

52(a? — y?)p? AN A (3.45)
WhereP"(u 6) represents the solution of (3.38) and
given by
PY(1,0) =
=== Db (VIPfoy (W) (0 = —q,/=n—v)
(3.46)
/is the characteristic index and P (u) is the Legendre
polynomial of the first kind of order m. Also,
n
S (—1)[7]ﬁn si fmrp). az"qnzi [2s|~#21™
X B (6)D7 (O)[EZ (6)]~*

B (0) = (Dl Y b @K ru(24),
=

D7 ()

3] . 1
RN 5 (~1)7B2_,(0)
_Tzor!l"(n+,u+1—r) TzOr!F(l—n—,u—r)

E”(H)

(=1 (n + 212, ,(0)
I'n+2u+2r)

[z

Z (~1)"bi%,(0)

F (n +2u)
_ { 1 (n=2m)

P = -1 (n=2m+1

The famous coefficients K# (8) of spheriodal wave

function of the first kind S;,’l(l) (u,8),m = 0Ois given

by Bateman , Ergelyi [13] p.175.The SRs for |y| > a

can be discussed from the transformation

mapping(3.34) by putting v =0 to get y > a, and
v=mtohavey < —a. Therefore, we have

fo D (02 —22) 2Py (u,y)du =

|ly—ul|# Sn—v

) (3.47)

uisgn y(y? — a2)ist Iyl )yl > @), (3.48)

Where
'u;]l n n+u
= D" Elgssifmw .2 252D ) [E ()]

(n=2m)

Vmqe™z

in(1-v)

|y

(3.49)
n=2m+1)
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As an important case, the SRs when y = 0, can be
obtained, afterobtaining the solution of the BVP of
(2.10), in the form

Us (y' Z) = Fekn(u' _Q)Cen (17, _CI) (350)
where ce,(x,—q) and F,k,(y,—q) are the Mathieu
functions of order n of the second andthird kind,
respectively. Then, using (3.48), in (2.11), when
u = 0, and introducing the results in (2.10), to have

a Ko(lslly-ul) _
if_ao—cen[cos tu,—qldu =

Fekn(0,—q) _
—mcen[cos 'y,—q]l (yl<a,n=0)
2_+2
S ACOLA'S [l . 'fy,—q] lyl > a
(3.51)

where, Ky(|s|ly —u|) is the Macdonald function,
and
Up = —TiCey (0' _CI) [Fek'n(oﬂ _CI)]_I,
. 1 n=2m
) = {sgny n=2m+1 (m >0,q= azjz)
(3.52)
Case(3'): Here the transformation (3.34) transforms
the region L into a region I = {—o0 <u < 0,0 <
v < m}, where the point v = 0 in IT is equivalent to
y=ain L, and ,v = m is corresponding to y < —a.
Hence, in this case, the solution, of the BVP (2.14) is
equivalentto the solution of the ODE’s (3.36) and
(3.37), where —o < u < 0,0 < v < 7. Thesolution
of Eq.(3.36) in the interval —co < u < o0, is the same
solution of Eq.(3.37) inthe interval 0 < v < m, after
replacing a@ by —a. Also the formula (3.37) will
satisfy theperiodic conditionG (r — v) = G(v). The

general  solution of (3.37), after using
conditionsG, (T — v) = +Gj,(v) ,0 <v <m, for
even and odd respectively, and the famous
relation,see [14],

© r(y+v+2r+1).r (y-v+1) [b{/],r(e)]z _

T==P r(y—v+2r+1).C(y+v+1) " 2(y+2r)+1
7 (b25(6) = 0) (3.53)

takes the form
Gi, =
Y.v

Vsi W{PS‘;(cosv,H) +

2 tanms,)
o Re {cot(ndl)'

O;v=%—y; 6, =%(,u—iT))
Also, the solution of the ODE (3.36), becomes
1
Fy"(u)w= +/Isinh||t anhu|=?(cos hu)_?/;]’(e)

X > (=1}, (O)Kirar (2/7 coshu)

r=—o

0t (cosv, )}, (y = 241, 7>

T

(3.54)

(3.55)
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£6) = (n2q) 1ei T, [ 2. (—1)sz,r(a)l (—o0
r=—m
<u<w;T>0)

The general solution of BVP (2.10), yields
Us(y,z) = (Isi nlu| si w) " EY ()G, (v) (—o <
u<w,0<v<n (3.56)
where G;—f,,(v) andFy (u) are completely determined
by (3.54) and (3.55), respectively.
After using (2.10), then (2.9), we can arrive to the
following SRs:

o (Kuslly—ul)
fa { #Iy—ul‘*

Kulslly+uly - 5 5 -2 w(3) -
ly+ul# }(u a?)725, " (u, 0)du =

A, (a2 -2 (w,0)(y > @). (3.57)

3 -1
X%, = m2a> 2Is)) K5 0) [£,0)]
Ki,(0)

['e]

=[r-v)I™* ) Relby,©)]

r=—o

+ 7L si o) I'(v) {Re [tcjtrg;gg . Z(—l)fb;,r ®)

£,0) =+ {Re [tcjtrggg D, @ra

— 26, +2r) (r(25 + 2r))_1}

1 _ 1 1
o, =E(,u—LT),T> 0,y= —E+Lr,v =S M

The spheroidal wave function, for 0 <y < a, we
have 0 <v < g, is defined in the form (see [4] p.173-
175),

S;,’B)(cos hu, 6)

= [si nknT)] 1™ RT+i

x {si f2nd) K (0)Q1-, -,

—isi ﬁZnSl)I?;’(H)Q;’y (coshu,0)},

(—0o < u < ),
10

4 & B
=21 (%)2 F(Zd_l)e_T(ZTH) Z [(_1)Tb;’1,(9)]

r=—on

-1
x LL(O[Lr®)] -, (3.58)
15(8) = $io by, @)y = =24 ir,7 > 0,1, =

1 1 ,
—v-LlLv=--u,6 =5~ LT)).
Then, the SRs, in this case, take the form
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o (Ku(slly—ul)
fa { #Iy—ul‘*
Rusy+uy+upul—a2— v2Syviubdu=ry,vra—y2
v2Hy, vtcos— 1yal<y<a, (3.59)

hy, =
13
+272mza??|s|7H* x
[t ar(ndl)
cot(md,)’
2rl26+2r—1-1,

Yr—o(=1)7hy,(0) (1 — 26, +

1
HF,(v) = (si w) 2G5, (v)
WhereG £, (v) are given by (3.54).
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