A new inequality of Wilker-type

Mansour Mahmoud 1, 2

¹ King Abdulaziz University, Faculty of Science, Department of Mathematics, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

Mansoura University, Faculty of Science, Department of Mathematics, Mansoura 35516, Egypt. mansour@mans.edu.eg

Abstract: In this paper, we deduced the following new Wilker-type inequality: $x^{\alpha} \left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} > 1 + \left(\frac{2}{\pi}\right)^{b+1} x^b \tan x$, $0 < x < \frac{\pi}{2}$; $\frac{\pi^2}{4} - 1 < \alpha \le b$, where the constant $(2/\pi)^{b+1}$ is the best possible.

[Mahmoud M. A new inequality of Wilker-type. *Life Sci J* 2014;11(08):781-783]. (ISSN:1097-8135). http://www.lifesciencesite.com. 116

Keywords: Wilker's inequality, power series, Bernoulli numbers, trigonometric functions.

1. Introduction

Wilker [12] proposed the following two open problems:

Problem 1: If $0 < x < \pi/2$, then

$$\left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} > 2 \tag{1}$$

Problem 2: For $0 < x < \pi/2$, there exists a largest constant c such that

$$\left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} > 2 + c x^2 \tan x \tag{2}$$

In [10], the sharp constant \mathbf{c} in (2) was found and it also proved that

$$2 + \left(\frac{2}{\pi}\right)^4 x^3 \tan x < \left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} < 2 + \left(\frac{8}{45}\right)x^3 \tan x$$
 (3)

where the constants $\frac{8}{45}$ and $\left(\frac{2}{\pi}\right)^4$ are the best possible. In [14], the inequality (3) was refined as

In [14], the inequality (3) was refined as
$$2 + \sum_{k=0}^{\infty} \frac{(-1)^k 2^{2k+4} [1 - (4k+10) B_{2k+4}]}{(2k+5)!}$$

$$x^{2k+3} \tan x < \left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} < 2$$

$$+ \sum_{k=0}^{n-1} \frac{(-1)^k 2^{2k+4} [1 - (4k+10)B_{2k+4}]}{(2k+5)!}$$

$$x^{2k+3} \tan x + \left(\frac{2}{\pi}\right)^{2n+4}$$

$$x^{2k+3} \tan x + \left(\frac{2}{\pi}\right)^{2n+4}$$

$$\left(1 - \sum_{k=0}^{n-1} \frac{(-1)^k \pi^{2k+4} [1 - (4k+10)B_{2k+4}]}{(2k+5)!}\right)$$

$$x^{2n+3} \tan x, \quad 0 < x < \frac{\pi}{2} \quad (4)$$

where B_m denotes the Bernoulli number of order m, $m \in \mathbb{N}$. A weighted and exponential generalization of Wilker's inequality (1) presented [13] as

Wilker's inequality (1) presented [13] as
$$\frac{\lambda}{\lambda + \mu} \left(\frac{\sin x}{x}\right)^p + \frac{\mu}{\lambda + \mu} \left(\frac{\tan x}{x}\right)^q > 1$$

$$\lambda, \mu > 0; \ 0 < x < \frac{\pi}{2}, \quad (5)$$

where q > 0 or $q < \min\left\{\frac{-\lambda}{\mu}, -1\right\}$ and $p < \frac{2q\mu}{\lambda}$. In [4], Wilker's inequality (1) established for inverse trigonometric and inverse hyperbolic functions by

$$2 + \frac{17}{45}x^{2} \tan^{-1} x < \left(\frac{\sin^{-1} x}{x}\right)^{x} + \frac{\tan^{-1} x}{x}, \quad 0 < x < 1$$
 (6)

and
$$2 + \frac{17}{45}x^{2} \sinh^{-1} x < \left(\frac{\sinh^{-1} x}{x}\right)^{2} + \frac{\tanh^{-1} x}{x}, \quad 0 < x < 1$$
(7)

The constants in (6) and (7) are the best possible. Many mathematicians were interested in Wilker's inequality (1) and they presented different proofs, various generalizations and improvements, see [5]-[9], [11], [15]-[18].

In order to attain our aim we need the following power series expansion [1]:

$$\cot x = \sum_{n=0}^{\infty} (-1)^n 2^{2n} B_{2n} \frac{x^{2n-1}}{2n!},$$

$$0 < |x| < \pi$$
 (8)

and consequently we get $\csc^2 x = -\frac{d}{dx}\cot x$

$$= \frac{1}{x^2} + \sum_{n=0}^{\infty} \frac{2^{2n} (2n-1) |B_{2n}|}{2n!} x^{2n-2},$$

$$0 < |x| < \pi$$
 (9)

The purpose of this paper is to present another type of the Wilker inequality and prove it by power series expansions of some trigonometric functions.

2. Main Results.

We begin with an interesting result of Biernacki and Krzyż [3](see also[2]), which will play an important role in the sequel.

Lemma

Consider the power series $F(x) = \sum_{n=0}^{\infty} \alpha_n x^n$ and $G(x) = \sum_{n=0}^{\infty} \beta_n x^n$ are convergent on (-r,r), r > 0, where $\alpha_n \in \mathbb{R}$ and $\beta_n > 0$ for all $n = 0,1,\dots$. If the sequence $\left\{\frac{\alpha_n}{\beta_n}\right\}_{n=0}^{\infty}$ is increasing (decreasing, resp.), then the function $\frac{F(x)}{G(x)}$ is increasing (decreasing, resp.) too on (-r,r).

We can easily see that the above lemma will be true in case of odd and even functions.

Theorem 1

$$\kappa^{a} \left(\frac{\sin x}{x}\right)^{2} + \frac{\tan x}{x} > 1 + \left(\frac{2}{\pi}\right)^{b+1} x^{b} \tan x,$$

$$0 < x < \frac{\pi}{2}; \quad \frac{\pi^{2}}{4} - 1 < a \le b$$

where the constant $\left(\frac{2}{\pi}\right)^{b+1}$ is the best possible.

Proof

Consider the function

$$P(x) = \frac{\frac{1}{x} - \cot x}{x^a}, \quad 0 < x < \frac{\pi}{2}; \quad a \in R$$

then

$$x \frac{d}{dx} \ln F(x) = \frac{-1 - a + ax \cot x + x^2 \csc^2 x}{1 - \cot x}$$

T a4

$$A(x) = -1 - a + ax \cot x + x^2 \csc^2 x$$

$$B(x) = 1 - \cot x$$

Using the relations (8) and (9), we obtain

$$\begin{split} &A(x) = -1 - a + ax \cot x + x^2 \csc^2 x \\ &= \sum_{n=1}^{\infty} \frac{2^{2n} (2n-1) |B_{2n}|}{(2n)!} x^{2n} - \sum_{n=1}^{\infty} \frac{2^{2n} a |B_{2n}|}{(2n)!} x^{2n} \\ &= \sum_{n=1}^{\infty} \frac{2^{2n} |B_{2n}|}{(2n)!} (2n-1-a) x^{2n} \\ &= \sum_{n=1}^{\infty} \alpha_n x^{2n} \end{split}$$

where
$$a_n = \frac{2^{2n}|B_{2n}|}{(2n)!} (2n - 1 - a) \in R$$
. Also,

$$B(x) = 1 - \cot x = \sum_{n=1}^{\infty} \frac{2^{2n} |B_{2n}|}{(2n)!} x^{2n} = \sum_{n=1}^{\infty} \beta_n x^{2n},$$

where
$$\beta_n = \frac{2^{2n}|B_{2n}|}{(2n)!} > 0$$
. Now let
$$\gamma_n = \frac{\alpha_n}{\beta_n} = 2n - 1 - \alpha,$$

which is increasing function in the variable n. Then γ_n is increasing and hence $\frac{A(x)}{B(x)}$ is also increasing. Using

$$\lim_{x \to 0} \frac{A(x)}{B(x)} = 1 - a$$

and

$$\lim_{x \to \pi/2} \frac{A(x)}{B(x)} = \frac{1}{4} (-4 - 4a + \pi^2).$$

we get

$$1-\alpha < x\frac{d}{dx}\ln P(x) < -1-\alpha + \frac{\pi^2}{4},$$

 $0 < x < \pi/2$.

If $a > \pi^2/4 - 1$, then P(x) is decreasing function for $0 < x < \pi/2$, where P(x) > 0. Now consider the function

$$\phi(x) = x^{a-b} \left[\frac{\sin(2x)}{2x^2} + P(x) \right].$$

The function x^{a-b} is positive decreasing function for a < b and the function $\left[\frac{\sin 2\pi}{2 \, x^2} + P(x)\right]$ is positive decreasing function for $0 < x < \pi/2$ and $a > \pi^2/4 - 1$. Then $\phi(x)$ is decreasing function for $0 < x < \pi/2$ and $\frac{\pi^2}{4} - 1 < a \le b$. Also,

$$\lim_{x \to \pi/2} \phi(x) = \left(\frac{2}{\pi}\right)^{b+1}.$$

Then

$$x^{a-b} \left[\frac{\sin(2x)}{2 x^2} + \frac{\frac{1}{x} - \cot x}{x^a} \right] > \left(\frac{2}{\pi} \right)^{b+1}$$
$$0 < x < \frac{\pi}{2}; \ \frac{\pi^2}{4} - 1 < a \le b$$

with a sharp bound and this complete the proof of inequality (10).

Acknowledgements:

This Project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. 180/130/1434. The author, therefore, acknowledges with thanks DSR technical and financial support.

Corresponding Author:

Mansour Mahmoud

King Abdulaziz University, Faculty of Science, Mathematics Department, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

mansour@mans.edu.eg

References

- 1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, Applied Mathematics Series -55, Tenth Printing, Dover, New York, 1972.
- 2. Á. Baricz, Landen-type inequality for Bessel functions, Comput. Methods Funct. Theory, Vol 5, No. 2, 373-379, 2005.
- M. Biernacki and J. Krzyż, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska. Sect. A. 9, 135-147, 1955.
- C.-P. Chen, Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions, Integral Transforms Spec. Funct., Vol 23, No, 12, 865-873, 2012.
- C.-P. Chen and W.-S. Cheung, Sharpness of Wilker and Huygens type inequalities, Journal of Inequalities and Applications 2012, 2012:72.
- 6. C.-P. Chen and W.-S. Cheung, Wilker- and Huygens-type inequalities and solution to Oppenheim's problem, Integral Transforms Spec. Funct., Vol 23, No. 5, 325-336, 2012.
- 7. B.-N. Guo, B.-M. Qiao, F. Qi, and W. Li, On new proofs of Wilker inequalities involving trigonometric functions, Math. Inequal. Appl. 6, 19-22, 2003.
- 8. C. Mortitc, The natural approach of Wilker-Cusa-Huygens inequalities, Math Inequal Appl. 14, 535-541, 2011.

- 9. E. Neuman, Inequalities for the Schwab-Borchardt mean and their applications, J. Mathematical Inequalities, Vol 5, No. 4, 601-609, 2011.
- J. S. Sumner, A. A. Jagers, M. Vowe and J. Anglesio, Inequalities involving trigonometric functions, Amer. Math. Monthly 98, 264-267, 1991.
- 11. I. Pinelis, L'Hospital rules of monotonicity and Wilker-Anglesio inequality, Amer. Math. Monthly 111, 905-909, 2004.
- 12. J. B. Wilker, Problem E3306, The American Mathematical Monthly 96, p. 55, 1989.
- 13. S.-H. Wu and H. M. Srivastava, A weighted and exponential generalization of Wilker's inequality and its applications, Integral Transforms Spec. Funct. 18, 525-535, 2007.
- S.-H. Wu and H. M. Srivastava, A further refinement of Wilker's inequality, Integral Transforms Spec. Funct. Vol 19, No. 10, 757-765, 2008
- 15. L. Zhang and L. Zhu, A new elementary proof of Wilker's inequalities, Math Inequal Appl. 11, 149-151, 2008.
- 16. L. Zhu, A new simple proof of Wilker's inequality, Math. Inequal. Appl. 8, 749-750, 2005.
- 17. L. Zhu, On Wilker-type inequalities, Math. Inequal. Appl. 10, 727-731, 2007.
- 18. L. Zhu, A source of inequalities for circular functions, Comput Math Appl. 58, 1998-2004, 2009.

7/27/2014