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Introduction 

The variational principles determine the 
laws in physical science. The idea that the nature 
effects by means of easier and more accessible ways 
led famous French mathematician Fermat [1] to the 
formulation of the first variational principle - the 
principle of the shortest time of light propagation. 
The I.Bernoulli formulation of the brachistochrone 
problem and its solution initiated the calculus of 
variations branch of mathematics and were the 
launching point for the formulation of the principle of 
least action. The complex concept of action itself was 
introduced to the mechanics by Leibniz [2] as the 
product of the particle weight with its velocity, and 
with the path traversed by the particle at this velocity, 
i.e. as m s . The fundamental principle of least 
action was formulated by P. Maupertuis [3]. Later on, 
the principle of least action was affected by the 
researchers Euler [4], Lagrange [5]. But, the more 
smart and convenient principle in the theoretical 
physics appeared to be the principle of least 
(stationary) action in the form which is established by 
Hamilton [6]. He was the first who accomplished the 
formulation of the optical-mechanical analogy and 
solved it at the level of geometrical optics. The 
Hamilton principle as compared to Lagrange 
principle is applicable for the non-stationary 
mechanic systems as well, remaining also invariant in 
regard to the co-ordinates transformations at that. It is 
the Hamilton principle that allowed obtaining of the 
important thermodynamics equations, 
electrodynamics equations, and compact 
characterization of the continuous fields.  

The Hamilton principle achieved a brilliant 
success when it was implemented in Einstein theory 
of relativity [7]. The reason is that the Hamilton 
action value is invariant relative to Lorentz 

transformation. Plank emphasizes the fundamental 
role of the Hamilton principle in modern physics 
saying that the principle has major significance for 
the characterization of a natural process than the law 
of conservation of energy [8]. The Hamilton principle 
had played supreme part both in quantum mechanics 
and in the construction of quantum field theory [9-
10].  

Only the path variations are present in all of 
those variational principles. Therefore, the optical-
mechanical analogy can be drawn at the basis of the 
existing variational principles. The analogy is a kind 
of fundamental synthesis of wave and corpuscular 
aspects of movement, but at the level of geometrical 
optics. Following the idea of deep identity of the 
principle of least action to the Fermat principle, Louis 
de Broglie established his famous equation relating 
the momentum of particle to the wavelength in his 
studies [11]. Thus, each particle is correlated with the 
indissolubly associated wave process.  

The idea that particle motion conceals 
undulating movement became especially productive 
for physics. The Louis de Broglie studies were the 
basis for the formulation of the Schrödinger [12] 
wave equation. Basing on the Hamilton-Jacobi 
mechanics and on the results of the geometrical 
optics development Schrödinger proceeded from the 
Hamilton analogy.  

The wave-particle duality is left unsolved on 
the basis of the existing variational principles. This 
work offers a new approach on this way. The 
approach is based on the wave-particle monism for 
the explanation of the particle (electron) nature. 
Namely, the theory developed below uses the 
description of physical reality where the existence of 
electron paths is taken into account. The paths are the 
evidence of the fact of the particle existence. It is also 
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taken that the electron motion is determined by 
physical wave V(x,t). Such a statement could be 
made on the basis of process-state concept which is 
introduced for the description of the entity and the 
way of existence of electron. This concept is initially 
based on the ontology of dynamism strategy [13] 
where the motion (process) is the entity of the reality, 
and the path (state) is the reality way of existence.  

The offered theory is developed using new 
continuation of the optical-mechanical analogy for 
the characterization of the particle path and wave 
behavior. The basic provisions of the wave-particle 
monism are presented and their physical sense is 
explained in the beginning of the article. The 
explanation is based on the variational approach, 
namely on the utilizing of the local variational 
principle (LVP) [14]. This theory is used later on for 
the characterization of the object (electron) motion in 
free space, in the stationary Coulomb field of 
hydrogen-like atom - one of the known test objects of 
quantum theory, and for the one-dimensional 
harmonic oscillator as well.  

 
Local variational principle and the V(x,t)-function 
method 

Let us determine the matter of the local 
variational principle (LVP). Let's specify the object 
path motion by the system of the differential 
equations of classical physics. 

)(xfx
dt
d  , (1) 

where the particle phase coordinates vector 
T

nxxxtx ),...,,()( 21  is specified in n-

dimensional Euclidean space (
nRx ), t – time 

( Tt ). Let's say that the equations (1) 
characterizing the object path motion determine the 
state of the object under study. 

Along with the equations system (1) we 
introduce the wave function V(x,t) as well. It's 
changing rate for the system under study (1) would 
be determined by the expression 

fVVV T

xtdt
d





  . Let's consider the 

isochronous variation of the wave function rate of 

change   fVfVVV T
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(where xVV T
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


 , xff

x



 ). Postulate that 

with the variation of the wave function rate of change 

 V
dt
d   the object comes from some initial state to 

the state notable for the new space coordinate 

xx  . Let's name such a transition the object 

wave transition, the value V  sets the eventual 

wave transition from the initial state to a new state 

while x determines the path variations. The space 
variation takes the form of the realized-in-space 

displacement dtxdxx  with the wave 
transition. 

 Let's formulate the LVP: Among all possible 
transitions to a new state that transition is realized 
for which the V(x,t) wave function rate of change 
takes stationary value at every point of time 

  0Vdt
d  (2) 

Assuming that (2) is true, it is proved [14] 
that complying of the wave function to the additional 
condition of full variation of the V(x,t) wave function 
rate of change is necessary and sufficient for the 
wave transition to a new state: 

  0 V
dt
d

,  (3) 

where       tdt
d  ...   

Having classical equations (1) and 
conditions (2), (3), we determine the wave equation 
for V(x,t) taking into account the wave transition 

( dtxdxx  ) at (2) and (3): 
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where V(x,t) – the piecewise continuous, 

finite, single valued function, )],([ 2 txVW
ji xx -

matrix of functions. Let's show that the following 
equality holds 





V

x

d

dt
x

T

  0 . (4.1) 

According to the V-function method the 
particle motion goes so that the particle rate is 
directed along the wave function gradient, i.e. 

xVxV
x

T
x  



  . Hence we have 

xxkxV )(/ 2 . Below we suppose that the 

field of velocities in n-dimensional space and the 
corresponding gradient field are congruent. That is 

true when 22 )( kxk  . Accordingly, we have the 

equation 

xkxV 2/  , (4.2) 

In the case when the wave transition is 
realized the equation (2) takes the following form:  



Life Science Journal 2014;11(8)      http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com         lifesciencej@gmail.com  570

constx
x

V
dtx

x

V

dt

d
x

x

V

dt

d
TTT




































0 . (4.3) 

Taking into account (4.2) and (4.3) the 
equality (4.1) holds, i.e. 
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. As a result, taking into account (4.1) the equation 
(4) takes the following form 
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Furthermore, if the condition [15] 
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Suggested approach to the characterization 
of the particle behavior contains the system of the 
path equation (1) and the wave equation (5), or (6). It 
is necessary to know the boundary conditions to find 
a solution for the system of equations. It should be 
noted to compare that the particle dynamics 
characterization is limited by the equation (1) in 
classical physics, where the initial coordinate and the 
particle rate at some fixed point of time are set. 
Below we find the boundary conditions for the wave 
V(x,t) at the particle path based on the V-function 
method. 

If the wave and the path are related, and the 
V(x,t) wave amplitude equals to zero in the particle 
location point, we would have: 

0)0,(,0),(  txVtxxV M . 

Having in our account that the wave 
transition is realized in (2) we obtain 

constxV T
x



  . (7) 

Using condition (7) for the full variation (3) 

we in turn obtain the equation   0

 V
tdt

d , then 

we find the following condition for the wave 

behavior at the particle path 1kV
t





. 

From the equation (4.2) we have the 

boundary condition for the wave at a point Mxx   

of particle path 
MM xxxx xkxV   2/ , 

where 2,1k  - some constants. 

 Thus, summing we write the common 
system of the equations of the particle path-wave 
motion according to the V-function method. 

)(xfxdt
d  , (8.1) 
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t
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augmented with the ratios for the particle 
path and wave 
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It should be noted that the condition (10) is a 
special case of  (4.2). It is introduced as a boundary 
condition in order to use the available information of 
the particle rate in some part (or at the boundary) of 
the space (xxM). Let's in turn note that (9.1) and 
(9.2) are the supplementary to (10) conditions of the 
existence of the particle path. 

Based on the local variational principle we 
can realize a new formulation of the direct problem 
and the inverse problem of dynamics.  

 
The direct problem of dynamics: 

We have the differential equations 
characterizing the object motion path (8.1).  

It is required to determine the wave function 
V(x,t) complying to the equation (8.2) and to the 
boundary conditions (9)-(11). 

The inverse problem of dynamics is 
formulated based on the V-function method as 
follows: 

It is required to determine the object motion 
path equations (8.1) for the given wave function 
V(x,t) complying to the equation (8.2), and which is 
to be considered in the form of (5). 

If the wave function is given, the solution of 
the inverse problem of dynamics follows just from 
(4.3): 

x k
V

x
i

i


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
 (12) 
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It should be noted that since the the wave 
motion comes to the object path motion, if the 
equality (12) holds, the ratio (4.3) takes the following 
form: 

constTskxxkxV TT

x



 22

22
 . (13) 

Solving the inverse problem we have got not 
only the motion equations (12) with right parts 
depending on the V-function definition method, but 
the approach to H.Hertz Principles of Mechanics 
[16], that follows from (13). 

 
Continuation of the Optical-Mechanical analogy 

Consider the free rectilinear motion of the 
object (particle) with a constant rate. Then the 
equations (8.1) and (8.2) are changed as follows 
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Let's solve the direct problem of dynamics. 
As follows from (14) and (15) the path motion of the 
particle corresponds to the wave motion complying to 
the classic wave equation 
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for which the conditions (9.1)-(9.2) stay the 
same, but (10)-(11) take the following form: 
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For the solution of the equation (16) with 
the initial and boundary conditions (9.1),(9.2),(17) 
we apply the method of separation of variables  
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Then, considering the wave propagation in 
the direction of the particle motion we've got the 
solution of the direct problem in the following form: 
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Let the wave function is given in the form of 
the equation of monochromatic plane-wave (19). 
Then if the equality (14) holds, (19) will satisfy (15) 
as a solution for the inverse problem of dynamics. 

From the equality (11) where the wave 
function is specified in the form of (19) we have the 
following 
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The complex coefficient in (20) can be 
excluded if the phase takes the values: 
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It follows that considering (14) the equality 
(20) takes only discrete values, i.e. 
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And from the equality (4.2) 








 




2

)(),(
ke

A
i

x

txV txi




,  (23) 

taking into account (21) we have 
2

2 kA  . (24) 

Let in (19)  A
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2

 ,  (27) 

where h - Planck's constant. Then from the 
solution of the inverse problem of dynamics (22) we 
have the same Rule of Energy Quantization as in the 
case of linear oscillator of Schrödinger. From the 
equality (24) and taking into account (25) we have 

22



k . (26) 

Hence, based on the action dimensions 

[ ][ / ][ ]кг м с м  it follows that 
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where m - the particle mass. Using the 
obtained results we can find the following 
correspondence between the wave and the particle 
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It is the main in the relations (28) that the 
wave phase velocity and the particle velocity are 
equal. While particle velocity equals to the group-
velocity of L. de Broglie waves in quantum 
mechanics. The condition of Energy Quantization 
(22) is naturally a result of the solution of the inverse 
problem. According to the second relation of (28) the 
energy transfers by the particle. In turn, according to 
the third relation of (28) the particle impulse defines 
the wave length, that match the well-known L. de 
Broglie's formula. Upon physical interpretation the 

wave ),( txV  characterizes the properties of the 
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action showing up in the particle motion. Thus, the 
wave node is bound to the particle location. It directs 
the particle. At the same time the particle (path) 
generates the wave propagating with it. 

 
Harmonic Oscillator 

Let's consider linear harmonic 
oscillator. In this case the equation of the 
object (particle) path motion allows applying 
of the first integral. Hence, we have the 
expression for the squared velocity 

m

kxE
x

2
2 2 
 . (29) 

The particle path motion corresponds to the 
wave motion that takes the form (15). If we substitute 
(29) to the equation (15) we obtain: 
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The wave function V(x,t) is found in the 

following form   )()(, txtxV  . Dividing 

the variables of the equation (30) we get the 
following stationary equation: 
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From the boundary conditions (9.2), (10) for 
the V-function we get the initial conditions for the 

function )(ψ x  , which are written in the following 

form: 
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As follows from the equation (31) the finite 

at the interval and the only solution )(x  should 

meet the natural condition: 
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The frequencies were defined in an 
analytical and numerical way from the equation (33) 
with the initial conditions (32), i.e. 
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Taking into account the results of the 

optical-mechanical analogy ,2 E we get the 

following rule for the harmonic oscillator energy 
quantization  
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So, when the object path is bound directly to 
the wave motion the harmonic oscillator energy can 

have certain discrete values only: ,6 2
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, i.e. 

we obtain the identity. As it is well-known, in the real 
microscopic oscillators based on light source the 
transitions occur between neighbour levels only. That 
is totally coincides with our results emerging from 
the equality (34). 

 
Electron motion in a hydrogen-like atom 

As it is well-known, the first integral is 
applicable for the electron path motion in a 
hydrogen-like atom. Thus, taking into account the 
potential energy of the hydrogen-like atom we have 
the squared velocity of the particle (electron) 

m

rZeE )(2 2
2 
  (35) 

The wave motion corresponds to the path 
motion. It is characterized by the equation (6) and 
taking into account (35) takes the following form:  

0
)(2 2

2

2

2




 V
m

rZeE

t

V




,  (36) 

Using the method of variables separation in 

the equation (36)  )(),,( tTzyxXV  , we get 

the following steady-state equation. 
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


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where 
m

Ze

m

E 2
2
0

2
,

2
  . 

Using a spherical coordinate system in the 
equation (37) let's consider the spherically symmetric 

solutions only  )(rRX   making the following 

substitution ruR  : 

02
02

0

2
0

2

2












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r

k

dr

ud




,  (38) 

where 
E

m
k

2

2

2
0

2
2
0






 . 

Considering an asymptotic solution of the 
equation (38) ( r ) let's write it's general 
solution as follows 

)()()()( 00

21 rferferucrucu rkrk



  . 

Substituting it to (38) we get the following equations: 

0)()(2)(
0

1
0 








 rf

rr
rfkrf


,  (39) 

where 
2

e
22

2
12

0
2
01 E/mZe/k   . 

The equation (39) solution we are looking 
for in the form of power series 

 





 

0 0
)()(

m

m

m rrarf . After the substitution 

the equation (39) takes the following form   
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0

1
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n
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nnn rranaknan  , (40) 

It means that 00 a . And the coefficients 

)(
1

na  meet the recurrent ratio 

)(10)(
1
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2 





 nn a

nn

nk
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
 (41) 

Following the inverse problem of dynamics 
we are searching for the particle (electron) path. And 
the relations (9.2) and (10) should be satisfied. It 

occurs if nk01 2  (
222

2
1

1 / EmZe e  , 

E

m
k

2

2
2
0


 , 0,0 01  k ). (42) 

This condition is satisfied when the series 

 





 

1 0
)()(

m

m

m rrarf  terminates, i.e. 

0)( 
ma  when 1 nm  that leads to the 

following solution   

  


 

n

m

m

nmnn rrarkCru
1 ,0

)(
,0, }exp{)( , (43) 

where С – a constant,  
From the equality (42) that is expressed in 

the form 
242

8
123 // nmeZE e  taking into 

account the connection between frequency and 

energy ,2 E  following from the drawn 

optical-mechanical analogy we find the energy value 
of the electron n-state  

22

42 1

2 n

meZ
E e

n


 . (44) 

Let's note that the energy of n-state exactly 
matches to the solution obtained in Bohr's model [17] 
or based on Schrödinger steady-state equation [12]. 

In order to find the second linearly 
independent solution of the equation of second order 
decreasing exponentially by the distance 

}exp{~)( ,, rkru non   we use Louisville's 

formula. The formula takes the form 

dr
ru

rCuru 


 
2))((

1
)()(  for the equation 

(38). Considering the (43) solution we get the 
required solution, i.e. 
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As far as 
r

u
R n

n
,

,


   in accordance with 

(45) we get the solutions for nR , . 

 
Conclusion  

Thus, the foundations of the path-wave 
mechanics have been laid down by means of the 
variational approach based on the formulated local 
variational principle and new statement of the direct 
and the inverse problems of dynamics. The 
possibilities of the path-wave mechanics have been 
demonstrated for the specific modelling of the 
physical objects' motion. 

The conducted research shows that L. De 
Broglie's intention to overcome the wave-particle 
dualism is justified here through the continuation of 
the optical-mechanical analogy that is solved at the 
level of wave optics. It becomes evident that the 
resolving power of classical quantum physics is 
insufficient for the detection of the energy 
quantization for constant motion at a constant 
velocity. 
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When modelling the electron motion in 
Coulomb field the V-function method allows 
determination of the rule of energy quantization of 
hydrogen-like atom. The rule exactly matches to 
Schrödinger's and Bohr's classic results. The research 
is very close to B.N. Rodimov's investigations [18].  
The lumpy energy occurs from meeting the 
conditions based on the V-function method at that. 
For this approach, the electron stationary behaviour 

at nth steady state is characterized by the wave nR  

decreasing exponentially to zero when r , and 
the wave amplitude crosses zero at the sphere with 

Bohr's radius nor , . It means the existing of the 

electron path at the sphere of this radius [19]. The 
predicted electron paths in Hydrogen atom appear to 
be equally distributed along the sphere of the fixed 
radius, not in the cloud of Schrödinger's wave 
function. This is a fundamental difference between 
the picture of Hydrogen atom discussed here and the 
well-known results of Schrödinger's quantum theory. 
We consider that the verification of the predicted 
equal distribution of the electron density along the 
spheres of the steady quantum states of hydrogen-like 
atom should be done first in order to test the 
suggested theory. Using the existing possibilities of 
modern experimental physics this experiment has a 
chance to be conducted. Particularly, the methods of 
scanning tunnel and force microscopy [20, 21] are the 
advanced tools for the detailed analysis of the spatial 
peculiarities of the inter-atomic electron motion. 

It should be noted that in this work we use 
the specific approach for getting the knowledge of 
electron nature and its properties. The approach is 
based on the acknowledgement of the electron 
unified physical nature, which contains it's wave 
entity and the corpuscular (path) way of existence 
without contradictions. The approach is not 
specifically based on the capabilities of the existing 
methods of measurement.  
 
Corresponding Author: 
Dr. Valishin Nail Talgatovich  
Kazan National Research Technical University 
named after A.N. Tupolev 
K. Marx Str. 10, Kazan, 420111, Tatarstan, Russia 
 
References 

1. Fermat, P., 1891. Senthesis ad Refractiones. Oeuvres, 
v.1. Paris, pp: 173-179. 

2. Leibniz, G., 1860. Mathematische Schriften, Hrsg, 
von C.J. Gerhardt, v.III.  

3. Maupertuis, P., 1746. Les lois du movement et du 
repos, deduites d’un principe metaphysique, Mem. de 
l’Acad. d.Sci.de Berlin. 

4. Euler, L., 1750. Reflexions sur quelques lois generals 
de la nature qui s’observent dans les effets des forces 
quelconques, Mem. de l’Acad. d. Sci. de Berlin. v. 4, 
pp: 189-219. 

5. Lagrange, J., 1892. Application de la method, 
exposee dans le memoire precedent a la solution de 
different problems de dynamique. Oeuvres, v.1. 
Paris, pp: 365. 

6. Hamilton, W.R., 1834. On a General Method in 
Dynamics. Philos. Trans. 

7. Einstein, A., 1916. Hamiltonsches Prinzip und 
allgemeint Relativitatstheorie. “Sitzungsberichte der 
Preuss. Arademie der Wissenschaften”. 

8. Planck, M., 1915. Das Prinzip der kleinsten Wirkung. 
“Die Kultur der Gegenwart”. V. 1. Physik. 

9. Dirak, P., 1979. The principles of quantum 
mechanics. Мoscow: Nauka. 

10. Feynman, R. and A. Hibs, 1968. Quantum mechanics 
and path integrals. Мoscow: Nauka. 

11. De Broglie, L., 1925. Recherches sur la theorie des 
quanta. Ann. de Phys. V.3. 

12. Schrödinger, E., 1926. Quantisierung als 
Eigenwertproblem (I Mitt) Annalen der Physik, Bd 
79. 

13. Valishin, F.T., 1992. The problem of methodology in 
the concept of dynamism. Methodological concepts 
and schools in the USSR. Novosibirsk, pp: 151-154. 

14. Valishin, N.Т., 1998. Local variational principle: to 
the new statement of the direct and the inverse 
problems of dynamics. Thesis of candidate of phys.-
math. sciences, КSTU named after A.N.Tupolev, 
Kazan, pp: 111. 

15. Valishin, N.Т., 2005. The V-function method for 
measuring waves in mathematical modelling. 
Bulletin of КSTU named after A.N.Tupolev, 1: 26-28 

16. Hertz, H., 1952. Principles of Mechanics in new 
edition. Мoscow. 

17. Bohr, N., 1913. On the constitution of atoms and 
molecules. Philosophical Magazine, v. 26: 1-25, 476-
502, 857-875. 

18. Rodimov, B.N., 2010. Auto-oscillation quantum 
mechanics. Physical-mathematical heritage: physics 
(quantum mechanics). Мoscow, pp: 416. 

19. Valishin, N.Т, F.T. Valishin and S.A. Moiseev, 2011. 
Trajectory-Wave Approach to Electron Dynamics in 
Hydrogen Atom. Cornell University Library. 

20. Seo1, Y. and W. Jhe, 2008. Atomic force microscopy 
and spectroscopy, Rep.  Prog. Phys., 71, 016101.  

21. Gross, L., F. Mohn, N. Moll, P. Liljeroth and G. 
Meyer, 2009. The Chemical Structure of a Molecule 
Resolved by Atomic Force Microscopy, Science, 
325, 1110. 

 
5/20/2014 


