Effect of Complete Denture Teeth Wear on the Vertical Height of Teeth Using Different Types of Teeth (A Longituidinal Study)

Khalid Ahmad Omar Arafa

Associate Professor of Prosthodontics, Dean, Faculty of Applied Medical Sciences, Albaha University, P.O.Box: 1988 Al-Baha, Saudi Arabia drkhalidarafa@yahoo.com

Abstract: This study was done on edentulous patients wearing complete dentures containing different types of artificial teeth, acrylic resin, porcelain and gold plated acrylic resin teeth, and measuring the amount of artificial teeth wear expressed in the decreases of the vertical length of the denture teeth by measuring the vertical distances between two reference points, one on the upper denture just above the first molar area, and the other on the lower denture just below the first molar area. This distance was measured using a caliper. Along the time it was observed that, the acrylic teeth had the most amount of wear followed by the gold plated acrylic teeth and lastly the porcelain teeth showed no wear observed.

[Khalid Ahmad Omar Arafa. Effect of Complete Denture Teeth Wear on the Vertical Height of Teeth Using Different Types of Teeth (A Longituidinal Study). *Life Sci J* 2014; 11(7):789-790]. (ISSN: 1097-8135). http://www.lifesciencesite.com. 114

Keywords: complete denture, teeth wear.

1. Introduction:

One of the foremost vital physical properties of artificial teeth employed in the restoration of the toothless patient is wear resistance, and also the ability of those teeth to keep up a stable occlusal relationship over time(1). The wear and tear resistance of artificial teeth is vital to the lifetime of the removable restorative for the toothless patient. The flexibility of artificial teeth to keep up a stable occlusal relationship over time could also be influences by this property (2). Excessive wear might cause loss of the vertical dimension of occlusion, loss of masticatory efficiency, faulty tooth relationship, and fatigue of masticatory muscles (3,4). Materials used for denture tooth fabrication determine the wear resistance to a great extent (5). Acrylic resins and ceramics are commonly used for artificial teeth. Ceramic teeth have been considered the most wear resistant (5). However, due to the irbrittleness, the mismatchin coefficient of thermal expansion and the high modulus of elasticity, ceramic teeth are more likely to fracture and crack from the denture base than resin teeth (1,5). Convenient handling, better toughness, and better compatibility with the acrylic denture base give the acrylic resin teeth advantages compare to ceramic teeth (1,5). inremovable dentures, resin denture teeth are usually used more frequently than ceramic teeth. Recently, several new types of resin denture teeth have been developed in order to retain the positive characteristics of acrylic resin teeth while improving their wear resistance. These teeth are made of crosslinked acrylics and micro-filled composite resins (6).

2. Materials and methods:

The right first molar areas (both maxillary and mandibular) of 3 types of denture teeth (acrylic resin teeth, gold plated acrylic resin teeth and porcelain teeth) were notched and the distance between the two notches were measured using a caliper after one year, two, three, four and five years of wearing the dentures in 90 edentulous patients divided into three equal groups each of 30 patients. The first group wearing dentures with acrylic teeth, the second group wearing dentures with gold plated acrylic teeth, and the third group wearing dentures with porcelain teeth.

3. Results:

The results are shown in Tables 1, 2 and Figures 1, 2.

Table (1): The mean \pm SD values of the vertical height loss

1033					
Teeth type	One	Two	Three	Four	Five
	year	years	years	years	years
Acrylic	1.50 ±	1.45 ±	1.30±	$1.20 \pm$	1.15 ±
	0.58	0.55	0.50	0.45	0.40
Gold-plated	2.00 ±	2.00 ±	1.98 ±	1.97 ±	1.94 ±
acrylic	0.85	0.85	0.83	0.82	0.78
Porcelain	2.20 ±	2.20 ±	2.20 ±	2.18 ±	2.17 ±
	0.90	0.90	0.90	0.89	0.88

Table (2): Annova test between the three groups

Tuble (2) Timo tu test between the time of groups						
Source of variation	Sum of	d.f.	Mean	F		
	squares		squares			
Bet.	2.463	2				
Total	2.572	17	1.232	169.8		

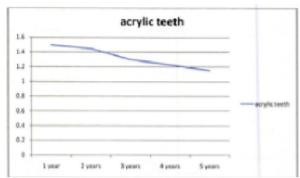


Figure (1): The first means ± SD values of the vertical height in the first group

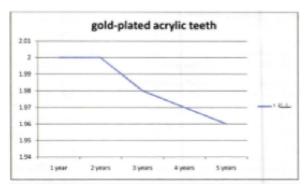


Figure 2. Gold-plated acrylic teeth

4. Discussion:

To give superficial damage of occlusal contact surface; second, abrasive wear by abrasive particles in the food or the wear debris loss from a surface though the mechanical cutting action (rubbing or friction) of a secondary material, which is in relative motion to the fist surface, and third, erosion by the mechanical removal of food flow from a surface(7). One recent study compared 10 different dental restorative martials in five wear simulators with a round robin test (8). The results showed that among the five wear simulators one wear simulator named as IVOCLAR (vertical loss) was the best with the respect to the coefficient of variation. The variables relating to the same method largely agreed with one another (volumetric and vertical wear). This computer controlled chewing simulator presented (9) the simultaneous simulation of wear mechanics and temperature change. Therefore, in another study, this kind of two body chewing simulator was used to compare the wear resistance of several artificial teeth. The teeth were loaded with total of 1.200.000 cycles, which is equivalent to 5 years of clinical service (6). Thermal cycling was used as artificial aging to obtain an increasing wear effect (10, 11).

7/12/2014

Conclusions:

Within the limits of this study, the following conclusions were drawn: 1. Porcelain denture teeth demonstrated the least wear tendency. 2. Acrylic teeth tested showed statistically higher wear tendency than both gold- plated and porcelain teeth. 3. The acrylic resin teeth showed differences in their wear amounts which were not statistically significant.

Recommendations:

From the present study, it is recommended to use porcelain teeth in fabrication of complete or partial dentures.

References:

- 1. Hirano S, May KB, Wangner WC, Hacker CH. In vitro wear of resin denture teeth. J. Prosh Dent, 1998, Feb; 79 (2): 152-5.
- 2. Hirano S. K.B May, WC Wagner, CH Hacker. In vitro wear of resin denture teeth. The journal of prosthetic dentistry (2005), Volume: 79 issue: 2, pages: 453-457.
- 3. Zeng J, Sato Y, Ohkubo C, Hosoi T. In vitro wear resistance of three types of composite resin denture teeth. J Prosthet Dent 2005; 94: 453-7.
- Ogle RE, Davis El. Clinical wear study of three comerciallyavailable artificial tooth materials: thirty- six month results. J. Prosthet Dent 1998; 79: 145-51.
- McCable JF, Walls AWG. Applied dental materials. 8th ed. London Blackawell Science Ltd.: 1998.
- 6. Suzuki S. In vitro wear of nano-composite denture teeth. J. Prosthodont 2004; 13: 238-43.
- 7. Kern M, Strub JR, Lu XY, Wear of composite resin veneeringmaterials in a dual-axis chewing simulator. J. Oral Rehabil 1999; 26: 372-8.
- 8. Heintze SD, Zappini G, Rousson V. Wear of ten dentalrestorative materials in five wear simulators-results of around robin test. Dent Mater 2005; 21: 304-17.
- 9. Krejci I, Lutz F, Reimer M, Heinzmann JL. Wear of ceramicinlays, their enamel antagonists, and luting cements, Jprosthet Dent 1993; 69: 425-30.
- 10. Shinkai K, Suzuki S, Leinfelder KF, Katoh Y. How heattreatment and thermal cycling affect wear of compsoiteresin inlays. J Am Dent Assoc 1994; 125: 1467-72.
- 11. Yap AU, Wee KE, Teoh SH, Chew CL. Influence of thermalcycling on OCA wear of composite restorative. Oper Dent 2001; 26: 349-56.