
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 726

Two-way File Synchronization Mechanism in Cloud Storage System

Young Jun Yoo1, Chang Gun Song2, Seon Woo Lee3, Jin Kim1, Young Woong Ko1

1. Department of Computer Engineering, Hallym University, Chuncheon , Korea
2. Department of Ubiquitous Computing, Hallym University, Chuncheon , Korea
3. Department of Electronic Engineering, Hallym University, Chuncheon , Korea

{willow72, cgsong, senu, jinkim, yuko}@hallym.ac.kr; yuko@hallym.ac.kr

Abstract: In cloud storage system, file synchronization schemes are widely used for efficient use of storage system.
It reduces network traffic and processing time extremely. However, there exist several weak point in handling file
synchronization for multiple clients. In this paper, to tackle this problem, we propose a bidirectional file
synchronization scheme to efficiently deal with file copying between the client and the server. Experimental result
shows that the proposed scheme can reduce data traffic efficiently using bidirectional file synchronization.
[Young Jun Yoo, Chang Gun Song, Seon Woo Lee, Jin Kim, Young Woong Ko. Two-way File Synchronization
Mechanism in Cloud Storage System. Life Sci J 2014;11(7):726-729] (ISSN:1097-8135).
http://www.lifesciencesite.com. 106

Keywords: file system; deduplication; file synchronization; two-way

1. Introduction

With the explosion of the lots of data types
such as multimedia, plain text, web data and
documents, the cloud storage system is widely used
to handle the data types. In the cloud system,
deduplication is one of the main solutions to prevent
accretion of duplicate data and bring cost saving in
data centers. Deduplication technologies can further
reduce the required storage capacity and can be used
into various file systems. Data deduplication is
technique for effectively reducing the storage
requirement of backup feasible. Furthermore Data
deduplication is a way to reduce storage space by
eliminating data to ensure that only single instance of
data is stored in storage medium. Data deduplication
technique has also drawn attraction as a means of
dealing with large data and is regarded as an enabling
technology. Furthermore chunking based
deduplication is one of the most effective, identical
regions of data with references to data already stored
on disk. Typically content-defined chunking and
Fixed-sized chunking are main deduplication
schemes in among the chunking based data
deduplication approaches.

Nowadays, there are many mobile cloud
storage systems where users try to synchronize their
files through storage systems so that they update their
files on any device. To accomplish file
synchronization, lots of file synchronization schemes
are proposed[1,2,3]. Generally, when a file sync
program try to synchronize a source file to a server, it
first have to find a target file by using metadata
information such as file name, file modification time
and etc. When it identifies a file that has been
updated or changed it calculates the exact binary data
within that file and sends only the changed

information. With this approach, each file transfer
only sends the data required to update the target file.
If a target file is found on a server then the source file
and the target file is synchronized using file
synchronization algorithm such as Rsync. Without
file synchronization scheme, the entire file would be
sent to the server, even if only small parts of the file
have changed.

Current file synchronization scheme has
drawback handling multi-client synchronization
where multiple clients try to synchronize its data on
cloud storage. For example, suppose that two clients
(foo and goo) try to synchronize data files with the
file server and file_A is modified to file_A’ on the
client foo. While file synchronization process, data
deduplication scheme only sends non-duplicated
parts between file_A and file_A’. Now, file server
updates metadata of file_A’. When the client goo tries
to synchronize data files to the file server, the client
will update file_A to file_A’. During this process,
non-duplicated data chunks should be transferred to
the client. However, usually, entire file_A’ will be
transferred to the client.

In this paper, to tackle this problem, we
propose a bidirectional file synchronization scheme
to efficiently deal with file update between the client
and the server. We propose a two-way file
synchronization scheme to enhance the performance
of cloud storage system. The proposed algorithm
utilize the metadata information of a client by
temporally storing on server side. When another
client tries to synchronize files, the server sends the
metadata information to the client. With this
approach, multi-clients can avoid hash computation
overhead by exploiting pre-computed metadata
information.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 727

The rest of this paper is organized as
follows. In Section 2, we describe related works
about file synchronization system. In Section 3, we
explain the design principle of proposed system and
implementation details. In Section 4, we show
performance evaluation result of the proposed system
and we conclude and discuss future research plan.

2. Related Works

There are three different deduplication
schemes; source-based, inline and post processing
approach. The source-based approach performs data
deduplication in the client side and the client sends
only non-duplicated files or blocks to deduplication
server. The client divides a file into several blocks
and calculates hash key for each block. In the
chunking process, the block can be divided into fixed
size chunk or variable size chunk depending on
chunking approach. The list of hash keys is delivered
to the server and the server checks duplicated blocks
by comparing the hash key with hash keys in the
server. The server makes a non-duplicated block list
and sends it to the client. Finally, the client sends the
non-duplicated data blocks to the server. Inline
approach performs data deduplication on the server
side. A client sends file stream to the server then the
server process deduplication work on the fly by
chunking the file stream into blocks. In inline
approach, the server has enough CPU resource and
memory capacity for processing data deduplication.
Finally, in post processing, the system first stores file
stream on a temporary storage and performs data
deduplication work later. Accordingly, the server
needs additional storage device and all the
computation can be delayed until there is available
resource. Inline and post processing approach usually
consume the system resource of a server while
minimizing the client resource because all the
deduplication work is processed on the server side.

Data deduplication research is actively
studied in various university and research institute.
One of the well-known data deduplication result is
Venti[3] that is a network storage system using fixed-
length chunking approach. The key idea of Venti is to
divide a file into fixed blocks and check duplicated
blocks using 160-bit SHA1 hash key. Venti can
reduce storage capacity by eliminating multiple
duplicated blocks that have the identical data, so
duplicate data is easily identified and the data block
is stored only once. In variable-length chunking, each
block size is partitioned by anchor value that divides
a file into variable size chunk. One of the well-known
variable-length chunking is a LBFS[2] that exploits
similarities between files or versions of the same file.
LBFS avoids sending data over the network when the
same data found in the server file system. LBFS

achieves up to two orders of magnitude reduction in
network bandwidth. In our previous research result,
data deduplication system uses file modification
pattern. This approach can detect how file is modified
and what types of deduplication is best for data
deduplication. Therefore, the optimal data
deduplication policy can be applied to a file.

3. System Overview

Figure 1 shows the proposed system
architecture. In the figure, client A and B is the client
nodes using cloud storage and the server is a cloud
storage node supporting two-way synchronization
scheme.

Fig. 1. Architecture of the proposed system

In this system, the client requests chunk

hash lists to the file server and the server sends
chunks list to the client. The client searches
duplicated chunks by using variable-length chunking
approach[4]. If the client finds duplicated chunks
then it sends non-duplicated chunks list to the file
server. By referencing this information, the file server
can transfer non-duplicated data chunks to the client.
In this processing steps, the file server saves metadata
information (non-duplicated chunks list) temporarily.
When there is another file synchronization requests,
the file server can utilize the previous information
without actual data deduplication processing.

In this work, we utilize the file similarity
information[5,6] that has two tuples, hash key and
file offset information. With that information, we can
easily find duplicated region on a file by comparing
hash key between two files. If there is same hash key,
we use corresponding file offset where we apply
fixed-length chunking, otherwise, we skip data
deduplication. Therefore, the processing time of the

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 728

proposed system is very short compared with
variable-length chunking approach.

The key idea of this paper is applying file
similarity information to find duplicated points
between two files. In this work, we have to decide
how much duplicated data blocks exist between two
files. As a fast and efficient file comparison
mechanism, we exploit the representative hash list
that is used for evaluating the degree of similarity
between two files. We made representative hash list
for a given file by searching and composing the
maximum hash list.

Figure 2 explains how similarity evaluation
system works. First, a file stream is divided into
variable chunks between anchors. The system
calculates a hash key for fixed size blocks for each
chunk. Conceptually, the sorting module lines up
hash keys and makes a hash key list with ascending
order or descending order. From the sorting list, we
only take a few hash keys for representative hash
values.

Fig. 2 Similarity evaluation processing step

As can be seen in figure 2, Rabin hash
function is used for computing a hash key for a block.
The Rabin hash starts at each byte in the first byte of
a file and over the block size of bytes to its right. If
the Rabin computation at the first byte is completed
then we have to compute the Rabin hash at the
second byte incrementally from the first hash value.
Now that the hash value at the second byte is
available then we use it to incrementally compute the
hash value at the third, and continue this process. In
this work, we have to sort the Rabin hash value and
choose small number of maximum values as a
representative hash. In this work, we made the
representative hash list for all files before data
deduplication. We extract one representative hash for
1 MByte therefore the amount of additional
information for file similarity is not critical for
metadata management.

To exploit file similarity scheme, we
adapted delta compression for compress original file.
If we find similar files on disk, we apply delta
compression for each file with original files,
therefore, we can minimize disk space for similar
files.

4. Experiment Results

We have implemented the algorithm and
conducted experiments to test the feasibility of the
proposed algorithm. We have used a PC with 3.0GHz
dual-core CPU and 4GB RAM, running Window 7.
We made two test file sets using lseek function by
patching data blocks. Set1 is composed of binary files
such as executable files and multimedia files. Set2 is
composed of documentation files such as Microsoft
word, Powerpoint and Excel.

Fig. 3. Experiment result for uploading size

Figure 3 shows the uploading size result. As we can
see this figure, traditional cloud storage system only
supports one-way data deduplication therefore, total
uploading size is very big. However, the proposed
system can minimize uploading size up to 7 times for
set2.

5. Conclusion

This paper proposes a two-way file
synchronization scheme to enhance the performance
of cloud storage system. The proposed algorithm
utilize the metadata information of a client by
temporally storing on server side. When another
client tries to synchronize files, the server sends the
metadata information to the client. With this
approach, multi-clients can avoid hash computation
overhead by exploiting pre-computed metadata
information. We have implemented and tested the
proposed algorithm. The results show that the
proposed algorithm minimizes the overhead of file
synchronization.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 729

Acknowledgements:

This research was supported by Hallym
University Research Fund, 2013(HRF-201311-009)
and the MSIP, Korea, under the IT/SW Creative
research program supervised by the NIPA(NIPA-
2013-H0502-13-1063)

Corresponding Author:
Dr. Young Woong Ko
Department of Computer Engineering
Hallym University
Chuncheon, Gangwondo 200702, South Korea
E-mail: yuko@hallym.ac.kr

References
1. Aronovich, L. and Asher, R. and Bachmat, E.

and Bitner, H. and Hirsch, M. and Klein, S.T.,
“The design of a similarity based deduplication
system”, Proceedings of SYSTOR 2009, 2009.

2. Xia, W. and Jiang, H. and Feng, D. and Hua, Y.,
“Silo: a similarity-locality based near-exact

deduplication scheme with low ram overhead
and high throughput”, in ATC, 2011;1-14.

3. Quinlan, S. and Dorward, S., “Venti: a new
approach to archival storage”, Proceedings of
the FAST 2002 Conference on File and Storage
Technologies, 2002.

4. Athicha M., Benjie C., and David M. “A Low-
Bandwidth Network File System.” In
Proceedings of the Symposium on Operating
Systems Principles, 2001;174–187.

5. J. Kornblum, “Identifying Almost Identical
Files Using Context Triggered Piecewise
Hashing," Proc. 6th Ann. Digital Forensics
Research Workshop Conf. (DFRWS 06), pp.
2006;S91–S97.

6. A. Andoni, P. Indyk, "Near-optimal hashing
algorithms for approximate nearest neighbor in
high dimensions," in FOCS, IEEE Computer
Society, 2006; 459–468.

5/26/2014

