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Abstract. In this paper, we introduce an algorithm for treating an in-consistent linear algebraic system bAx   of 

the form

,  1, 2,3, ..., ,
1

n
a x b i mij j ij

 


 where the matrix 
. and 

m n m
A a R b Rij


   
   Our algorithm is 

based on phase I of the simplex method where we check whether the linear system is consistent or not. In case of 
inconsistency the algorithm will decompose it to a finite number of consistent linear systems of equations and 
introduce a solution of each system. An example is added to illustrate our algorithm. 
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1. Introduction 

Mathematical modeling of real life-problems, is 
often not simple nor unambiguous. In in order to make 
optimal decisions, the first step in the process of 
gaining the necessary insights is converting this type of 
problems from a natural language to a mathematical 
system. Linear programming or constraint 
programming is a powerful tool for understanding 
problems and constructing suitable abstractions in 
order to help us arrive at the best decisions. 

When a mathematical system is inconsistent and 
we are left without an applicable solution, we can 
restructure the mathematical model with a view to 
feasibility. As discussed in (Chakravarti, 1994, 
Chinneck, 1997, Greenberg, 1993 ـــ Guieu and 
Chinneck, 1999 and Roodman, 1979), the information 
relevant to infeasibility can be gained by analyzing the 
model. It may be of interest to study some theoretical 
aspects concerning duality concepts for inconsistent 
systems, see (Eremin 1981, Vatolin, 1986 and 1998), as 
well as to evaluate the distance to feasibility in the case 
of ill-posed problems, see (Pena, 2000 and Renegar, 
1994). 

Rectifying the model is also possible through 
removing constraints. A method to remove constraints 
in order to achieve a feasible set, based on a 
hierarchical classification of constraints, is proposed by 
these authors, (Holzbaur, Menezes and Barahona, 
1996). Removing a minimal set of constraints is 
another possibility. 

The generation of irreducible inconsistent 
systems, as seen in (Chinneck, 1997 and 1991, and 
Tamiz, Mardle and Jones, 1996), enables the 

implementation of a heuristic approach. A set of 
inconsistent constraints for which every proper 
subsystem is consistent, is called an IIS. Several 
algorithms for finding an IIS exist, for more detail see 
(Holzbaur, Menezes and Barahona, 1996). 

Many commercial solvers like CPLEX and 
LINDO can be used efficiently for finding IISs. 
Iteratively generating an IIS, removing one constraint 
from it and then repeating this process, gives us a 
feasible set of constraints. Sometimes, we can 
reintroduce some constraints that no longer need to be 
removed to achieve feasibility. When the deleted 
restrictions are soft constraints, this approach might be 
acceptable, even though it ignores some of the inherent 
relations between the decision variables. On the other 
hand, this procedure can be completely inadequate 
when we have a situation where it is preferable to 
derive a feasible model that essentially retains the 
parent constraints, but due to parameter approximation 
it is admissible to perturb those parameters somewhat, 
see (Amaral, Fernandes, Judice and Sherali, 2009). 

In this paper we introduce a new approach to 
treating the inconsistent systems of linear equations. 
This approach decomposes the inconsistent system to a 
finite number of consistent linear systems and 
introduces a solution for each system. The approach is 
based on the idea introduced in phase I of the Simplex 
Method. The Simplex Method is a systematic 
procedure for generating and testing candidate vortex 
solutions for a linear program. It begins an arbitrary 
corner of the solution set. The Simplex Method selects 
the variable that will produce the largest change 
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towards the minimum (or maximum) solution, see 
(Belegundu and Chandrupatia, 2011). 

The Simplex Method contains two phases and 
here we use phase I which helps us to determine 
whether the original system is feasible or not. Then, if 
it is not feasible, we construct an initial basic feasible 
solution whenever the original system allows it. 
Towards this end, we consider a so-called auxiliary 
linear system, see (Hiebert, 1980 and Duy, 2011). 

The following example is an attempt to illustrate 
our idea. Consider the following systems of linear 
equations 

3,   2 1,   4,

2 6   and   2 4.

x y z x y z x y z

x y z y z

        

    

The previous system has no solution (inconsistent), but 
if we omit the third and fourth equations, the system is 

solvable and the solution is 
0,   1  and  2.x y z  

 
In the following section we introduce the problem 

formulation and numerical solution procedure. In 
section three we give a detailed discussion of the 
algorithm to decompose an inconsistent system of 
linear equations into a finite number of consistent 
systems of linear equations. Furthermore, we then 
discuss in detail the test problems with all their 
possible solutions in section four. Finally, the 
conclusion is discussed in section five, and we come to 
acknowledgments in section six. 
 
2. Problem Formulation and Numerical Solution 
Procedure 

Our problem concerns a system of linear 

equations ,Ax b  

where ,   and ,
m n n m

A R x R b R


     (2.1) 
where we have to determine whether it is 

consistent and we can find the solution, or it is 
inconsistent and we have to further divide it into 
subsystems of linear equations until each of them is 
consistent. Our treatment is based on the Simplex 

Method, let   x x x
 

   
so system (2.1) can be formulated as follows: 

bxxA 





)(
 

Such that 

,  , , , 0 and .
m n n m

A R x x R x x b R
    

   

  (2.2) 

For 0b , add the artificial variable  , where 

( , , ..., ).1 2 m   
 Therefore, we can replace system 

(2.2) with the following system 

( ) ,A x x b
 
  

 

Such that    , , 0.x x 
 

   ( 2.3) 

If 
(0, 0,..., 0) 

 then it is simply the original 
system (2.2). Thus, if we can find values for the 

ordinary variables ,x x
 

 we can say that the system 
(2.1) is consistent. 

 
Obviously, we would like to exclude non-zero 

artificial variables. This can be done by writing this 
linear programming problem: 

mminimize   ii=1


 

subject to   ( ) ,A x x I bm
 
  

 

, , 0 ,x x 
 

   ( 2-4) 

where, m
I

 is an identity matrix .m m We can 
see that the artificial variables should have zero value 
because they have no effect on the system (2.2), but we 
introduce them artificially to help in the treatment of 
our problem and to help identify an initial, basic, 
feasible solution of the system (2.4). 
Definition 2.1. Basic Feasible Solution 

Any solution of a linear system of equations 

bmIxxA 





)(
 is called basic feasible 

solution if the number of zero variables is at least
)( mn   and the other variable is greater than zero. 

Lemma 2.2. The optimum objective function value in 
system (2.4) is bounded by zero. Furthermore, if the 

optimal solution of system (2.4) has
,0i 

 where 

1, 2, ..., ,i m  then the variables ,x x
 

 have known 
values in the system of linear equations (2.2), and 
therefore, the original system of linear equations (2.1) 

will have its own solution, since .x x x    

Proof. Clearly, setting 
0i 

 where 1, 2,...,i m  
will produce an objective function value of zero. We 
cannot obtain a smaller objective function value, since 

0i   where 1,2,..., .i m However, if at optimality 

we have 0i   where 1,2,..., ,i m  then we have 
found a basic feasible solution of system (2.4), which 
means a solution of our original system of linear 
equations (2.1). 

Theorem 2.3. Let ,x x 

and i  be an optimal solution 
of the system of linear equations (2.4), then system 

(2.1) is consistent if and only if, 
.0

i


 

Proof. In lemma (2.2) we have proven that if 0,i   

then the variables 
x  and 

x  are a basic feasible 

solution of system (2.4) and thus 
  xxx is a 
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solution of the system of linear equations (2.1). Hence, 
system (2.1) is consistent. On the other hand, suppose 
that the system of linear equations (2.1) is consistent, 

then it has a least one solution, so the value of i  must 

be zero and 
 xx ,  are the solution of the system of 

linear equations (2.2) and then 
  xxx is the 

solution of the system of linear equations (2.1). This is 
clearly an optimal solution of system (2.4), because it 
forces the objective function value to its lower 
boundary (zero). 
 
3. Main Algorithm Outline 

In this section we introduce and explain an 
algorithm to decompose an inconsistent system of 
linear equations into a finite number of consistent 
systems of linear equations. Below, we will present the 
basic steps of the procedure we use in our algorithm. In 
the beginning, we prepare the equations to ensure that 
the right hand side of all equations is positive and 
replace each variable by the difference of two 

variables, such that
, , 0,x x x x x

j j j j j
     

 and 
1, 2,..., .j n  Second, we test the first and second 

equations for consistency using phase I of the simplex 
method using the LINGO software package. Third, if 
they are consistent we add the next equation and apply 
the same procedure until we arrive at one equation that 
is inconsistent with all the previous consistent ones . 
Now we separate this equation from the system and put 
it into a newly created subsystem. We continue to 
apply the same procedure until we have tested all 
equations in the system for consistency. Fourth, we 
now use the same procedure on all separate 
subsystems. Finally, we will obtain a finite number of 
consistent systems with their solutions. 
Algorithm 3.1. (The Main Algorithm) 

(Initialization) 

For bAx  , 
, , 0x x x x x

j j j j j
     

 and 

1,2,..., .j n
 Set 

BL 
 the number of generated 

subsystems, where 1,2,...L   , I is an identity matrix.

i


 are artificial variables, where 
0,

i
 

 and 
.,...,2,1 mi   

INPUT: integers ,m n  and s ; matrices 
( )a

ij  

and 
( )I

ii ; vectors 
,x b

j i  and i


 for 

each 1,2,...,i m  and 
1, 2,..., .j n

 
OUTPUT: all the linear subsystems set which are 

consistent with their solutions. 

 
Step 1. 

Set 1

n

ij j i Lj
a x b in B




 
Step 2. 

For each 
0b

i


, multiply the equation by (−1) 

Step 3. (Add i


for each equation in the system) 

Set
m m L

 

Set 
,1

n a x I bj ij j ii i i
    in 

B L  
Step 4. (Solve and compute a consistent linear system) 

Set 1i   
Step 5. 

for 1, 2,..., 1s i i    

Set
1min ,1

iz s ss     
Subject to, 

) , 1,2,..., 11

, , 0

n a x x I b i ij ij j j ii i i

where x x
j j s





      

  
 

If 
1

L
i m 

 
then go to step (8) 

If 
0z s 

 
then go to step (6) 
Else 

insert equation ( 1, 1 1
a x b
i j j i i

 
   )  into 

sub-system 1
B

L  
Step 6. (Update ) 

Set 1i i   

Set 1,2,..., 1s i   
Step 7. 
go to step (5) 
Step 8. 

Set 
x x x

j j j
  

 

OUTPUT 
,x BLj  (

B L  is a linear consistent 
subsystem) 

Step 9. 

If 1
L m m
i i

   
go to step (11) 
Step 10. 

Set 1 LL  
go to step (3) 
Step 11. 

OUTPUT 
( ,..., )

1
B BL  
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Step 12. 
Stop. (The procedure is complete.) 

 
4. Numerical Application 

Here we give examples of linear systems of 
equations to clarify our algorithm for testing the 
consistency of the system and decomposing it into a 
finite number of consistent linear equations. Below is a 
detailed outline of the basic steps involved in solving 
our problem using LINGO software. 
4.1. Example 1 

Consider the following system of linear equations 
(I): 

 
2 0,         (4.1)

1 2 3 4

2,    (4.2)
1 2 3 4

2 4 3,   (4.3)
1 2 3 4

0,    (4.4)
1 2 3 4

3 3 4 2 1,      (4.5)
1 2 3 4

4 4 4 4,     (4.6)
1 2 3

2 2 2 3,   (4.7)
1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x

x x x x

   

   

   

   

    

  

     
 

In the above system (I) the first step is to prepare 
the equations by multiplying equations (4.5) and (4.7) 

by (-1). Then we replace each 
x

j with 

x x x
j j j

  
 such that 

, 0x x
j j
  

 so that now 
system (I) takes the following form: 

2 2 0,     (4.8)
1 1 2 2 3 3 4 4

2, (4.9)
1 1 2 2 3 3 4 4

2 2 4 4 3,      (4.10)
1 1 2 2 3 3 4 4

0, (4.11)
1 1 2 2 3 3 4 4

3 3
1 1

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x

              

              

              

              

   3 3 4 4 2 2 1, (4.12)
2 2 3 3 4 4

4 4 4 4 4 4 4,  (4.13)
1 1 2 2 3 3

2 2 2 2 2 2 3, (4.14)
1 1 2 2 3 3 4 4

where     , , , , , , , 0.
1 1 2 2 3 3 4 4

x x x x x x

x x x x x x

x x x x x x x x

x x x x x x x x

           

          

              

        
 

This form will be denoted as system (II). In the 
second step, we add the artificial variables 

, 1, 2,3, 4,5, 6,7, 0i
i i
  

 to every equation in 
system (II), as seen in the following form: 

 

2 2 0, (4.15)
1 1 2 2 3 3 4 4 1

2, (4.16)
1 1 2 2 3 3 4 4 2

2 2 4 4 3, (4.̀17)1 1 2 2 3 3 4 4 3

0, (4.18)
1 1 2 2 3 3 4 4 4

3
1

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x









               

               

               

               

 3 3 3 4 4 2 2 1, (4.19)51 2 2 3 3 4 4

4 4 4 4 4 4 4,  (4.20)
1 1 2 2 3 3 6

2 2 2 2 2 2 3, (4.21)71 1 2 2 3 3 4 4

where    , , , , , , , , , ,
1 1 2 2 3 3 4 4 1 2

x x x x x x x

x x x x x x

x x x x x x x x

x x x x x x x x







 

              

           

               

        , , , , 0.
5 73 4 6

     
 

After preparing the equations at step one and two, 
at step three, we now begin to obtain the solutions, 
starting from equation (4.15) 

We construct the following linear programming 

problem to minimize the summation of 1  and 2  that 
is 

minimize ( )
1 2

:

2 2 0,
1 1 2 2 3 3 4 4 1

2,
1 1 2 2 3 3 4 4 2

where  , , , , , , , , , 0.
1 1 2 2 3 3 4 4 1 2

subject to

x x x x x x x x

x x x x x x x x

x x x x x x x x

 





 



               

               

        
 

When solving this system, we find that

021   which means that equation (4.15) and 
equation (4.16) are consistent. 

In step four we add equation (4.17) to equations 
(4.15) and (4.16) and construct the following linear 
programming problem to minimize the summation of 

, .
1 2 3

and  
 

After solving this system, we find that 

0321  
 which means that equations (4.15), 

(4.16) and (4.17) are consistent. 
Following the same procedure for equation (4.18) 

we find that
04321  

 which means 
that equation (4.18) is consistent with equations(4.15), 
(4.16) and (4.17). 

However, when we apply this procedure to 

equation (4.19) it results in 1 2 4 5 0,       but

3 4.5, 
 showing that equation (4.19) is inconsistent 

with the first four equations. Now we have to go to step 
five, meaning the creation of a separate subsystem to 
accommodate inconsistent equations. After extracting 
equation (4.19) from our system we continue to solve 
the remaining equations in the previous manner, 
isolating inconsistent equations in the subsystem. 

After that, when solving equation (4.20) with 
equations (4.15), (4.16), (4.17), (4.18) we observe that 
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064321  
, meaning they are 

consistent. 
Solving the final equation (4.21) in the main 

system we find that equation (4.21) is inconsistent with 
the previous five consistent equations which leads us to 
extract it into the subsystem. 

Now, in the main system, after finding equations 
(4.15), (4.16), (4.17),(4.18) and (4.20) to be consistent, 
one of the solutions is

1, 0, 0, 0, 0, 0, 1, 0.
1 1 2 2 3 3 4 4

x x x x x x x x              
 

In step six, in order to solve the subsystem and 
using the same procedure as in the main system we 
check equations (4.19) and (4.21) for consistency and 

find that 
075 

, which means they are 
consistent with this solution 

0.58333, 0, 0, 0.916667,1 1 2 2

0, 0, 0, 0.3 3 4 4

x x x x

x x x x

   
   

   
   

 
In conclusion, we can say that our method has 

proven to be useful in treating inconsistent linear 
systems of equations. To obtain the solution of our 
problem, we have created two consistent linear 
systems. The first one contains equations (4.15), (4.16), 
(4.17), (4.18) and (4.20) where the solution is 

1 2 3 41, 0, 0 and 1x x x x    . The second one 
contains equations (4.19) and (4.21) with their solution

1 2 3 4
0.58333, 0.916667, 0 and 0.x x x x      

4.2. Example 2 
Consider the following system of linear 

equations: 

2 2 2 2 10,           (4.22)51 2 3 4 6

2 2 2 8,             (4.23)51 2 3 4 6

2 2 2 6,                (4.24)51 2 3 4 6

8 4 5 2 12,            (4.25)51 2 3 4 6

3 2 4 2 5 2 1451 2 3 4 6

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

  

   

 



     

   

 

   

      ,      (4.26)

3 34 3 2 2 100,      (4.27)51 2 3 4 6

4 3 2 2 10,         (4.28)51 2 3 4 6

5 2 2 6 50,           (4.29)51 2 3 4 6

2 2 4 5 8,             (4.30)51 2 3 4 6

4 4 4 451 2 3 4

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

 







 

   

     

    

    

    16,         (4.31)6 
 

To further demonstrate the usefulness of our 
proposed algorithm, we follow the same procedure as 
in example 1, and arrive at the following solutions, 
where the above system is decomposed into two 
subsystems. The first one consists of equations (4.22), 

(4.23), (4.24), (4.25), (4.26), (4.27) and (4.28) and its 
solution is 

1 32

4 5 6

  = 20.72410,  = 5.46509,  = -6.10360,

   = 22.95209,   = 12.56869 and   = -33.96059, 

x x x

x x x

while the second one, which consists of equations 
(4.29), (4.30) and (4.31), has the following solution 

  4.153846,   0,    0,  1 2 3

  15.38462,    0 and   2.30792.54 6

x x x

x x x

  

  
 

This shows the suitability of our lgorithm for 
solving any consistency problems in similar 

systems. 
 
5. Conclusion 

In conclusion, our purpose for the work we have 
presented here is to introduce an algorithm to treat 
inconsistent linear algebraic systems of equations. 
Briefly, we propose an algorithm which is using phase 
I of the Simplex Method and which we have introduced 
to decompose an inconsistent system of equations into 
a finite number of consistent systems and which has the 
ability to find accurate solutions for the consistent 
subsystems it creates. Using this algorithm in our two 
test problems has proven it to be most useful and 
efficient. Furthermore, the algorithmic procedure we 
have introduced can be easily coded in any 
programming language. This approach could be 
developed further because of its great potential for 
handling general systems of linear equations and 
inequality. Therefore it could be an important 
contribution to solving problems of inconsistent 
systems in real life application. 
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