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Abstract: In this paper, we study the qualitative behavior of following two systems of second-order rational 
difference equations: 

, , 

and 

, , 

where the parameters  and initial conditions  are positive real 
numbers. More precisely, we study the local asymptotic stability and instability of equilibrium points, global 
character of equilibrium points and rate of convergence of these systems. Some numerical examples are given to 
verify our theoretical results. 
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1. Introduction  

The study of difference equations has been 
growing continuously for the last decade. This is 
largely due to the fact that difference equations 
manifest themselves as mathematical models 
describing real life situations in probability theory, 
statistical problems, stochastic time series, 
combinatorial analysis, number theory, geometry, 
electrical network, quanta in radiation, genetics in 
biology, economics, psychology, sociology, etc. For 
basic theory of difference equations, we refer 
interested readers to [1-4]. Moreover, in [5-14], 
dynamics of some difference equations is given. In 
Refs. [15-18], qualitative behavior of some biological 
models is discussed. Recently there has been a lot of 
interest in studying the global attractivity, 
boundedness character, periodicity and the solution 
form of nonlinear difference equations. For some 
results in this area, for example: 

C. H. Gibbons et al. [5] investigated the global 
asymptotic stability of the difference equation: 

 
where  and initial conditions 

 are positive real numbers. 
A.E. Hamza et al. [6] studied the global 

asymptotic behavior of the difference equation: 

 
where  and initial conditions  are 

positive real numbers. 

To be motivated by the above studies, our aim in this 
paper is to investigate the qualitative behavior of 
following two systems of second-order rational 
difference equations 

, ,       (1) 

and 

,            (2) 

where  and initial 
conditions   are positive real numbers. 
Let us consider four-dimensional discrete dynamical 
system of the form: 

      (3) 

where  and are 
continuously differentiable functions and  are 
some intervals of real numbers. Furthermore, a 
solution  of system (3) is uniquely 
determined by initial conditions  for 

. Along with the system (3) we consider 
the corresponding vector map . An 
equilibrium point of system (3) is a point   that 
satisfies 

 
 

The point  is also called a fixed point of the 
vector map . 
Definition 1. Let  be an equilibrium point of 
the system (3). 
(i)  An equilibrium point  is said to be stable if 
for every  there exists  such that for every 
initial conditions  if 
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 implies 

 for all , where  is 
usual Euclidian norm in . 
(ii) An equilibrium point   is said to be unstable 
if it is not stable. 
(iii) An equilibrium point  is said to be 
asymptotically stable if there exists  such that 

 and  

as . 
(iv) An equilibrium point  is called global 
attractor if  as  
(v) An equilibrium point  is called asymptotic 
global attractor if it is a global attractor and stable. 
Definition 2.  Let   be an equilibrium point of a 
map  where  and  are 
continuously differentiable functions at . The 
linearized system of (3) about the equilibrium point 

 is given by 
, 

Where  and is Jacobean matrix of the 

system (3) about the equilibrium point  
Lemma 1. [3]  For the system 

 of difference equations 
such that  be a fixed point of . If all eigenvalues of 
the Jacobian matrix  about  lie inside the open 
unit disk  then  is locally asymptotically 
stable. If one of them has a modulus greater than one, 
then  is unstable. 
Lemma 2. [4] Assume that 

 is a system of difference 
equations and  is the equilibrium point of this 
system. The characteristic polynomial of this system 
about the equilibrium point  is 

, with 
real coefficients and . Then all roots of the 
polynomial  lies inside the open unit disk  if 
and only if  for  where  is the 
principal minor of order  of the  matrix 

                       (4) 

The following results give the rate of convergence of 
solutions of a system of difference equations 

,                       (5) 

Where  is an dimensional vector,  is 
a constant matrix, and   is a matrix 
function satisfying 

                                (6) 
as , where  denotes any matrix norm which 
is associated with the vector norm 

 
Proposition 1. (Perron’s theorem) [13] Suppose that 
condition (6) holds. If  is a solution of (5), then 
either  for all large  or 

                         (7) 
exist and is equal to the modulus of one the 
eigenvalues of matrix  . 
Proposition 2. (Perron’s theorem) [13] Suppose that 
condition (6) holds. If  is a solution of (5), then 
either  for all large  or 

                        (8) 

exist and is equal to the modulus of one the 
eigenvalues of matrix  . 
2. On the system  

In this section, we shall investigate the qualitative 
behavior of the system (1). Let  be an 
equilibrium point of system (1), then for  and 

 system (1) has following two positive 
equilibrium points  and 

. 

To construct corresponding linearized form of the 
system (1) we consider the following transformation: 

      (9) 
where . 

The Jacobian matric about the fixed point  
under the transformations (9) is given by 

 
Where 

 

. The characteristic polynomial of  

 about equilibrium point  is given by 

 

 
 

                           (10) 

2.1 Main Results 
Theorem 1. Let  and , then every 
solution  of the system (1) is bounded. 
Proof. It is easy to verify that 
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Taking  and . 
Then,  and  for all 

.  
Theorem 2. For the equilibrium point  of the 
system (1) the following results hold: 
(i) If  and , then equilibrium point  
of the system (1) is locally asymptotically stable. 
(ii) If  or , then equilibrium point  of 
the system (1) is unstable. 
Proof (i). The linearized system of (1) about the 
equilibrium point  is given by 

, 

where   and . 

The characteristic polynomial of  is given by 

                 (11) 

The roots of  are  and  . Since all 

eigenvalues of Jacobian matrix  about  

lie in open unit disk . Hence, the equilibrium 
point  is locally asymptotically stable. 
Proof (ii). It is easy to see that if  or , 
then there exist at least one root  of equation (11) 
such that . Hence by Lemma 1 if  or 

 , then  is unstable  
Theorem 3. The equilibrium point 

 of the system (1) is unstable. 

Proof. The linearized system of (1) about the 
equilibrium point  is given by 

 

where  and . 

The characteristic polynomial of  is given by 

            (12) 
Where 

 and . 

It is clear that not all of  for . 
Hence by Lemma 2, the positive equilibrium point 

 is unstable.  

Theorem 4. Let  and , then 
equilibrium point  of the system (1) is globally 
asymptotically stable. 
Proof. For  and , from Theorem 2 (0, 
0) is locally asymptotically stable. From Theorem 1, 
every positive solution of the system (1) is 
bounded. Now, it is sufficient to prove that  
is decreasing. From system (1) one has 

 
. 

This implies that  and . 
Hence, the subsequences  are 
decreasing  the sequence  is decreasing. 
Similarly, one has 

 
. 

This implies that  and . 
Hence, the subsequences  are 
decreasing  the sequence  is decreasing. 

Hence, .  
2.2. Rate Of Convergence 
In this section we investigate the rate of convergence 
of a solution that converges to the equilibrium point 

 of the system (1). 
Let  be any solution of the system (1) such 
that , . To find the error terms, 

one has from the system (1) 

, 

 
, 

, 

 

. 

Set  and , one has 
, 
. 

Where 

 

 
Moreover, 
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So, the limiting system of error terms can be written 
as 

, 

Where  and 

 

which is similar to linearized system of (1) about the 
equilibrium point ( . Using the 
proposition (1), one has following result. 
Theorem 5 Assume that  be a positive 
solution of the system (1) such that  and 

where . Then, the error 

term  of every solution of (1) satisfies 

both of the following asymptotic relations 

, 

, 

where  are the characteristic roots of 

Jacobian matrix about  . 

3. On the system  

In this section, we shall investigate the qualitative 
behavior of the system (2). Let  be an 
equilibrium point of system (2), then system (2) has a 
unique positive equilibrium point . To construct 
corresponding linearized form of the system (1) we 
consider the following transformation: 

           (13) 
where . 

The Jacobian matric  about the fixed point 

 under the transformations (13) is given by 

 
Where 

 
. 

The characteristic polynomial of  about 

equilibrium point  is given by 

 

              (14) 

3.1 Main Results 
Theorem 6. Let  be a positive solution of 
the system (2), then for every  the following 
result hold: 

 

 
Theorem 7. For the equilibrium point  of the 
system (2) the following results hold: 
(i) If  and , then equilibrium point  is 
locally asymptotically stable. 
(ii) If  or , then equilibrium point  is 
unstable. 
Proof (i). The linearized system of (2) about the 
equilibrium point  is given by 

 
where 

 and . 

The characteristic polynomial of  is given by 

                     (15) 

The roots of  are 

 . Since all eigenvalues of 

Jacobian matrix  about  lie in open unit 

disk . Hence, the equilibrium point  is 
locally asymptotically stable. 

Proof (ii). It is easy to see that if  or 
, then there exist at least one root  of 

equation (15) such that . Hence by Lemma 1 

if  or  , then  is unstable.  
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Theorem 8. Let  and , then equilibrium 
point  of the system (2) is globally asymptotically 
stable. 

Proof. For  and , from Theorem 7, 
(0, 0) is locally asymptotically stable. From Theorem 
6, it is easy to show that every positive solution 

of the system (2) is bounded. Now, it is 
sufficient to prove that  is decreasing. 
From system (2) one has 

 
. 

This implies that  and 
. Also 

 
. 

This implies that  
and . Hence,  
and . Hence, the 
subsequences 

 and  

 
are decreasing. Therefore the sequences  

and  are decreasing. Hence 

.  
3.2. Rate Of Convergence 

In this section we investigate the rate of 
convergence of a solution that converges to the 
equilibrium point  of the system (2). 

Let  be any solution of the system (2) 
such that , . To find the error 

terms, one has from the system (2) 

, 

 
 

, 

 

, 

 

 
Set  and , one has 

, 
. 

Where 

, 

. 

Moreover, 

 
. 

So, the limiting system of error terms can be 
written as 

, 
Where 

 and 

, 

which is similar to linearized system of (2) 
about the equilibrium point ( . Using the 
proposition (1), one has following result. 
Theorem 9 Assume that  be a positive 
solution of the system (1) such that  and 

where . Then, the error 

term  of every solution of (1) satisfies 

both of the following asymptotic relations 

, 

, 

where  are the characteristic roots of 

Jacobian matrix about . 

4. Examples 
In order to verify our theoretical results we 

consider several interesting numerical examples in 
this section. These examples represent different types 
of qualitative behavior of solutions to the systems of 
nonlinear difference equations (1) and (2). All plots 
in this section are drawn with mathematica. 
Example 1. Consider the system (1) with conditions 

. 
Moreover, choosing the parameters 

Then, the system (1) can be written as 

  (16) 

and with conditions  
. 
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Moreover, in Fig. 1 the plot of  is shown in 
Fig. 1a, the plot of  is shown in Fig. 1b and an 
attractor of the system (16) is shown in Fig. 1c. 

 

 
(a) Plot of  for the system (16) 

 

 
(a) Plot of  for the system (16) 

 
(c) An attractor for the system (16) 
Figure 1: Plots for the system (16) 

 
Example 2. Consider the system (1) with initial 
conditions  

. Moreover, choosing the 
parameters

. Then, the system (1) can be written as 

 (17) 

and with conditions  
. 

Moreover, in Fig. 2 the plot of  is shown in 
Fig. 2a, the plot of  is shown in Fig. 2b and an 
attractor of the system (17) is shown in Fig. 2c. 

 

 
(a) Plot of  for the system (17) 

 

 
(b) Plot of  for the system (17) 

 

 
(c) An attractor of the system (17) 

Figure 2: Plots for the system (17) 
 

Example 3. Consider the system (2) with initial 
conditions  

. Moreover, choosing the 
parameters
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. Then, the system (2) can be written as 

 (18) 

and with conditions  
. 

Moreover, in Fig. 3 the plot of  is shown in 
Fig. 3a, the plot of  is shown in Fig. 3b and an 
attractor of the system (18) is shown in Fig. 3c. 

 
(a) Plot of  for the system (18) 

 

 
(a) Plot of  for the system (18) 

 

 
(c) An attractor for the system (18) 
Figure 3: Plots for the system (18) 

 
Example 4. Consider the system (2) with initial 
conditions  .  
 
Moreover, choosing the parameters. 

 
Then, the system (2) can be written as 

  (19) 

and with conditions  
. 

Moreover, in Fig. 4 the plot of  is shown in 
Fig. 4a, the plot of  is shown in Fig. 4b and an 
attractor of the system (19) is shown in Fig. 4c. 

 
(a) Plot of  for the system (19) 

 

 
(b) Plot of  for the system (19) 

 

 
(c) An attractor of the system (19) 

Figure 4: Plots for the system (19) 
 

Conclusions 
In the paper, we have investigated the 

qualitative behavior of two four-dimensional discrete 
dynamical systems. Each system has only one 
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equilibrium point which is stable under some 
restriction to parameters. The most important finding 
here is that the unique equilibrium point  can be 
a global asymptotic attractor for the systems (1) and 
(2). Moreover, we have determined the rate of 
convergence of a solution that converges to the 
equilibrium point  of the systems (1) and (2). 
Some numerical examples are provided to support 
our theoretical results. These examples are 
experimental verifications of theoretical discussions. 
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