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Abstract: The unsteady flow of an incompressible Eyring Powell fluid between two parallel porous plates with 
variable injection/suction velocity under the action of couple stresses and a uniform magnetic field is analyzed. The 
first order approximate solution is obtained using the Mathematica software while finite difference scheme is 
employed for the second order approximate solution of the resulting nonlinear partial differential equation. Damping 
behavior of fluid flow with increasing effect of couple stresses is found. It is predicted that in an electrically 
conducting polar fluids, couple stress effects may also be large. The effects of various non-dimensional parameters 
emerging in the model are discussed and presented graphically. 
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1. Introduction  

Channel flows of an electrically conducting 
viscous fluid under the action of transverse magnetic 
field have been studied by many workers because of 
its applications in many devices such as accelerators, 
magnetohydrodynamic (MHD) pumps, MHD power 
generators, electrostatic precipitation, petroleum 
industry, electrostatic precipitation, purification of 
crude oil, aerodynamics heating and fluid droplets 
sprays. Various workers [1–3] have examined the 
channel flows of a viscous fluid under the action of a 
transversely applied magnetic field. These results are 
important for designing duct wall and cooling 
arrangement. Because of growing use of non-
Newtonian fluids in various manufacturing and 
processing industries, considerable efforts have been 
made towards understanding their flows. However, 
there is not a single governing equation which 
exhibits all the properties of non-Newtonian fluids 
and, therefore, many constitutive equations for non-
Newtonian fluids have been proposed. Non-
Newtonian fluids differ from Newtonian fluids in that 
the relationship between the shear stress and the flow 
field is more complicated. Soaps, food products, 
polymer solutions, glues, inks, etc. are few examples 
of such fluids. Rana et al. [4-6] analyzed non-

Newtonian fluids in various geometries. 
The flow through porous plates is of great 

importance both in technological as well as 
biophysical point of view. Examples of such flows 
are found in soil mechanics, transpiration cooling, 
food preservation, cosmetic industry, blood flow and 
artificial dialysis. A large number of theoretical 
investigations dealing with unsteady incompressible 

flow with either injection or suction had been carried 
out. Eldabe et al. [7] analyzed an unsteady MHD 
flow of Eyring Powell model [8] between two 
parallel porous plates. Assuming time dependent 
pressure gradient, exact solution for velocity 
distribution was obtained in the first approximation 
while in the second approximation a numerical 
solution was obtain taking constant pressure gradient. 
Effect of couple stresses on the MHD unsteady flow 
of Eyring Powell model between two porous plates is 
presented by Eldabe et al. [9]. Assuming a pulsatile 
pressure gradient, in the first approximation the 
solution is obtained using symbolic program-
Mathematica whereas in the second order 
approximation the resulting nonlinear partial 
differential equation is solved numerically. Very 
interesting results regarding pulsatile pressure 
gradient and couple stresses are presented. 

The existence of couple stresses in materials 
was originally postulated by Voigt [10]. However, 
Cosserat and Cosserat [11] were the first to develop a 
mathematical model to analyze materials with couple 
stresses. This idea was generalized much later by 
Toupin [12], Mindlin and Tiersten [13], Koiter [14] 
and the others. Couple stresses in fluid theory were 
developed by Stokes [15]. 

In the present paper the unsteady flow of an 
incompressible electrically conducting Eyring Powell 
fluid between two parallel porous plates with variable 
injection/suction is considered. A uniform magnetic 
field normal to the flow is applied. The effect of 
couple stresses is also taken into account. The 
solutions for the first and second-order 
approximations are obtained using symbolic 
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program-Mathematica and finite difference procedure 
respectively. Damping behavior of fluid flow with 
increasing effect of couple stresses is observed. The 
possible applications of this work are the flow of 
blood through arteries where the boundaries are 
porous and movement of underground oil, where 
there is a natural magnetic field and the earth is 
considered as a porous boundary. The Eyring Powell 
model can be employed in some cases to depict the 
viscous behavior of polymer solutions and 
viscoelastic suspensions over a wide range of shear 
rates. 

 
2. Basic Equations 

The fundamental equations governing the flow 
are 
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The constitutive equation of an Erying Powell model 
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where   is fluid density, dtd /  is the material 

derivative,   is the gradient operator, T  is stress 
tensor, J  is electric current density,   electric 
conductivity of the fluid, E  is electric field, V  is the 

velocity field, B  is total magnetic field, 0B  is the 

external magnetic field and b  is induced magnetic 

field, V
4

  gives the effect of couple stresses,  , 

  and c  are fluid parameter, 
T

L  denotes the 

transpose of L . 
3. Formulation of the problem 

Let us consider the unsteady flow of an 
incompressible electrically conducting Eyring Powell 
fluid between two parallel porous plates. The fluid is 

injected into the lower wall at 0y  and is sucked 

through upper wall at Ly   with the variable 

velocity, where x  and y  denotes the space 

coordinates measured parallel and normal to the 
surface, u  and v  are the velocity of the fluid in x  
and y  direction. Since the plates are infinite along 

the x  direction and at the time of observation plates 
starts their oscillation and produce some disturbance 
in the y  direction so all physical quantities will be 

the function of the independent variable y . The 

velocity field is given by 
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Then the Eq. (1) becomes 
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which gives         tfv  . 

The function  tf  is taken as a variable velocity 

which represents the velocity of injection/suction 
through the plates. We take 
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where 0V  is a non-zero constant mean 

suction/injection velocity,   is small, A  is real 
positive constant such that 1A . A uniform 

magnetic field 0B  perpendicular to the plates is 

applied. Under the low magnetic Reynolds number 
approximation the induced magnetic field b  is 
neglected and electric field is assumed to be zero, 
then equation of motion (2) gives 
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Fig. 1. Geometry of the problem. 
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This means that yp  /  is small which can be 

neglected. Also assuming that    iwt
eVtU  10  is 

free stream velocity of the form 
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From Eqs. (10) and (11), we get 
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The stress tensor for the Erying Powell model is of 
the form 
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where   is the coefficient of viscosity,   and c  are 

the characteristics of the Eyring Powell fluid model. 
We take the first and second order approximation of 

the 
1
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 function as 
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Then Eq. (12) will be reduced to 
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The appropriate conditions are 
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where a dash means differentiation with respect to 
independent variable .y  Introducing non-dimensional 

parameters 
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Substituting values from Eq. (17) into Eqs (15) and 
(16) and dropping " ∗ " for convenience, we obtain 
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subject to the boundary conditions 
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where 
*

 and DM  represent non-Newtonian effects. 

 
4. Analytic solutions  

The solution in the first approximation is 
obtained using symbolic computational program 
“Mathematica”. In the second approximation a 
numerical solution of the non-linear partial 
differential is obtained using finite difference 
method. 
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4.1 First approximation 
In view of first approximation of Eq. (14), the 

Eq. (18) reduces to 
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Consider the perturbation 
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The boundary conditions are 
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The Eqs. (23) and (24) subject to boundary 
conditions (25) are solved using symbolic software 
“Mathematica” for various values of dimensionless 

parameters ,a  ,eR ,aH .M  Only graphical 

representation of these solutions is given in Figs. 2-5, 
and the detail is omitted just for space saving. 

 
4.2 Second approximation  

From Eq. (18) we obtain 
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The Eq. (26) is highly nonlinear partial 
differential equation and therefore its analytic 
solution is impossible. The finite difference 
procedure will be employed for its numerical 
solution. Moreover, we note that the Eq. (26) 

includes non-Newtonian effects M  and 


D  which 
died out in first approximation (Newtonian flows). 
Let 

 ,, jiij tyuu   

then 

, 
1,,1

,
t

uu

t

u

y

uu

y

u ijjiijijjiij

















 
 (27) 

 
,

2

,1,1

2

2
2

y

uuu

y

u jiijjiij








 
  (28) 

  .
4

,2,1

,1,2

4

4

/
4

64

3

4








































y

uu

uuu

y

u

jiji

ijjijiij
(29) 

 
Replacing the finite difference approximations 

of partial derivatives involved in the Eq. (26) and 
defined by Eqs. (27)-(29), we obtain finite-difference 
equation after simplification given by 
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The initial and boundary conditions are 
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This Eq. (30) subject to conditions (31) is 
solved numerically for different value of 
dimensionless parameters involved in the equation 
and graphs are sketched to visualize the effects of 
these parameters in Figs. 6-10 
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Fig. 2(a). Influence of � on velocity field at t = 12.5. 

 

 
Fig. 2(b). Influence of a on velocity field at y = 1.5. 

 

 
Fig. 3(a). Influence of �� on velocity field at t =12.5. 

 
 
 

 
Fig. 3(b). Influence of  �� on velocity field at y =1.5. 

 
 

 
Fig. 4(a). Influence of �� on velocity field at t =12.5. 

 
 

 
Fig. 4(b). Influence of �� on velocity field at y = 1.5. 
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Fig. 5(a). Influence of M on velocity field at t = 12.5. 

  

 
Fig. 5(b). Influence of M on velocity field at y = 1.5. 

 

 
Fig. 6. Variation of velocity for different values of a-

2nd approximation. 
 
 

 
Fig. 7. Variation of velocity for different values of 

�� -2nd approximation. 
 

 
Fig. 8. Variation of velocity for different values of 

��-2nd approximation. 
 

 
Fig. 9. Variation of velocity for different values of M- 
2nd approximation. 
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Fig. 10. Variation of velocity for different values of 

�∗ -2nd approximation. 
 
5. Results and discussion 

The unsteady flow of an incompressible MHD 
flow of Eyring Powell fluid between two parallel 
porous plates with time dependent suction/injection is 
modeled and analyzed numerically. The effects of 
couple stresses, Reynolds number Re,  Hartmann 

number ,Ha  non-Newtonian material parameters 
*

 and DM  on velocity field are studied graphically in 
Figs. 2-10. The Figs. 2-5 demonstrate velocity 
profiles for the first approximation whereas Figs. 6-
10 exhibit the same ones for the second 
approximation. 

The effect of parameter 
2

a (which is the inverse 
of couple stresses) is shown in Fig. 2 (in the case of 
first approximation), and in Fig. 6 (in the case of 
second approximation). It is obvious that velocity 

increases with an increase in .2
a  It is well known 

that couple stresses for the model like the Eyring 
Powel depends on the vorticity gradients. As vorticity 
gradients are known to be large in hydromagnetic 
flows of nonpolar fluids causing a remarkable 
reduction in the flow of the fluid. 

The Figs. 3 and 7 describe the influence of 
Reynolds number over the velocity field in the first 
and second approximations respectively. It is 
observed that velocity decreases as the Reynolds 
number increases. Physically it shows that viscous 
forces are dominant over inertia forces. The effect of 
Hartmann parameter Ha  on velocity profile is 
presented in Figs. 4 and 8 for the first and second 
approximations respectively. It is noted that an 
increase in Ha  reduces the velocity due to the 
magnetic force effect against the flow. 

For the first and second approximations, the 
effects of non-Newtonian parameter M on velocity 
field are depicted in Figs. 5 and 9 respectively. It is 
noted that velocity decreases with an increase in non-
Newtonian parameter .M  This is physically justified. 

The effect of second approximation parameter 
*

D  is 
exposed in Fig 10. It reveals that velocity increases 

with an increase in .*
D  

 
6. Concluding remarks 

In this study we have investigated an unsteady 
flow of Eyring Powell fluid flow between two 
parallel porous plates under the action of a uniform 
external magnetic field applied normal to the velocity 
field. The finding of the present study may be 
summarized as follows: 
 Flow is damping with increasing effect of 

couple stresses. In many cases, this result may 
be very useful for the discussion of some 
diseases of the blood 

 Hydromagnetic flows of nonpolar fluids 
causes incredible degradation in the flow of 
the fluid, which may be useful tool in studying 
the blood flow in the arteries, particularly the 
defective ones 

 Hartmann number provides a useful 
mechanism for decreasing the flow which 
leads to decrease the blood pressure and any 
related diseases 

 In electrically conducting polar fluids, couple 
stress effects may also be expected to be large  

 It is noted that viscous forces are dominant 
over the inertia forces 
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