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Abstract: This paper reports on the interaction of an electron beam with magneto-active inhomogeneous cold 

plasma that results in an increase in the beam-plasma instability. We show that the variation in the plasma density 

has a profound effect on the instability of the spatial beam of plasma. The application of an external static magnetic 

field leads to enhancement if the power absorption from the electron beam, and accordingly to plasma heating in 

beam-plasma system. 
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1. Introduction 

The problem of electron beam linear 

interaction with cold unmagnetized plasma has been 

studied intensively (Amein, 1975, Bohmer, 1973, 

Gupta, 1988, Thode, 1977, Frigo, 2005, El-Sharif, 

2009, Silin, 2007, Zaki, 1999 and Kuzelev, 2012). In 

these reports, a beam-plasma interaction takes the 

form of amplification of waves by the electron beam. 

It can be concluded that due to the resonance rise of 

the wave field with the plasma dielectric permeability 

being reduced to zero, the power absorbed by the 

plasma is finite and independent of the value of the 

dissipation. In this case, the beam not only amplifies 

waves in the plasma, but also provides effective 

absorption of these waves by the plasma. 

Investigation of the electron beam-plasma interaction 

is of great interest for the development of effective 

methods for plasma stability, amplification and 

generation of electromagnetic waves, acceleration of 

charged particles in plasma, high frequency heating 

of plasma (Bohmer, 1973, Ivanov, 1984, Kuzelev, 

1990,  Kuzelev, 1995 and Amein, 1994), etc.. 

In this paper we investigate the influence of 

both variable cold plasma under the effect of an 

external static magnetic field )( 0 zext eHH


  

directed along z-direction and an electron beam 

(under the condition that the waves have small phase 

velocity compared with the beam velocity) on the 

quenching of the beam-plasma instability. We 

suppose also that the electron beam propagates along 

the direction of the magnetic field ),0,0( bb VV 


. 

We also consider a semi-infinite beam 

plasma system )0( x , in which two models are 

used for the unperturbed plasma density )(0 xn , 

which is an arbitrary function of x ; one is 

000 ;)1()(( NxNxn   is a constant) and the 

other is more realistic 

  )1;0(;)/(1)()(
2

1

2
  xLLxxx pp . It is 

assumed that ions are at rest and that the electron 

beam is cold and homogeneous. 

2. Fundamental waves 

The initial linearized set of equations (the 

equation of motion and the continuity equation) 

describing the oscillations in 1-D, for the  electron 

beam, which travels along the magnetic field, are:  
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where; bV1  is the component of beam velocity in the 

z-direction. 

 The initial linearized set of equations (the 

equation of motion and the continuity equation) 

describing the oscillations in 1-D, for inhomogeneous 

plasma electrons in the oscillating electric field and a 

static magnetic field .extH


 perpendicular to the 

plasma density gradient are given by: - 
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In equations (1) – (4), PoP nn 1,  and PV1


 are the 

unperturbed and perturbed density of the plasma and 

the velocity of plasma, respectively, and   is the 

collision coefficient of plasma electrons with plasma 

ions, while bV0


 and bn0  are the unperturbed velocity 

and density of the beam, respectively. In the case of 

weak nonlinearity ),( 0101 bbbb VVnn  , 

we have .1
tx

V p








 

By using the Poisson’s equation 

 

)(4 11 bp nne
dx

dE
                                        (5) 

one can reduce equations (1) – (5) to a single second 

order differential equation, 
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It is clear that the wave number )(x  

contains the effect of the static magnetic field, i.e., it 

depends on 0H . An equation similar to (6) was 

obtained previously by many authors (Bohmer, 1973 

and Ivanov, 1984), however the static magnetic field 

effect 0H , which is of importance for the analysis of 

plasma instability and heating, was neglected. 

The solution of equation (6) in the region 

0x  gives the following spatially growing modes 

(upstream): 

0Im,)(),( 1

)(

11
1 


kexEtxE
txki 

 

where 11

0

1 ,)( 



bV

k is given by relation  

(7) in the region 0x . 

The most important mode is that where 

)(Im 1   is a maximum. Providing that the 

discontinuity at 0x  has no influence on the 

solution in the region 0x , we can determine the 

following solutions of equation (6) in the regions 

0x  and 0x  as  
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where both 1Im  and 2Im  are negative. The 

constants of integration Ai (i=1-3) are determined 

from the boundary conditions that both F and 
dx

dF
 

are continuous at 0x . Hence, 
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Using definition (7), the electric field )(2 xE  is 

determined in terms of )0(1E as: 
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2E  yields a power of the form: 
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The 3
rd

 and the 4
th

 order terms on the R.H.S. of 

equation (9) are due to the mixing (spatial beats) 

between the growing and decreasing modes in the 

region 0x . It is clear that the field power is 
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strongly affected by both the mixing and the effect of 

an external static magnetic field, i.e., the power of the 

electric field at 00 H  is greater than the power 

when 00 H . The mixing produces a noticeable 

effect on 
2

2 )(xE  under the conditions that 

21    and 22 ImRe   , which are 

necessary in order for the trigonometric terms in (9) 

to vary rapidly compared with the exponential growth 

terms. The (*) quantities represent the complex 

conjugate values. 

 

From equation (9), we get 
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so that the electric field is discontinuous at x = 0. 

Let us now analyze the solution (8) for a realistic 

plasma model, i.e. inhomogeneous plasma 

with a finite gradient in no(x). For this it is 

assumed that: 
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corresponds to a constant density gradient in the 

transition region. It can be shown that the linear 

approximation is valid in this case provided the 

 

    LV pbppb  ///1 0

2
            (12) 

This indeed requires that 0L . 

 

In order to prove that expression (8) is 

essentially correct, a solution of the wave equation 

(6) using the density profile (11) yields the equation: 
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Solution of equation (13) is 
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where; bz /2 2/1   and )();( 11 zNzJ  are the 

Bessel function of the first and second kind, 

respectively. 
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such that 
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Equation (16) can be rewritten as: 
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The case of interest is when   is not too small and 

( /L ) is not very large [large rapid changes in 

)(0 xn ] which is the opposite extreme from the 

WKB situation. From the definition following 

equation (13), we note that     

 );/(max p  and )/()/( Lb bp   

where pbv  /0 . Therefore, if ( /L ) is not too 

large, and   is not too small, b is large and  will 

be fairly small. Consequently, z  is small in this case 

and the Bessel function in equation (16) may be 

expanded for a small argument. When this is done, 

one finally obtains the approximate result  
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where .Lx   

 

Note that the effect of the external static 

magnetic field leads to an increase in the electric field 

intensity. Equation (17) agrees with the equation of 

Bohmer et al 1973 in unmagnetized plasma, i.e. at 

0H =0. The result (17) may be compared with the 

result (8) for the simple discontinuous model. It can 

be seen that provided b is large and (13) is satisfied 

(L not too large and not too small), equation (8) is a 

good approximation to equation (17). 

 

3. Conclusions  

We investigated the beam-plasma heating 

due to an electron beam under the effect of an 

external static magnetic field. We considered a 

longitudinal 1-D oscillation in plasma, which is 

inhomogeneous and bounded in the direction of the 

beam motion. The imposition of an external static 

magnetic field leads to wave amplification and 

accordingly to plasma heating in a beam-plasma 

system. The power absorbed from the beam into the 

plasma is strongly affected by both mixing and the 

static magnetic field. The variation in the plasma 

density does have a profound effect on the spatial 

beam-plasma instability. This effect indicates that the 

resulting drop in intensity of electric field is a 

sensitive function of the plasma discontinuity. 

Growing modes can be observed only if the plasma 

density decreases. 
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