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1. Introduction 

In classical set theory, a set is a well-defined 
collection of distinct objects. If repeated occurrences 
of any object is allowed in a set, then a mathematical 
structure, that is known as multiset (mset or bag, for 
short). Thus, a multiset differs from a set in the sense 
that each element has a multiplicity – a natural 
number not necessarily one – that indicates how 
many times it is a member of the multiset. One of the 
most natural and simplest examples is the multiset of 
prime factors of a positive integer ‘n’. The number 
504 has the factorization 504 = 23 32 71 which gives 
the multiset {2, 2, 2, 3, 3, 7}. 

In any information system, some situations may 
occur, where the respective counts objects in the 
universe of discourse are not single. In such 
situations we replace its universe of discourse by 
multisets called rough multisets. The motivation to 
use rough multisets has come from the need to 
represent sub multisets of a multiset in terms of m-
equivalence classes of a partition of that multiset 
(universe). The mset equivalence relation and mset 
partitions are explained in (Girish, et al., 2009). The 
mset partition characterizes an M-topological space, 
called an approximation mset space (M, R) where M 
is an mset called the universe and R is an equivalence 
mset relation. The m- equivalence classes of R are 
also known as granules with repetition or elementary 

msets or blocks. M]x/m[  is used to denote 
the m-equivalence class containing m/x in M. In the 
approximation mset, there are two operators, the 
upper mset approximation and lower mset 
approximation of submsets. 

The concept of rough multisets and related 
properties with the help of lower mset approximation 

and upper mset approximations are important 
frameworks for certain types of information 
multisystems (Chan, 2004; Chang, 2010). 

An interesting and natural research topic in 
rough set theory is to study rough set theory via 
topology. Indeed, (Polkowski, 2002) pointed: 
‘‘topological aspects of rough set theory were 
recognized early in the framework of topology of 
partitions”. (Skowron, 1988) and (Wiweger, 1988) 
separately discussed this topic for classical rough set 
theory. (Polkowski, 2001) constructed and 
characterized topological spaces from rough sets 
based on information systems. (Pawlak, 1991) and 
(Polkowski, 2002) summarized related work 
respectively. (Kortelainen, 1994) considered 
relationships between modified sets, topological 
spaces and rough sets based on a pre-order (also see 
Jarvinen et al., 2007). (Lin, 1992) continued to 
discuss this topic, and established a connection 
between fuzzy rough sets and topology. Furthermore, 
using topology and neighborhood systems (Lin, 
1998) established a model for granular computing. 
Some authors discussed relationships between 
generalized rough sets and topology from different 
viewpoints. (Skowron, et al., 1996; Skowron et al., 
2005) generalized the classical approximation spaces 
to tolerance approximation spaces, and discussed the 
problems of attribute reduction in these spaces. 
(Lashin et al., 2005) introduced the topology 
generated by a subbase, also defined a topological 
rough membership function by the subbase of the 
topology. Other papers on this topic we refer to 
(Kondo, 2006; Zhu, 2007; Thuan,2009; Pei et al., 
2011; Yang et al.,  2011; Li et al., 2012; Li et al., 
2012;). In addition, connections between fuzzy rough 
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set theory and fuzzy topology were also investigated 
(see  ; Qin et al., 2005; Li, et al., 2008). 

We first introduce and study in Section 2 some 
properties of msets, mset relations and rough mset 
theory. Any reflexive binary mset relation determines 
an M-topology, also, if R is a reflexive and 
symmetric mset relation on a mset M, 

then }A)A(R:MA{   is a M-topology 
such that A is open if and only if it is closed, finally, 
for every topological space (M, τ) satisfying the 
condition that A is open if and only if it is closed, 

there exists a reflexive and symmetric relation   

such that }A)A(R:MA{  are 
investigated in Section 3. Moreover, this paper 
concerns generalized mset approximation spaces via 
topological methods and studies topological 
properties of rough msets. Classical separation 
axioms for M-topological spaces are extended to 
generalized mset approximation spaces. 
Relationships among separation axioms for 
generalized mset approximation spaces and 
relationships between M-topological spaces and their 
induced generalized mset approximation spaces are 
investigated in two Sections 4 and 5.  At last, some 
conclusion is presented in section 6. 
 
2. M-relations and M-topology 

In this subsection, a brief survey of the notion of 
sets introduced by (Yager, 1986), the different types 
of collections of msets and the basic definitions and 
notions of relations in mset context introduced by 
(Girish et al., 2009; 2012) are presented. 
Definition 2.1. (Jena et al., 2001). An mset M drawn 
from the set X is represented by a function Count M 
or CM defined as CM : X → N where N represents the 
set of non negative integers. 

In Definition 2.1, CM (x) is the number of 
occurrences of the element x in the mset. M. However 
those elements which are not included in the mset M 
have zero count. Let M1 and M2 be two msets drawn 
from a set X. Then the following are defined ( see 
Jena, et al., 2001): 

(1) M = N if CM (x)= CN (x) for all .Xx   

(2) NM  if .Xx)x(C)X(C NM   
(3) 

NMP  if )}x(C),x(Cmax{)x(C NMP   for 

all .Xx   

(4) NMP   

if )}x(C),x(Cmin{)x(C NMP   for all .Xx   
Definition 2.2 (Jena et al., 2001). A domain X, is 
defined as a set of elements from which msets are the 
mset space [X]m is the set of all msets whose 

elements are X such that no element in the mset 
occurs more than m times. 

If X = {x1 , x2 , . . . , xk} then [X]m = {{m1/x1, 
m2/x2, . . . , mk/xk}: for  i = 1, 2, . . . , k; 

}m...,,2,1,0{m i  . Henceforth M stands for a 
multiset drawn from the multiset space [X]m. 
Definition 2.3 (Jena et al., 2001). Let M be an mset 
drawn from a set X. The support set of M denoted by 
M* is a subset of X and 

}0)x(C:Xx{M M
*  , i.e., M* is an ordinary 

set and it is also called root set. 
Definition 2.4 (Jena et al., 2001). Let X be a support 
set and [X]m be the mset space defined over X. Then 

for any mset 
m]X[M  , the complement Mc of M 

in [X]m is an element of [X]m such that 

)x(Cm)x(C M
c
M  for all .Xx   

Let M be an mset from X = {x1 , x2 , . . . , xn} 
with x appearing n times in M. It is denoted by 

.Mx n  The mset M = {{k1/x1, k2/x2, . . . , kn/xn } 
drawn from X means that M is an mset with x1 
appearing k1 times,  x2 appearing k2 times and so on. 
A new notation can be introduced for the purpose of 
defining Cartesian product of two multisets, 

relation on multisets and its domain and co-
domain. The entry of the form (m/x, n/y)/k denotes 
that x is repeated m-times, y is repeated n-times and 
the pair (x, y) is repeated k-times. The counts of the 
members of the domain and co-domain vary in 
relation to the counts of the x co-ordinate and y co-
ordinate in (m/x, n/y)/k. The notation C1(x, y) and C2 
(x, y) is therefore introduced. C1 (x, y) denotes the 
count of the first co-ordinate in the ordered pair (x, y) 
and C2 (x, y) denotes the count of the second co-
ordinate in the ordered pair (x, y). 

Definition 2.5 (Blizard, 1989). Let 
m]X[M  be 

an mset. The power mset P(M) of M is the set of all 

the submsets of M. i.e., )X(PN  if and only if 

.MN  If N then );M(PN 1 and if N , 

then )M(PN k where 
),

]N[

]M[
(k

z

z
z

the 

product z is taken over by distinct elements of z of 

the mset N and m]M[ z  iff  

,Mz m n]N[ z 
iff ,Nz n  then 

.
)!nm(!n

!m)
n

m
()

]N[

]M[
(

z

z
z 



 
The power set of an mset is the support set of 

the power mset and is denoted by P*(M). Power mset 
is an mset but its support set is an ordinary set whose 
elements are msets. 
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Definition 2.6 (Girish et al., 2009). A submset R of 

21 MM 
 is said to be an mset relation on M if every 

member (m/x, n/y) of R has a count, the product of 
C1(x, y) and C2(x, y). m/x related to n/y is denoted by 
(m/x) R (n/y). 
Definition 2.7 (Girish et al., 2009). Let M be an mset 
in [X]m. Then the following are defined. 

(1) An mset relation R on an mset M is reflexive 
if and only if (m/x) R (m/x) for all m/x in M, 
irreflexive if and only if (m/x) R (m/x) never holds. 

(2) An mset relation R on an mset M is 
symmetric if and only if (m/x) R (n/y) implies (n/y) R 
(m/x), antisymmetric if and only if (m/x) R (n/y) and 
(n/y) R (m/x) implies m/x and n/y are equal. 

(3) An mset relation R on an mset M is 
transitive if (m/x) R (n/y), (n/y) R (k/z), then (m/x) R 
(k/z). 

A mset relation R on a mset M is called an 
equivalence mset relation if it is reflexive, symmetric 
and transitive. A mset relation R on a mset M is 
called a partial ordered mset relation if it is reflexive, 
antisymmetric and transitive. A mset relation R on a 
mset M is called a preorder relation if it is reflexive 
and transitive. 
Definition 2.8 (Girish et al., 2012). Let 

m]X[M  and P*(M). Then   is called a multiset 
topology if   satisfies the following properties. 

(1)  and M are in  . 
(2) The union of the elements of any sub 

collection of  is in  . 
(3) The intersection of the elements of any finite 

sub collection of   is in  . 
Mathematically, a multiset topological space is 

an ordered pair (M; τ ) consisting of an mset M ∈ 

[X]m and a multiset topology τ  P* (M) on M. Note 
that τ  is an ordinary set whose elements are msets 
and the multiset topology is abbreviated as an M-
topology. A submset U of an M-topological space M 
is an open mset of M if U belongs to the M-topology. 
Also, a submset U of an M-topological space M is 
called closed if UC  is open (Girish et al., 2012). 
Dfinition 2.9. (Girish et al., 2012) Let R be an mset 

relation on M. The successor-set of x 
m M is defined 

as Rs(m/x) = {n/y :  some k with (k/x) R (n/y)} and 
the predecessor-set 

of x 
m M is defined as Rp(m/x) = {n/y :  some 

k with (n/y) R (k/x)}. 
Theorem 2.1. (Girish et al., 2012). If R is an mset 
relation on M, then the successor class ={Rs(m/x) : x 
∈ m M} form a sub M-base for an M-topology τ on M 
and the predecessor class = {Rp(m/x) : x ∈ m M} form 
a sub M-base for a dual M-topology of τ on M. 

Definition 2.10. (Girish et al., 2012). If M is an mset, 
an M-basis for an M-topology on M is a 

collection B of partial whole submsets of M 
(called M-basis element) such that 

(i) For each x 
m  M, for some m > 0, there is at 

least one M-basis element B B containing m/x. i.e., 
for each mset in B there is at least one element with 
full multiplicity as in M. 

(ii) If m=x belongs to the intersection of two M-
basis elements M1 and M2, then there is an M-basis 

element M3 containing m/x such that M3 
  M1 ∩M2. 

i.e., there is an M-basis element M3 containing an 
element with full multiplicity as in M and that 
element must be in M1 and M2 also. 
Definition 2.11. (Girish et al., 2012). Given a 
submset A of an M-topological space M, the closure 
of an mset A is defined as the intersection of all 
closed msets containing A and is denoted by Cl(A); 

i:e:;Cl(A) = ∩{K   M : K is a closed mset and A ⊆ 
K} and CCl(A) (x) = Min{CK (x) : A ⊆ K}. 
Definition 2.12. (Girish et al., 2012). A closure mset 
space is a pair (M;Cl) where M is any multiset and Cl 
: P* (M) ⇒ P* (M) is a mapping with each element A 

⊆ M, a submset Cl(A)   M, called the closure of A 
such that 

(i) Cl(


) = 


. 

(ii) A   Cl(A). 
(iii) Cl(Cl(M)) = Cl(M). 
(iv) Cl(A ∪ B) = Cl(A) ∪ Cl(B). 

Definition 2.13. (Girish et al., 2012). Given a 
submset A of an M-topological space M, the interior 
of an mset is defined as the union of all open msets 
contained in A and is denoted by I(A),i.e., I(A) = 

∪{G   M : G is an open mset and G   A} and CI(A) 

(x) = Max{CG (x) : G   A}. 
Definition 2.14. (Girish et al., 2012) The operator I : 
P* (M) → P* (M) is called an interior operator, if it 

satisfies the following rules. For every A;B   M, 
(i) I(A ∩ B) = I(A) ∩ I(B). 

(ii) I(A)   A. 
(iii) I(M) = M. 
(iv) I(I(M)) = I(M). 

 
3. On the structure of generalized rough msets 

Let M be a non-empty mset and R be a binary 
mset relation on M. By the support set of P(M), P* 

(M), and for all A   M, we define operations R, R 
from P* (M) to itself by 

}A)x/m(R:Mx{)A(R s
m 

 

}A)x/m(R:Mx{)A(R s
m 
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)A(R
 is called a lower mset approximation of 

A and 
)A(R
 an upper mset approximation of A. The 

mset A is called definable if 
)A(R

 = 
)A(R

. The 
pair (M;R) is called a generalized mset approximation 
space (GMAS) or generalized rough mset (Abo-Tabl, 
2014a). 
Proposition 3.1. (Abo-Tabl, 2014b). If R is reflexive, 

then we have for all A   M, 

1- 
)A(R    A  )A(R ; 

2- If A   B, then 
)A(R
  )B(R ; 

3- 
)A(R c

= 
c)}A(R{ . 

Moreover we can induce a mset topology by a 
reflexive mset relation. Let R be a binary mset 

relation on M. We define τ = {A   M : 

A)A(R 
}. 

Proposition 3.2. If R is reflexive, then τ is an M-
topology on M. 

Proof. We only prove that Uλ  τ for every λ 

Λ imply U . Let Uλ  τ for every λ Λ 

and x 
m ∪λ Uλ. There exists μ  Λ such that 

)U(RUx m
 

. For all n/y such that m/x R n/y, 

we have y 
n  Uμ ⊆∪ λ Uλ. This means that 

)U(RU   
, that is 

)U(RU   
. Therefore, τ = {A   M : 

A)A(R 
} is an M-topology on M. 

Proposition 3.3. If R is reflexive and transitive, then 

R
 is an interior operator and R  a closure one. 

Proposition 3.4. If R is reflexive and symmetric, then 
(M; τ ) is the M-topological space such that it satisfies 

the condition (sym) 
cc ))B(R(RB 

for all B   

M, where τ = {A ⊆ M : 
A)A(R 

}. 
Proof. It is obvious that τ is an M-topology. We 

have to show that τ satisfies the condition (sym). If 
cm ))B(R(Rx

, then there exists n/y such that m/x 

R n/y but 
cn ))B(R(y

. Since R is symmetric and 

)B(Ry n , we have x 
m B, that is, 

cm Bx . 

This implies that 
cc ))B(R(RB 

. 
Proposition 3.5. Let R be reflexive and symmetric 
binary mset relation. For all A ⊆ M, 

cc A)A(RA)A(R 
. 

Proof. Assume that 
A)A(R 

. It is sufficient 

to show that )A(RA cc  . If )A(Rx cm , then 
there exists n/y such that m/x R n/y but 

)A(RAy n  . Since R is symmetric, we get n/y R 

m/x and hence x Ax m , that is, 
cm Ax  . This 

means that 
)A(RA cc 

. The converse can be 
proved similarly. 

From Proposition 3.5 we have the following 
proposition. 
Proposition 3.6. If R is a reflexive and symmetric 
mset relation on M, then the M-topological space (M; 
τ) has a property that (clop): A is M-open if and only 
if A is M-closed. 

Proof. A is M-open if and only if A ∈ τ if and 

only if 
A)A(R 

if and only if 
)A(RA cc 

if 

and only if cA if and only if Ac  is M-open if and 
only if A is M-closed. 

From Propositions 3.4 and 3.5 we have 
Proposition 3.7. If R is a reflexive and symmetric 
mset relation on M. Then the two conditions are 
equivalent to each other: 

(sym) : 
cc ))B(R(RB 

for all B ⊆ M, 
(clop) : B is M-open if and only if B is M-closed 

for all B ⊆ M. 
Thus we have the following corollary. 

Corollary 3.1. If R is an equivalence mset relation on 
M, then (M; τ ) is the M-topological space induced by 
the interior operator R such that it satisfies the 
conditions: 

(sym) : 
cc ))B(R(RB 

for all B   M, 
(clop) : B is M-open if and only if B is M-closed 

for all B   M. 

Where τ = {A ⊆ M : 
A)A(R 

}. 
In particular. 

1. If we take R = {(m/x, m/x) : x 
m  M}, then τ 

= P * (M), that is, τ is the discrete M-topology. 
2. If we take R = {(m/x, n/y) : m/x, n/y ∈ M}, 

then τ = {M; ϕ}, that is, τ  is the indiscrete M-
topology. 

Summing up, we have established that 
(i) If R is a reflexive and transitive mset relation 

on M, then (M; τ ) is an M-topological space induced 
by an interior operator R. 

(ii) If R is a reflexive and symmetric mset 
relation on M, then the M-topological space (M; τ) 
has a property that A is M-open if and only if A is M-
closed for all A ⊆ M. 
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Now we ask whether the converse of above 
hold, and the answer in the following theorems. 
Theorem 3.1. Let (M; τ ) be an M- topological space 
satisfying the condition (clop). Then there exists a 

reflexive and symmetric mset relation   on M such 

that 
}A)A(:MA{ 

. 
Proof. Assume that (M; τ) is an M-topological 

space satisfying the condition (clop). At first, we take 
IB = ∪{O ∈ τ : O ⊆ B}. For all m/x, n/y ∈ M, we 

define an mset relation   by (m/x, n/y) ∈  ⇔∀ B 
⊆ M (m/x ∈ IB → n/y ∈ B). It follows from 
definition of I that for all B;C ⊆ M 

(i) IB ∈ τ 
(ii) IB ⊆ B 
(iii) B ⊆ C ⇒ IB ⊆ IC 
(iv) I(IB) = IB 
(v) B ∈ τ if and only if B = IB. 

It is clear that   is reflexive and symmetric 
mset relation. From (ii) above we can show that for 

all A ⊆ M, we have
)A(IA 

. Conversely, let 

IAx m . We take 
}A{}IBx:B{ cm 

. 

For this Γ, we can conclude 


. Otherwise we 

assume that 
 cm A}IBx:B{

. Since IB 
⊆ B, we have ∩{IB : x ∈ m  IB} ∩ Ac = ϕ and hence 
∩{IB : x ∈ m  IB ⊆}  A. This implies that I(∩{IB : x ∈ 

m  IB}) ⊆ IA. Since IB is M-open in (M; τ), it follows 
from (clop) that IB is M-closed, and hence I(∩{IB : x 

m  IB}) = ∩{I(IB) : x 
m  IB} = ∩{IB : x 

m IB}. 
This means that x ∈ m ∩{IB : x ∈ m IB ⊆}  IA. But 

this contradicts to IAx m . Hence we have 


. There exists y ∈ n ∩Γ. For this element 
n/y, we have (m/x, n/y) ∈ τ and y ∈ n Ac  that is, 

Ay n
. Hence 

)A(x m 
. This means that 

IA)A(   and therefore
IA)A( 

. 
We give the following condition to prove the 

next theorem. 
(comp) : If for all Oλ ∈ τ , A ⊆ M and ∩Oλ  ∩ A 

= ϕ, then there exists a finite submset {Oi} (i ≤ n) of 
{Oλ} such that O1 ∩ O2 ∩ … ∩ On ∩ A = ϕ. 
Theorem 3.2. Let (M; τ) be an M-topological space 
induced by an interior operator I. If (M; τ) satisfying 
the condition (comp), Then there exists a reflexive 

and transitive mset relation  on M such that 

IA)A( 
for all A ⊆ M. 

Proof. Assume that (M; τ) is an M-topological 
space induced by an interior operator I satisfying the 

condition (comp). We define an mset relation  on 
M as above, that is, for all m/x, n/y ∈ M, (m/x, n/y) 

∈   ⇔∀ B ⊆ M(x ∈ m IB → y ∈ n B). It is clear 

that  is reflexive and symmetric mset relation. We 

shall show that IA)A( 
for all A ⊆ M. Since it is 

clear that  
)A(IA 

, we only show that 

IA)A( 
. Assume that IAx m . As in the 

proof above we take 
}A{}IBx:B{ cm 

. 

For this Γ, we can conclude 


 under the 
condition (comp). Otherwise we may assume that 

 cm A}IBx:B{
. Since IB ⊆ B, we 

have ∩{IB : x ∈ m  IB} ∩ Ac = ϕ. Since IB is M-open 
(i.e., IB ∈ τ), it follows from (comp) that there exists 
a finite sub-mset {IBi} (i ≤ n) of {IB : x ∈ m IB} such 
that IB1 ∩ IB2 ∩ … ∩ IBn ∩ Ac = ϕ, and hence that 
IB1 ∩ IB2 ∩ … ∩ IBn ⊆ A. Since I is the interior 
operator, we have IB1 ∩ IB2 ∩ … ∩ IBn = I(IB1 ∩ IB2 
∩ … ∩ IBn) ⊆ IA. Thus x ∈ m IA. But this is a 

contradiction. This means that 


. There exists 
y ∈ n ∩Γ. For this element n/y, we have (m/x, n/y) ∈ 

 and y ∈ n Ac that is, 
Ay n

. Hence 

)A(x m 
. It is follows that 

IA)A( 
 and 

therefore
IA)A( 

. 
 
4. Separation axioms Ti (i = 0,1,2) of GMA-spaces. 

Separations Ti (i = 0,1,2) of M-topological 
spaces are important topological properties and 
applied or extended into many branches of 
mathematics. In this section, we first characterize 
separations Ti (i = 0,1,2) of Alexandrov topological 
spaces and then extend them to GMA-spaces. We 

will also describe 
a

iT
(i = 0,1,2) GMA-spaces by 

upper mset approximations. 
Definition 4.1. An M-topological space M is 

called a To M-space if for any two different points 
m/x, n/y ∈ M, there exists an open mset A such that 

m/x ∈ A, n/y  A or an open mset B such that n/y ∈ 

B, m/x  B. 
It is well known that an M-topological space M 

is a T0 M-space iff for any m/x, n/y ∈ M, 

y/nx/m 
implies that })y({Cl})x({Cl  . By 

this fact, one can immediately have the following 
proposition. 
Proposition 4.1. Let (M;R) be a topological GMA-
space. Then the following statements are equivalent: 
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(1) (M; τR) is a T0 M-space; 
(2) R is antisymmetric; 
(3) R is a partial order; 

(4) for all m/x, n/y ∈ M, 
y/nx/m 

 implies 

})y/n({R})x/m({R 
. 

If R is not a preorder, then statements (2)-(4) in 
Proposition 4.1 need not be equivalent to each other. 
So we can extend axiom To to GMA-spaces in at least 
two ways. 

Definition 4.2. A GMA-space (M;R) is called a 
u

oT
 

GMA-space if for all m/x, n/y ∈ M, 

y/nx/m 
implies 

})y/n({R})x/m({R 
. 

Proposition 4.2. Let (M;R) be a GMA-space. Then 

(M;R) is a 
u

oT
GMA-space iff for all m/x, n/y ∈ M, 

y/nx/m 
implies 

)y/n(R)x/m(R pp 
. 

Proof. It follows from the fact that for all m/x ∈ 

M; 
)x/m(R)x/m(R p

. 
Definition 4.3. A GMA-space (M;R) is called a 

a
oT

GMA-space if for all m/x, n/y ∈ M, 

y/nx/m 
 implies (m/x) Rc (n/y) or (n/y) Rc 

(m/x). 
Proposition 4.3. Let (M;R) be a GMA-space. Then 

(M;R) is a 
a

oT GMA-space iff for all m/x, n/y ∈ M, 

y/nx/m  implies 
)y/n(Rx/m s

or 
)x/m(Ry/n s iff for all m/x, n/y ∈ M, 

y/nx/m 
implies 

)y/n(Rx/m p
or 

)x/m(Ry/n p
. 

Proof. Clear by Definition 4.3 and the meanings 
of Rc, Rs and Rp. 

By Proposition 4.3, it is easy to see that (M;R) is 

a 
a

oT GMA-space iff for all m/x, n/y ∈ M, 

y/nx/m 
implies 

)y/n(Rx/m 
or 

)x/m(Ry/n 
. 

For an M-topological space (M; τ) and its 
induced GMA-space (M, Rτ), we have 
Theorem 4.1. If (M,τ) is a T0 space, then the induced 

GMA-space (M;Rτ) is both a 
u

oT
GMA-space and a 

a
oT

GMA-space. 
Proof. Since (M; τ) is a To space, Rτ is a partial 

order. Then by Proposition 4.1, Definitions 4.2 and 

4.3 we have that (M, Rτ) is both a 
u

oT GMA-space and 

a 
a

oT GMA-space. 
Definition 4.4. An M-topological space M is called a 
T1 M-space (resp., T2 M-space) if for any two 
different points m/x, n/y ∈ M, there exist open 
neighborhoods A of m/x and B of n/y such that n/y 
 A and m/x  B (resp., A ∩ B = ϕ). 

It is well known that an M-topological space M 
is a T1 M-space iff for each m/x ∈ M, 

}x/m{})x/m({Cl 
. By this fact and that in a 

topological GMA-space (M, R), Rs(m/x) is the 
smallest open neighborhood of m/x, one can easily 
show the following proposition. 
Proposition 4.4. For a topological GMA-space (M, 
R), the following statements are equivalent: 

(1) (M, Rτ ) is a T1 M-space; 
(2) (M, Rτ ) is a T2 M-space; 
(3) R is the discrete order on M; 

(4) for all m/x, n/y ∈ M, y/nx/m   implies 

)y/n(Rx/m s
and 

)x/m(Ry/n s
; 

(5) for all m/x, n/y ∈ M, y/nx/m   implies 
Rs(n/y) ∩ Rs(m/x) =ϕ. 

In terms of Proposition 4.4 (4) and (5), we can 
extend separation axioms T1 and T2 to general GMA-
spaces as follows. 
Definition 4.5. Let (M, R) be a GMA-space. If for all 

m/x, n/y ∈ M, y/nx/m   implies 

)y/n(Rx/m s
and )x/m(Ry/n s , then (M, 

R) is called a 
a

1T GMA-space. 
Definition 4.6. Let (M, R) be a GMA-space. If for all 

m/x, n/y ∈ M, 
y/nx/m 

implies Rs(n/y) ∩ 

Rs(m/x) = ϕ, then (M, R) is called a 
a

2T GMA-space. 

By the definition of 
a

2T GMA-spaces, it is easy 

to see that (U, R) is a 
a

2T GMA-space iff for all m/x, 

n/y ∈ M, 
y/nx/m 

implies 

))y/n(R(Rx/m s
. Similarly, (M, R) is a 

a
1T GMA-space iff for all m/x, n/y ∈ M, 

y/nx/m   implies )y/n(Rx/m  and 

)x/m(Ry/n 
. 

For a M-topological space (M, τ) and its induced 
GMA-space (M, Rτ), we have 
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Theorem 4.2. If (M, τ) is a T1 M-space, then the 

induced GMA-space (M, Rτ ) is both a 
a

1T GMA-

space and a 
a

2T
GMA-space. 

Proof. Since (M, τ) is a T1 space, Rτ is a discrete 
order. Then by Proposition 4.4, Definitions 4.5 and 

4.6, we see that (M, Rτ ) is both a 
a

1T GMA-space and 

a 
a

2T  GMA-space. 
It is well known that for an M-topological 

space, T2 implies T1 and T1 implies To. 
However, for a GMA-space which is not M-

topological, we have the following counterexample. 
Example 4.1. Let M = {3/a, 2/b, 4/c} and R = {(3/a, 
2/b), (2/b, 3/a), (2/b, 4/c)}. Then Rs(3/a) = {2/b}, 
Rs(2/b) = {3/a, 4/c} and Rs(4/c) = ϕ. Since Rs(3/a) ∩ 
Rs(2/b) = Rs(2/b) ∩ Rs(4/c) = Rs(4/c) ∩ Rs(3/a) = ϕ, 

(U, R) is a 
a

2T
GMA-space. However, for 

b/2a/3  , we have 3/a ∈ Rs (2/b) and 2/b ∈ 
Rs(3/a). By Definitions 4.3 and 4.5, (M, R) is neither 

a 
a

1T GMA-space nor a 
a

oT GMA-space. 
What is to our surprise is that for a GMA-space, 

a
1T implies 

a
oT and 

a
2T . 

Theorem 4.3. If (M, R) is a 
a

1T
GMA-space, 

then (M, R) is both a 
a

oT GMA-space and a 
a

2T GMA-
space. 

Proof. It is trivial that 
a

1T implies 
a

oT . Now we 

show that 
a

1T implies 
a

2T . For all m/x, n/y ∈ M, 

y/nx/m  , it follows from axiom 
a

1T that 

)x/m(Ry/n s
. So }x/m{)x/m(Rs   for 

each x ∈ m M. It follows that for all m/x, n/y ∈ M, 

y/nx/m 
 implies that Rs(m/x) ∩ Rs(n/y) ⊆ 

{m/x} ∩ {n/y} = ϕ. Thus (M, R) is a 
a

2T  GMA-space. 
We know that there are many practical problems 

involving information systems and GMA-spaces. 

Separations 
a

iT
 (i = 0, 1, 2) of GMA-spaces may 

provide some concrete information by distinguishing 
different objects when we apply them to solve such 
problems. 

 
5 Regularity and normality of GMA-spaces 

In this section, we extend regularity and 
normality of M-topological spaces to GMA-spaces. 
Definition 5.1. An M-topological space M is called 
regular if for each closed mset A ⊆ M and any point x 

∈ m A there are open msets W and V such that x ∈ m 
W, A ⊆ V and W ∩ V = ϕ. 

It is well known that an M-topological space M 
is regular iff for any x ∈ m M and any open 
neighborhood V of m/x, there is an open 
neighborhood W of m/x such that W ⊆ V . When a M-
space M has an Alexandrov M-topology then M is 
regular iff for all m/x, n/y ∈ M, the smallest 
neighborhood of m/x is different of or equal the 
smallest neighborhood of n/y. By this fact and 
Theorem 3.2, we have immediately the following 
corollary. 
Corollary 5.1. Let (M, R) be a topological GMA-
space. Then (M, τR) is a regular M-space iff for all 
m/x, n/y, k/z ∈ M, (m/x) R (k/z) and (n/y) R (k/z) 
imply (m/x) R (n/y). 

Making use of the condition in Corollary 5.1, 
we give the following definition. 
Definition 5.2. Let (M, R) be a GMA-space. If (m/x) 
R (k/z) and (n/y) R (k/z) imply (m/x) R (n/y) for any 
m/x, n/y, k/z ∈ M, then (M, R) is called a regular 
GMA-space. 

It is easy to see that in a regular GMA-space, 
one can from (m/x) R (k/z) and (n/y) R (k/z) deduce 
both (m/x) R (n/y) and (n/y) R (m/x). 

The following proposition shows that regularity 
of a GMA-space may provide some more local 
information of the involved GMA-space. 
Proposition 5.1. Let (M, R) be a regular GMA-space 
and x ∈ m M. If there is y ∈ n M such that (m/x) R 
(n/y), then (m/x) R (m/x). 

Proof. It follows from (m/x) R (n/y) and (m/x) R 
(n/y) that (m/x) R (m/x) by Definition 5.2. 

Regularity of GMA-spaces can also be 
characterized by complement and inverse relations. 
Proposition 5.2. Let (M, R) be a GMA-space. Then 
the following statements are equivalent: 

(1) (M, R) is a regular GMA-space; 

(2) 
)x/m(R))x/m(R(R ss 

for all x ∈ m 
M; 

(3) 
)x/m(R))x/m(R(R c

s
c
s 

for all x ∈ m 
M; 

(4) R-1  is an Euclidean relation. 
Proof. (1)⇒ (2): Let x ∈ m M and 

))x/m(R(Ry s
n

. Then 

 )x/m(R)y/n(R ss . 
Thus there is z ∈  m M such that (m/x) R (k/z) 

and (n/y) R (k/z). It follows from the regularity of (M, 
R) that (m/x) R (n/y).  So y∈ n Rs(m/x) and 

)x/m(R))x/m(R(R ss  . 
(2) ⇒ (1): Let m/x, n/y, k/z ∈ M with (m/x) R 

(k/z) and (n/y) R (k/z). Then 
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z ∈ k 
 )x/m(R)y/n(R ss and 

))x/m(R(Ry s
n

. By (2), we get y ∈ n Rs(m/x), 
i.e., (m/x) R (k/y). So, (1) holds. 

(2) ⇔ (3): Noticing that 

)}y/n(R)x/m(:My{)x/m(R cnc
s 

c
s

cn ))x/m(R()}y/n(R)x/m(:My{ 
 , 

we have 

 )x/m(R))x/m(R(R ss

 c
s

c
s ))x/m(R()))x/m(R(R(

 c
s

c
s ))x/m(R())x/m(R((R

  

)x/m(R))x/m(R(R c
s

c
s 

. 
(1) ⇔ (4): (M, R) is regular, for all m/x, n/y, k/z 

∈ M with (m/x) R (k/z) and (n/y) R (k/z) imply (m/x) 
R (n/y), for all m/x, n/y, k/z ∈ M, (k/z) R -1(n/y) and 
(k/z) R -1(m/x) imply (n/y) R -1(m/x) ⇔ R -1 is an 
Euclidean relation. 

For a topological space (M, τ) and its induced 
GMA-space (M, Rτ), we have 
Theorem 5.1. If (M, τ) is a regular M-topological 
space, then (M, Rτ) is a regular GMA-space. 

Proof. Argue by the way of contradiction. 
Assume that (M, Rτ ) is not regular. Then there are 
m/x, n/y, k/z ∈ M with (m/x) Rτ (k/z) and (n/y) Rτ (k/z) 

but 
)y/n(R)x/m( c

 . Then })y/n({Clx m . 
Since (M, τ) is regular, there are open neighborhood 
V1 of m/x and open neighborhood V2 of Cl({n/y}) 
such that V1 ∩ V2 = ϕ. Since V1 is an open 
neighborhood of m/x and (m/x) Rτ (k/z), one has z ∈ k 
V1. Noticing that V2 is also an open neighborhood of 
n/y and (n/y) Rτ (k/z), we have z ∈ k V2. Thus z ∈ k V1 

∩ V2 and so  21 VV , which is a contradiction. 
For M-topological spaces, generally, there is no 

mutual implication between regularity and separation 

axioms To, T1, T2. But for GMA-spaces, 
a

1T implies 
regularity. 

Theorem 5.2. Every 
a

1T GMA-space is a regular 
GMA-space. 

Proof. Let (M, R) be a 
a

1T GMA-space and m/x, 
n/y, k/z ∈ M with (m/x) R (k/z) and (n/y) R (k/z). 

Then by 
a

1T  and (n/y) R (k/z), we get that n/y = k/z 
and (m/x) R (n/y). So (M, R) is regular. 

For M-topological spaces, regularity and To 
imply T1. Similarly, for GMA-spaces we have 

Theorem 5.3. If (M, R) is a regular 
a

oT  GMA-space, 

then (M, R) is a 
a

2T GMA-space. 

Proof. Let (M, R) be a regular 
a

oT GMA-space 

and m/x, n/y ∈ M with 
y/nx/m 

. 
We claim that Rs(m/x) ∩ Rs(n/y) = ϕ. If not, that 

is, there is z ∈ k M such that (m/x) R (k/z) and (n/y) R 
(k/z), then by the regularity of (M, R), we have (m/x) 
R (n/y) and (n/y) R (m/x), contradicting that (M, R) is 

a 
a

oT  GMA-space. So (M, R) is a 
a

2T GMA-space. 
Now we start to consider normality of GMA-

spaces. 
Definition 5.3. A M-topological space M is called 
normal if for any disjoint closed mets A and B there 
are open sub msets W, V ⊆ M such that A ⊆ W, B ⊆ 
V and W ∩ V = ϕ. 

Recall that a normal M-topological space M is 
also characterized by that for any closed mset A ⊆ M 
and any open neighborhood V of A, there is an open 
neighborhood W of A such that Cl(W) ⊆ V . When a 
M-space M has an Alexandrov M-topology then M is 
normal iff for any closed mset A ⊆ M, the smallest 
open neighborhood of A is a closed mset. We have 
immediately the following corollary. 
Corollary 5.1. Let (M, R) be a topological GMA-
space. Then (M, τR) is a normal M-space iff for all 
m/x, n/y, k/z, l/u ∈ M, if (n/y) R (m/x), (n/y) R (k/z) 
and (l/u) R (k/z), then there is v ∈ t M such that (t/v) 
R (m/x) and (t/v) R (l/u). 

In terms of the condition in Corollary 5.1, we 
can extend normality to  GMA-spaces. 
Definition 5.4. Let (M,R) be a GMA-space. If for any 
m/x, n/y, k/z, l/u ∈ M, if (n/y) R (m/x), (n/y) R (k/z) 
and (l/u) R (k/z) , imply that there is v ∈ t M such that 
(t/v) R (m/x) and (t/v) R (l/u), then (M, R) is called a 
normal GMA-space. 

From Definition 5.4, we can characterize 
normality of GMA-spaces by upper mset 
approximations. It is easy to check that a GMA-space 
(M, R) is normal iff 

}))x/m({R(R})))x/m({R(R(R 11   for all x 
∈ m M. 
Proposition 5.3. If (M, R) is a normal GMA-space, 
then for all m/x, n/y ∈ M, (m/x) R (n/y) implies that 
there is v ∈ t M such that (t/v) R (m/x) and (t/v) R 
(n/y). 

Proof. Let m/x, n/y ∈ M, (m/x) R (n/y). Then by 
Definition 5.4, it follows from (m/x) R (n/y), (m/x) R 
(n/y) and (m/x) R (n/y) that there is v ∈ t M such that 
(t/v) R (n/y) and (t/v) R (m/x), as desired. 

For an M-topological space (M, τ ) and its 
induced GMA-space (M, Rτ ), we have 
Theorem 5.4. If (M, τ ) is a normal M-topological 
space, then (M, Rτ ) is a normal GMA-space. 

Proof. Assume that m/x, n/y, k/z, l/u ∈ M, and 
(n/y) Rτ (m/x), (n/y) Rτ (k/z) and (l/u) Rτ (k/z). If there 
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is no v ∈ t M such that (t/v) Rτ  (m/x) and (t/v) Rτ  
(l/u), then 

Cl({m/x}) ∩ Cl({l/u}) = ϕ. Since (M, τ ) is 
normal, there is open neighborhood V1 of Cl({m/x}) 
and open neighborhood V2  of Cl({l/u}) such that V1 
∩ V2 = ϕ. Since (n/y) Rτ  (m/x), we have y ∈ n 
Cl({m/x}) and V1  is also an open neighborhood of 
n/y. Then it follows from (n/y) Rτ (k/z) that z ∈ k V1. 
Since V2 is an open neighborhood of l/u and (l/u) Rτ  
(k/z), we have z ∈ k V2. So, z ∈ k V1 ∩ V2, 
contradicting V1 ∩ V2 = ϕ. This shows that for all m/x, 
n/y, k/z, l/u ∈ M and (n/y) Rτ (m/x), (n/y) Rτ (k/z) and 
(l/u) Rτ (k/z) , there is v ∈ t M such that (t/v) Rτ (m/x) 
and (t/v) Rτ  (l/u). So (M, Rτ ) is a normal GMA-
space. 

The following theorem gives us an unexpected 
result about the relation of normality and regularity 
for GMA-spaces, which is very different from the 
situation for 

M-topological spaces. 
Theorem 5.5. Every regular GMA-space is a normal 
GMA-space. 

Proof. Assume that (M;R) is a regular GMA-
space. Let m/x, n/y, k/z, l/u ∈ M, and (n/y) R (m/x), 
(n/y) R (k/z) and (l/u) R (k/z). By regularity of (M, R), 
(n/y) R (k/z) and (l/u) R (k/z) imply (n/y) R (l/u). Pick 
t/v = n/y ∈ M, then we have (t/v) R (m/x) and (t/v) R 
(l/u). So (M, R) is a normal GMA-space. 

The converse of Theorem 5.5 is not true in 
general. The following example provides a GMA-
space which is normal but not regular. 
Example 5.1. Let M = {3/a, 2/b, 4/c} and R = {(3/a, 
3/a), (2/b, 2/b), (4/c, 4/c), (4/c, 3/a), (4/c, 2/b)}. Then 
R is a partial order mset relation on M and (M, R) is a 

topological GMA-space. For the induced M-
topological space (M, τR), the family of open msets is 
τR = {ϕ, {3/a}, {2/b},M} and the family of closed 
msets is FR = {M, {2/b, 4/c}, {3/a, 4/c}, ϕ}. Since 
there is no disjoint non-empty closed sets in FR, (M, 
τR) and hence (M, R) is normal. But for the point 3/a 
and the closed mset {2/b, 4/c} not containing 3/a, 
there is no open msets to separate them, showing that 
(M, τR) and hence (M, R) is not regular. 

It is known that every normal T1 M-topological 
space is regular. Similarly, for GMA-spaces, axiom 

a
2T  and normality imply regularity. 

Theorem 5.6. If (M, R) is a normal 
a

2T  GMA-space, 
then (M, R) is regular. 

Proof. Let m/x, n/y, k/z, l/u ∈ M with (m/x) R 
(k/z) and (n/y) R (k/z). It follows from (m/x) R (k/z), 
(m/x) R (k/z), (n/y) R (k/z) and normality of (M, R) 
that there is v ∈ t M such that (t/v) R (k/z) and (t/v) R 

(n/y). If x/mv/t  , then by
a

2T , 
 )x/m(R)v/t(R ss .  Clearly 

)x/m(R)v/t(Rz ss
k  , which is a 

contradiction, So t/v = m/x and (m/x) R (n/y), showing 
that (M, R) is a regular GMA-space. 

 
6. Conclusion 

In this paper, we studied GMA-spaces in terms 
of topological methods and gave further connections 
between M-topology and rough mset theory. And we 
discuss the following statements. 

1- Any reflexive binary mset relation 
determines an M-topology. 

2- If R is a reflexive and symmetric mset 

relation on a mset M, then τ = {A ⊆ M :
A)A(R 

} 
is a M-topology such that A is open if and only if it is 
closed. 

3- For every topological space (M, τ) satisfying 
the condition that A is open if and only if it is closed, 

there exists a reflexive and symmetric relation   

such that 
}A)A(:MA{ 

. 
4- Classical separation axioms for M-

topological spaces are extended to generalized mset 
approximation spaces. 

5- Relationships among separation axioms for 
generalized mset approximation spaces and 
relationships between M-topological spaces and their 
induced generalized mset approximation spaces are 
investigated. 

In the future work, we will focus on another 
topological properties saying connectedness and 
compactness on generalized rough msets. 
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