
 Life Science Journal 2014;11(3s) http://www.lifesciencesite.com

196

An Axiomatic Evaluation of Software Complexity Metrics for Prototype based Object Oriented Systems

Syed Ahsan

Faculty of Computing and Information Technology King Abdulaziz University, North Jeddah
Email: saehsan@kau.edu.sa

Abstract: Traditional Software metrics are both tangible such as LOC and intangible such as Amount of Effort and
Software Engineering experience etc. For contextual and intangible metrics, it is generally assumed that these
metrics can be generalized over a universal set of domains. In our opinion, the intuitive nature of intangible and
intrinsically intuitive metrics warrant a revisit of theoretical foundations on which such metrics are based. This is
especially true in case of Prototype based software modeling, which being a class-less system has entirely different
theoretical foundations. Also the sizes of the project on which such metrics are applied have a bearing on
complexity. In this paper we have proposed an axiomatic approach towards evaluation of Software Complexity
metrics. These axioms are based on Measurement theory and provide us with theoretical underpinnings based upon
which, metrics suitable for class based and class-less Object Oriented approaches can be defined. Also introduced in
this paper is the notion of a viewpoint which helps us to resolve the problems introduced because of intuitive
contextual nature of complexity.
[Syed Ahsan. An Axiomatic Evaluation of Software Complexity Metrics for Prototype based Object Oriented
Systems. Life Sci J 2014;11(3s):196-201]. (ISSN:1097-8135). http://www.lifesciencesite.com. 29

Keywords: Measurement Theory, Class-less objects, Complexity Metrics, Empirical Relation, Software
Engineering

1. Introduction
Software Metrics can be perceived as a number,

a measurement scale, an identifiable attribute or an
empirical model depending on what is being
measured [1]. For factors such as LOC (Line of
Code), Amount of Effort and Software Engineering
experience etc., it may quantify into a number [2],[3].
For something contextual and intangible, it may be a
scale of measurement. It may be used to identify a
wanted or unwanted attribute such as cohesion,
portability or coupling.. We argue that complexity is
intrinsically intuitive and relative. Software attributes
cannot be precisely or completely defined by a
conventional absolute metrics [4]. The case becomes
starker in case of Prototype based software modeling,
which being a class-less system has entirely different
theoretical foundations [5]. Secondly, term metric has
been borrowed from measurement theory. The
conventional metrics of software engineering has also
been designed, developed and tested in context of
measurement theory. It will be erroneous to assume
that any such metric would suffice for any situation in
a variety of domains. Such an approach leads us to
believe that such metrics exist that are universally
validated and tested. On the contrary, such metrics do
not exist especially for Prototype based object
modeling techniques. On the same lines, we believe
that a metric that caters suitably to small OO projects
cannot be directly applied to large OO System
without further enrichment.

Measurement Theory is being increasingly
recognized as having a major contribution towards the

maturity of Software Engineering metrics [6][4].
Axiomatic approaches are also useful but need
further modifications and enhancements to their
current form [4]. These two approached are
significant in formalization and evaluation of OO
metrics. In this paper we provide theoretical
underpinnings based upon which, metrics suitable
for class based and class-less Object Oriented
approaches can be defined. These theoretical
underpinnings will be based on measurement theory
which we will briefly underline next. In addition to
measurement theory, we will also introduce the idea
of a viewpoint. A viewpoint is an empirical
relationship between the viewers and the object
under observation. In simple terms, it is a way of
looking at something. We feel that any measure
should be dependent on at least one attribute of the
object under observation. Also the attribute on
which the measure is based should be precisely
defined. As OO systems encompass both structure
and data, a measure should be able to measure both.
Lastly, a measure should be reliable and
automatable. A measure is reliable if it gives
consistent results irrespective of the order and
magnitude.

2. Measurement Theory and Qualitative
Relational System

Measurement theory which provides basis for
software quality metrics subsumes the notions of
Scales and Measure and also the methods and
procedures of measuring [7]. We will also briefly

Life Science Journal 2014 ;10(x) http://www.lifesciencesite.com

 197

discuss the topics of homomorphism and atomic
modifications. Concepts of Meaningfulness, Weak
order and extensive structures will also critically
analyze. Measurement theory states that any
relationship between two objects in our problem
domain can be empirically observed and formalized
[8]. Using this argument we stress that within the
domain of SE, if complexity is relative and contextual
and its meaning depending on the observer, than any
complexity, for example cyclomatic complexity,
cannot be formalized. Also if we have a precise and
unique definition of cyclomatic complexity, then any
measure of it from different observers should yield
the same result. For example, given two pipes of
length a and b, we either have a ≥ b or b ≤ a .
Similarly a ○ b would mean two pipes joined end to
end(○ as a concatenation operator).

Formally

� = � �, ��,○� ���� � = 1 �� � , � = 1 �� �

 where
A is a non empty set of objects, R� is an

empirical relationship (≥ , ≤) ○j is a binary

operation such as concatenation. Expressing binary
operation as a

(� + � − 1)– ����� (�, �1, �2, … , ��),
We define a mapping function µ which provides

homomorphism : µ � → � where B is a formal
relational system defined as :
 � = � �, �� , ●� �� = 1 �� �, � = 1 �� �

where B is a non empty set of objects

�� represents relationships B can enter into (≥ , ≤)

and ●� defines closed binary operations (addition,

multiplication). The homomorphism: µ � → � then
results in

∀ � � � Ǝ � � | µ (�) = �
for all objects of � (� � �). Formally

µ (��) = (µ �)(µ �) ∀ �, � � �
Finally we define scale as ������� (�, �, µ) if

and only if :

�� (���) ↔ �� (µ (���))

and
µ (� ○� �) = µ (�) ●�� (�)

for all i, j, and for all ��� � � . Moreover,
� = � (set of real numbers) implies that
������� (�, �, µ) is a real scale. In our opinion, two
issues that affect software complexity metrics in
relation to measurement theory are:
i) There is no agreed upon measure of factors such as
software size or software complexity. This makes it
difficult to uniquely gauge two soft-wares as equal or
one greater / smaller than the other. ii) Determination
of scales which are suitable for conventional software
engineering metrics. Although certain size measures

such as LOC may be more generic, it is difficult that
all software engineers will award the same ranking
for particular software as this ranking will be
intuitive and will depend upon their knowledge. It
may be termed as contextual. In other words, this
lack of any agreed intuitive understanding of what is
complex software, it is impossible to arrive at any
empirical relational system. In absence of any
empirical relational system, it would be impossible
to define a scale.
2.1 Orders and Scale

In literature relating to measurement theory,
role is extensively used to describe properties of
relations [9]. Type of order can be reflexive,
symmetric, transitive, complete and strongly
complete etc. A quasi – order relation as described
by equation:

� � � ↔ (� � � �� � � �)
defines a weak relation preference where

relation P represents indifference weak preference
and relation I represents indifference. Also

 ∀ �, � � � → (� = � ∃ � � � �� � � �)
 We term it as a strongly complete weak

relation. This means that ≥ is a weak order and > |
is not weak since

�� � = 1 ��� � = 1, ~ � �� ��� ~ � � �.
Similarly partial and strict partial order is also

of interest with reference to Software Engineering
metrics [9][10]. Both of these do not exhibit
incompleteness. Partial orders are intrinsically
unsuitable for precise definitions needed in Software
Engineering as they depend upon preference among
multi-dimensional factors (� = 1 �� �).

Thus
 � �� iff [�� (�) ≥ ��(�) ∀ �]

 The above equation defines the partial order
binary relation (�, �) whereas

��� iff (��� �� � = �)
defines a strict simple order, where (�, �) is a

strict partial order and (�, �) is partial order.
2. 2 Scale Types

Now we investigate the scales (�, � , µ) as
derived above. To fully explain why differences
exist in scale, we define admissible transformation
as defined by mapping

�: µ (�) → �
whenever (�, �, � ○ µ) is a scale. Formally,

function g ○ µ from A to B is a homomorphism if
 µ ∶ � → �� ��� µ (�) = 2�,

 then µ (�) is a transformation. According to
above �: µ (�) → � is an admissible
transformation. However �(�) = − �, � ○ µ is
not a homomorphism, so �: µ (�) → � is not an
admissible transformation. These admissible
transformations define the following scale types:

Life Science Journal 2014 ;10(x) http://www.lifesciencesite.com

 198

Nominal Scales: Ordering of such scales is not
possible. However non –parametric measures such as
frequency and medians are permissible but measures
such as standard deviation are not permissible
[11][12]. Ordinal Scales permit ordering. Statistics
are possible on such scales [12]. In such scales,
relations are defined but binary operations are not.
Therefore equation (�) and equation (�) may me
written as

� = (�, ��) ��� � = 1 �� �
� = (�, �_�) ��� � = 1 �� �

Interval Scales are stronger than both the above
mentioned scales as both order and intervals are
preserved through admissible
transformations[11][12]. Ratio Scales permit
transformations such as � = ��(� > 0) . In such
scales, value 0 has a meaning, for example in Kelvin
and length etc [12]. Absolute Scales: These scales
have strict constraints with transformations of the
type � (�) = �. LOC is an example of an absolute
scale [12]. For a scale to be meaningful, it is
important that the transformations applied are
meaningful. In other words, we can say that for a
complexity measure

µ (�� ○ ��) > µ (��) + µ (� �)
, complexity of combination of two parts is

greater than the sum of two program parts. Using an
internal scale and applying transformation (�(�) =
 �� + � to both sides, we derive:

�µ (��) + � > � µ (��) + � + � µ (��) + �
The above relationship is not meaningful for any

arbitrary b. We can say that for an internal scale,
equation (10) is not meaningful. However, if we
convert the scale into a ratio scale as

� µ (�� ○ ��) > � µ (��) + � µ (��)
 , it will become meaningful. This suggests that

ratio scales are more meaningful for measuring
software complexity. However extensive structures of
commutativity and monotonicity are needed for a
meaningful use of ratio scale.
2.3 Extensive Structures and Atomic
Modifications Extensive structures and Atomic
Modifications will allow for a more accurate
evaluation of software complexity metrics. Any
relational structure (� ,• ≥,∘) is an extensive
structure where Ρ is a non empty set and • ≥ and ∘
depicting binary relation and binary operator
respectively.

There exists no empirical relational system for
software complexity evaluation. The relation at best
can only be termed as empirical sub-relation as it does
not contain a weak order and only contain partial
information about empirical relation. Atomic
modifications can be used to determine if a particular
measure shod be accepted or rejected [13][14]. . They

represent any prescribed changes such as addition
and deletion of nodes of a DAG in calculation of
cyclomatic complexity . Similarly any modification
in the LOC is an atomic modification in calculation
of size complexity [15][16]. However in case of
measures such as cyclomatic complexity V (G) of a
DAG, such modifications may be of three types:
Mod1 : Addition of a node and an edge at any
arbitrary location . Mod 2: Shifting an edge to a
different location Mod 3: Inserting a new edge
between two nodes, � (�) = � − � + 2 .
Modification 1 and Modification 2 above have no
effect on the value of �(�) as opposed to
Modification 3 which results in an increase in the
value of V(G). This also conforms to intuitive
deficiencies of complexity measures as represented
by empirical relational system. Hence we can
deduce that if atomic modifications do not conform
to empirical relational system, then the
corresponding measure should not be accepted.

3. Axiomatic Approach to Metric
Evaluation

With the background developed, in this section
we evaluate the appropriateness of extensively used
conventional Software Engineering metrics. We will
adapt an axiomatic approach to evaluate these
metrics formally. We present nine such axioms
against which software complexity metrics can be
evaluated formally. First we will briefly describe the
axioms and in the next section we will present our
criticism of these axioms.

We have already discussed the sensitiveness
and inherent bias of measurement theory. One
important property of a measure is that the produced
value of complexity for a component of a program
should not be more than that of the program that it is
part of. In other words, a component cannot be
more complex than the program that it is part of.
Another important property of a good measure
relates to interaction between two programs. It
implies that given three programs ProgX, ProgY and
ProgZ, where Prog X is called from both ProgY and
ProgZ, then the interaction of ProgY and ProgX will
exhibit different properties than those between Prog
Z and ProX. In other words the complexity of
concatenation ProX-ProgY will be different from
complexity of concatenation ProgX-ProgZ. The
third property states that any measure should
consider statement order within a program. The
fourth property states that a metric should not be
affected if variables in a program are renamed.
According to the last property, the sum pf
complexities of components of a program should not
be greater than the complexity of the program. The

Life Science Journal 2014 ;10(x) http://www.lifesciencesite.com

 199

basic drawback in these properties of measures which
render them unsuitable for any Object Oriented
paradigm, whether class based or class-less is that
these are formulated not in terms of objects but in
terms of programs. In a more formal representation,

for any program P with complexity │ � │ > 0 and a
program Q with complexity │ � │ > 0 , either

│ � │ ≥ │ � │ or │ � │ ≥ │ � Furthermore if
│ � │ ≥ │ � │ ��� │ � │ ≥ │ �│,

Then│ � │ ≥ │ � │.
This implies transitivity and weak ordering

which, as discussed above makes a measure
unsuitable to quantify.
We will now discuss these axiomatic properties in
more detail and offer our criticism of the same:

Property 1: This property formally states:
(∃ �)(∃ �)(|�| ≠ |�|)

It ensures that any complexity metric which
assigns the same complexity value to all programs or
program components should not be considered

Property 2: Let c be a non negative number.
Then there are only a finite number of programs of
this complexity ′c′ . Property 2, ensuring sufficient
resolution, is counter balanced by Property 3 which
requires that metric should not be so fine that any
specific value of the metric is only realized by a
single program. In other word, it should be possible to
find two programs that are “equally complex”.

Property 3: For two distinct programs P andQ, it
is possible to have |�| = |�|. In our opinion, the
above three properties cannot be termed as measures
but properties of measures and do not reflect the
syntactic or semantic nature of software complexity
measure. Property 4:
If two program components P and Q produce identical
outputs for identical inputs, we can state that they
have identical behavior i.e., � ≡ �.

Formally
(∃�)(∃�)(� ≡ � & |�| ≠ |�|)

Property 4 suggests that same semantics may be
implemented differently syntactically in two
programs. In object oriented systems, two different
classes having the same message signatures, should
return identical signatures.
Property 5 expresses the notion of monotonicity. It
states that complexity of two concatenated (;
operator) program components should be greater
than the complexity of each of the component:

(∀�)(∀�)(|�|) ≤ |�; �| ��� |�| ≤ |�; �|)
In physical context, the property may hold true.

The psychological complexity, as determined by
understanding, for the whole may however be less
than that of individual components.

Property 6: If a program component R is
concatenated separately with components P and

Q , the resulting complexity of each would not be
identical:

6(�): (∃�)(∃�)(∃�)(|�| = |�|&|�; �| ≠ |�; �|)
6(�): (∃�)(∃�)(∃�)(|�| = |�|&|�; �| ≠ |�; �|)

One factor that may result in different
complexities is the ordering of statements, for
example the depth of nesting loops in case of
functions and procedures.

Property 7: Program components P and Q exist
such that Q may entirely be constituted by
permutating the order of statements of P such that
|�| ≠ |�|.

Property 8: According to this property,
relabeling of individual variables or objects has no
effect on complexity. Simply if P is a renaming of Q,
then |�| = |�|. In our opinion, this may be true for
some physical measure such as LOC. In context of
psychological complexity however, renaming
variables can make a program virtually
indecipherable.

Property 9: The final property states that
complexity of a program that is constituted by
concatenation of two program components may be
greater than the complexity of individual
components such that

(∃�)(∃�)(|�| + |�|) < |�; �|)
In the table below, we evaluate four traditional

structured metrics against these nine axiomatic
properties and show that several of these axiomatic
properties are not satisfied:

4. Discussion and Conclusion

In our opinion the in inability of the above
axioms to satisfy traditional complexity metric stem
for the fact that “complexity” as defined in these
axioms is sill defined.

Table 1: Evaluation of four traditional metrics
against nine axiomatic properties
Axiomati

c
Property

Statemen
t Count

Cyclomati
c Number

Effort
Measur

e

Data Flow
Complexit

y
1 Y Y Y Y
2 Y N Y N
3 Y Y Y Y
4 Y Y Y Y
5 Y Y N N
6 N N Y Y
7 N N N Y
8 Y Y Y Y
9 N N Y Y

“Complexity” here refers to ease of

implementation, size, and maintainability and so on.
Also Property 5 and Property 6, as observed above
are mutually incompatible. Property 5 is appropriate
for physical complexity measures is such as size but

Life Science Journal 2014 ;10(x) http://www.lifesciencesite.com

 200

not suitable for measuring psychological complexity
such as comprehension. Conversely Property 6,
although appropriate for measuring degree of
comprehension, is in appropriate for measures
relating to size. Moreover, as observed above, these
axioms are not consistent and not in accordance with
measurement theory. For example, take the case of
Property 6, Property 7 and Property 9. Property 9,
although relevant on a ratio scale, is not meaningful
on an internal scale whereas Property 6 and Property
7 totally reject the ratio scale.

We will now discuss each of these axiomatic
properties and outline the following observations:
Property 1: Cannot be applied to all software
measures. For example, the measure of KNOTS,
although meaningful for measuring unstructuredness
of flow graphs, renders useless for structured
programs as it always results in a zero value thus
violating Property 1 for structured programs. Thus
KNOTS, although invalid for structured programs
cannot be dismissed for structured programs.
Property2: Property 2 does not satisfy condition for
cyclomatic complexity because of its different
properties with respect to ordinal scale. It does not
mean that this property is unsuitable to measure
cyclomatic complexity. Property 3 warrants not
criticism as it satisfies all the four conventional
Software complexity metrics. Property 4 is
applicable for measuring understanding and
maintainability of structured programs. It is
inapplicable for object oriented systems which have a
high level design and implementation details at many
stages of design. They may however be applicable for
OO maintenance metrics.
Property 5: According to this property, as discussed in
extensive structures above, complexity should
increase by adding new code or program component.
In our opinion, in context of psychological
complexity, an incomplete loop is more complex than
a complete loop. This can be extended to the notion
that a complete class is more understandable than an
incomplete class. We however dispute applicability of
this property into Object Oriented Systems form a
comprehension point of view.
Property 6: Absence of monotonicity in this property
prevents it from becoming a ratio scale. This renders
it useful for some measures and goals but not useful
globally. Property 7: Absence of axiom of
commutativity that is required for extensive structure
makes ratio scale unattainable. Property 8: Suffices
for the four conventional software complexity
measures and hence no critical discussion required.
Property 9: The final property is applicable for an
internal scale but not for a rational scale. Formally
 (∀�)(∀�)(|�| + |�|) < |�; �|)

From the above discussion we suggest that any
useful validated measure should observe the
following three principles:
i)A zero complexity should result in case of an
empty set.
ii) Complexity of a component of a program should
always be less than the complexity of the whole
program.

Table 2: Evaluation of appropriateness of the
axiomatic property for complexity measures

Axiomatic
Properties

Appropriate
Measures

Inappropriate
Measures

1 Structured Programs Measures of
unstructuredness

2 All Programs NA

3 Size related Control for
complexity

4 Comprehension
based

NA

5 Size related Comprehension
based

6 Comprehension
based

Size related ; ratio
scale

7 Psychological
complexity

Extensive
structure; ratio

scale

8 Size Comprehension
related

9 Ratio scale Ordinal Scale

iii) Measurement of a set of components of a

program must produce a value less than or equal to
the use of individual values produced when
measuring the individual components.

The above three principles can be formally
expressed through the following equations;
�(����� �� , �� , … �� ���)
≥ Σ�(��) (�)
2��(��) + �(��)� ≥ �(�� � �ℎ�� �� ���� ��)

> �(��) + �(��) (�)

2�(��) ≥ �(�ℎ��� � �� �) >
�(�) (�)
Applicability in Prototype (Class-less) and Class
based OO Metrics

Although the requirements of both Class –less
and Class based OO complexity metrics are
different, our proposed properties are reasonably
applicable to these. Property 1 and Property 2 are
applicable as such. Property 3 in context of OO

Life Science Journal 2014 ;10(x) http://www.lifesciencesite.com

 201

approach implies that two classes can have the same
complexity. Property 5, applied to OO systems
implies that complexity of combination of two objects
cannot be less than either of the component objects.
Property 6 and Property 9 need further modifications
to be fully applicable on OO systems. In near future ,
based on axioms and properties defined in this work,
we will try to define a set of generic metrics that are
suitable for a universal set of contexts and conditions.

References
1. Abrahamssons, P., “Commitment nets in

software process improvement”, Annals of
Software Engineering. 2002.
[2] Abrahamssons, P., Salo, O., Ronkainen, J.,
Warsta, J., “ Agile Software development
methods”, Review and Analysis. VTT
Publications, 2007.

2. Craig Chambers and David Ungar., “Making
Pure Object-Oriented Languages Practical.” In
OOPSLA ’91 Conference Proceedings, pp. 1-
15, Phoenix, AZ, October, 1991.

3. Ole Agesen, Jens Palsberg, and Michael I.
Schwartzbach. “Type Inference of Self:
analysis of Objects with Dynamic and Multiple
Inheritance”, in Proc. ECOOP ‘93, pp. 247-267.
Kaiserslautem,

4. Bob Hunter, Martin Fowler, & Gregor Hohpe,
accessed February 12, 2013.
http://www.thoughtworks.com/us/library/agile
EAIMethods.pdf

5. S.R. Chidamber and C. F. Kemerer, “Towards
a metrics suite for object-oriented design”, in
Proc. 6th

6. OOPSLA Conference, ACM 1991, pp. 197-211.
7. S. R. Chidamber and C. F. Kemerer, “A

Metrics Suite for Object-Oriented Design”,
IEEE Trans. Software Eng., vol. 20, no. 6, June
1994, pp. 476-493.

8. N. E. Fenton, “Software Measurement: A
necessary scientific basis”, IEEE Trans.

Software Eng., vol. 20, no. 3, March 1994, pp.
199-206.

9. Robillard, M., Murphy, G. “FEAT: A Tool for
Locating, Describing, and Analyzing
Concerns in Source Code”. Proc. of ICSE’03,
Portland, May 2003, pp. 822-824.

10. Zacaria, A., Hosny, H. “Metrics for Aspect-
Oriented Software Design”. Proc. Third
International Workshop on Aspect-Oriented
Modeling, AOSD'03, 2003.

11. Zhao, J. “Towards a Metrics Suite for Aspect-
Oriented Software”. Technical-Report SE-
136-25, Information Processing Society of
Japan (IPSJ), March 2002.

12. Bandi, R., Vaishnavi, V., Turk, D. “Predicting
Maintenance Performance Using
ObjectOriented Design Complexity Metrics”.
IEEE Transactions on Software Engineering,
29(1), January 2003, pp. 77-87.

13. Basili, V., Caldiera, G., Rombach, H. “The
Goal Question Metric Approach”.

14. “An Empirical Study of the Evolution of an
Agile-Developed Software System”. ICSE '07
Proceedings of the 29th international
conference on Software Engineering. Pages
511-518

15. S. “Theoretical reflections on agile
development methodologies”.
Communications of the ACM - Emergency
response information systems: emerging
trends and technologies. CACM
Homepage archive Volume 50 Issue 3, March
2007. Pages 79-83

16. Hector M. Olague. “ An empirical validation
of object-oriented class complexity metrics
and their ability to predict error-prone classes
in highly iterative, or agile, software: a case
study”. Journal of Software Maintenance and
Evolution: Research and Practice Volume
20, Issue 3. Sept 2008.Pages 171–197,

3/5/2014

