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Abstract: Traditional Software metrics are both tangible such as LOC and intangible such as Amount of Effort and 
Software Engineering experience etc. For contextual and intangible metrics, it is generally assumed that these 
metrics can be generalized over a universal set of domains. In our opinion, the intuitive nature of intangible and 
intrinsically intuitive metrics warrant a revisit of theoretical foundations on which such metrics are based. This is 
especially true in case of Prototype based software modeling, which being a class-less system has entirely different 
theoretical foundations. Also the sizes of the project on which such metrics are applied have a bearing on 
complexity. In this paper we have proposed an axiomatic approach towards evaluation of Software Complexity 
metrics. These axioms are based on Measurement theory and provide us with theoretical underpinnings based upon 
which, metrics suitable for class based and class-less Object Oriented approaches can be defined. Also introduced in 
this paper is the notion of a viewpoint which helps us to resolve the problems introduced because of intuitive 
contextual nature of complexity. 
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1. Introduction 
Software Metrics can be perceived as a number, 

a measurement scale, an identifiable attribute or an 
empirical model depending on what is being 
measured [1]. For factors such as LOC (Line of 
Code), Amount of Effort and Software Engineering 
experience etc., it may quantify into a number [2],[3]. 
For something contextual and intangible, it may be a 
scale of measurement. It may be used to identify a 
wanted or unwanted attribute such as cohesion, 
portability or coupling.. We argue that complexity is 
intrinsically intuitive and relative. Software attributes 
cannot be precisely or completely defined by a 
conventional absolute metrics [4]. The case becomes 
starker in case of Prototype based software modeling, 
which being a class-less system has entirely different 
theoretical foundations [5]. Secondly, term metric has 
been borrowed from measurement theory. The 
conventional metrics of software engineering has also 
been designed, developed and tested in context of 
measurement theory. It will be erroneous to assume 
that any such metric would suffice for any situation in 
a variety of domains. Such an approach leads us to 
believe that such metrics exist that are universally 
validated and tested. On the contrary, such metrics do 
not exist especially for Prototype based object 
modeling techniques. On the same lines, we believe 
that a metric that caters suitably to small OO projects 
cannot be directly applied to large OO System 
without further enrichment. 

Measurement Theory is being increasingly 
recognized as having a major contribution towards the 

maturity of Software Engineering metrics [6][4]. 
Axiomatic approaches are also useful but need 
further modifications and enhancements to their 
current form [4]. These two approached are 
significant in formalization and evaluation of OO 
metrics. In this paper we provide theoretical 
underpinnings based upon which, metrics suitable 
for class based and class-less Object Oriented 
approaches can be defined. These theoretical 
underpinnings will be based on measurement theory 
which we will briefly underline next. In addition to 
measurement theory, we will also introduce the idea 
of a viewpoint. A viewpoint is an empirical 
relationship between the viewers and the object 
under observation. In simple terms, it is a way of 
looking at something. We feel that any measure 
should be dependent on at least one attribute of the 
object under observation. Also the attribute on 
which the measure is based should be precisely 
defined. As OO systems encompass both structure 
and data, a measure should be able to measure both. 
Lastly, a measure should be reliable and 
automatable. A measure is reliable if it gives 
consistent results irrespective of the order and 
magnitude. 

 
2. Measurement Theory and Qualitative 
Relational System 

Measurement theory which provides basis for 
software quality metrics subsumes the notions of 
Scales and Measure and also the methods and 
procedures of measuring [7]. We will also briefly 
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discuss the topics of homomorphism and atomic 
modifications. Concepts of Meaningfulness, Weak 
order and extensive structures will also critically 
analyze. Measurement theory states that any 
relationship between two objects in our problem 
domain can be empirically observed and formalized 
[8]. Using this argument we stress that within the 
domain of SE, if complexity is relative and contextual 
and its meaning depending on the observer, than any 
complexity, for example cyclomatic complexity, 
cannot be formalized. Also if we have a precise and 
unique definition of cyclomatic complexity, then any 
measure of it from different observers should yield 
the same result. For example, given two pipes of 
length a and b, we either have a ≥  b or b ≤   a . 
Similarly a ○  b would mean two pipes joined end to 
end( ○ as a concatenation operator ). 

Formally 

� = � �, ��,○�  ����   � =  1 �� � , � = 1 �� � 

 where 
A   is a non empty set of objects,  R�  is an 

empirical relationship ( ≥  , ≤ )     ○j is a binary 

operation such as concatenation. Expressing binary 
operation as a 

( � + � − 1)–  ����� ( �, �1, �2, … , ��), 
We define a mapping function µ which provides 

homomorphism : µ � →  �  where B  is a formal 
relational system defined as :   
   � =  � �, �� , ●�  �� =  1 �� �, � =  1 �� � 

where  B is a non empty set of objects  

��  represents relationships B can enter into (≥  , ≤ )   

and ●�    defines closed binary operations ( addition, 

multiplication). The homomorphism:  µ � →  �  then 
results in 

∀ � � � Ǝ � � | µ (�)  =  � 
for all objects of � ( �  � �).   Formally  

µ (��) =  (µ �)(µ �)  ∀ �, � � � 
Finally we define scale as �������  ( �, �, µ ) if 

and only if : 

�� (���)  ↔  ��  (µ (  ���  ) ) 

and   
µ ( � ○�   � )  =  µ (�)  ●�� ( �) 

for all  i, j,   and for all   ��� � � . Moreover, 
� =  �  (set of real numbers) implies that 
������� (�, �, µ ) is a   real scale. In our opinion, two 
issues that affect software complexity metrics in 
relation to measurement theory are:                                                                                                                                   
i) There is no agreed upon measure of factors such as 
software size or software complexity. This makes it 
difficult to uniquely gauge two soft-wares as equal or 
one greater / smaller than the other. ii) Determination 
of scales which are suitable for conventional software 
engineering metrics. Although certain size measures 

such as LOC may be more generic, it is difficult that 
all software engineers will award the same ranking 
for particular software as this ranking will be 
intuitive and will depend upon their knowledge. It 
may be termed as contextual. In other words, this 
lack of any agreed intuitive understanding of what is 
complex software, it is impossible to arrive at any 
empirical relational system. In absence of any 
empirical relational system, it would be impossible 
to define a scale. 
2.1  Orders and Scale 

In literature relating to measurement theory, 
role is extensively used to describe properties of 
relations [9]. Type of order can be reflexive, 
symmetric, transitive, complete and strongly 
complete etc. A quasi – order relation as described 
by equation: 

� � � ↔  ( � � � �� � � �) 
defines a weak relation preference where 

relation  P  represents indifference weak preference 
and relation I represents indifference.  Also  

 ∀ �, � � � →  ( � = � ∃ � � � �� � � �) 
 We term it as a strongly complete weak 

relation. This means that ≥ is a weak order and > |  
is not weak since 

�� � = 1 ��� � = 1, ~ � �� ���  ~ � � �. 
Similarly partial and strict partial order is also 

of interest with reference to Software Engineering 
metrics [9][10]. Both of these do not exhibit 
incompleteness. Partial orders are intrinsically 
unsuitable for precise definitions needed in Software 
Engineering as they depend upon preference among 
multi-dimensional factors ( � =  1 �� �). 

Thus    
 � �� iff [ �� (�)  ≥   ��(�) ∀ �  ] 

 The above equation defines the partial order 
binary relation ( �, �)  whereas 

���   iff ( ��� �� � = �) 
defines a strict simple order, where ( �, �) is a 

strict partial order and (�, �) is partial order. 
2. 2 Scale Types 

Now we investigate the scales ( �, � , µ )  as 
derived above. To fully explain why differences 
exist in scale, we define admissible transformation 
as defined by mapping 

�:  µ ( �) →  � 
whenever ( �, �, � ○  µ ) is a scale. Formally, 

function g ○  µ from A to B is a homomorphism if 
 µ ∶  � →  ��   ���     µ (�)  =  2�, 

 then  µ (�)  is a transformation. According to 
above  �:  µ ( � ) →  �  is an admissible 
transformation. However �(�)  =  − �,   � ○  µ  is 
not a homomorphism, so �:  µ ( �) →  �  is not an 
admissible transformation. These admissible 
transformations define the following scale types: 



 
Life Science Journal 2014 ;10(x)                                                          http://www.lifesciencesite.com 

 

 198

Nominal Scales: Ordering of such scales is not 
possible. However non –parametric measures such as 
frequency and medians are permissible but measures 
such as standard deviation are not permissible 
[11][12]. Ordinal Scales permit ordering. Statistics 
are possible on such scales [12]. In such scales, 
relations are defined but binary operations are not. 
Therefore equation (�)  and equation ( �)  may me 
written as    

� = ( �, �� ) ��� � =  1 �� � 
� =  ( �, �_� ) ��� � =  1 �� � 

Interval Scales are stronger than both the above 
mentioned scales as both order and intervals are 
preserved through admissible 
transformations[11][12]. Ratio Scales permit 
transformations such as  � =  ��( � >  0) . In such 
scales, value 0 has a meaning, for example in Kelvin 
and length etc [12]. Absolute Scales: These scales 
have strict constraints with transformations of the 
type � ( �)  =  �. LOC is an example of an absolute 
scale [12]. For a scale to be meaningful, it is 
important that the transformations applied are 
meaningful. In other words, we can say that for a 
complexity measure 

µ ( ��  ○  �� )  >  µ (�� )  +  µ (� �) 
, complexity of combination of two parts is 

greater than the sum of two program parts. Using an 
internal scale and applying transformation (�(�)  =
 �� +  � to both sides, we derive: 

�µ (�� )  +  � >  � µ (�� )  +  � +  � µ (�� )  +  � 
The above relationship is not meaningful for any 

arbitrary b. We can say that for an internal scale, 
equation (10) is not meaningful. However, if we 
convert the scale into a ratio scale as 

� µ ( ��  ○  �� )  >  � µ (�� )  +  � µ (�� ) 
 , it will become meaningful. This suggests that 

ratio scales are more meaningful for measuring 
software complexity. However extensive structures of 
commutativity and monotonicity are needed for a 
meaningful use of ratio scale. 
2.3  Extensive Structures and Atomic 
Modifications Extensive structures and Atomic 
Modifications will allow for a more accurate 
evaluation of software complexity metrics. Any 
relational structure (� ,• ≥,∘ )  is an extensive 
structure where Ρ is a non empty set and • ≥ and ∘ 
depicting binary relation and binary operator 
respectively. 

There exists no empirical relational system for 
software complexity evaluation. The relation at best 
can only be termed as empirical sub-relation as it does 
not contain a weak order and only contain partial 
information about empirical relation. Atomic 
modifications can be used to determine if a particular 
measure shod be accepted or rejected [13][14]. . They 

represent any prescribed changes such as addition 
and deletion of nodes of a DAG in calculation of 
cyclomatic complexity . Similarly any modification 
in the LOC is an atomic modification in calculation 
of size complexity [15][16]. However in case of 
measures such as cyclomatic complexity V (G) of a 
DAG, such modifications may be of three types: 
Mod1 : Addition of a node and an edge at any 
arbitrary location . Mod 2: Shifting an edge to a 
different location Mod 3: Inserting a new edge 
between two nodes, � (�)  =  � −  � + 2 . 
Modification 1 and Modification 2 above have no 
effect on the value of �(�)  as opposed to 
Modification  3 which results in an increase in the 
value of V( G ). This also conforms to intuitive 
deficiencies of complexity measures as represented 
by empirical relational system. Hence we can 
deduce that if atomic modifications do not conform 
to empirical relational system, then the 
corresponding measure should not be accepted. 

 
3. Axiomatic Approach to Metric 
Evaluation 

With the background developed, in this section 
we evaluate the appropriateness of extensively used 
conventional Software Engineering metrics. We will 
adapt an axiomatic approach to evaluate these 
metrics formally. We present nine such axioms 
against which software complexity metrics can be 
evaluated formally. First we will briefly describe the 
axioms and in the next section we will present our 
criticism of these axioms. 

We have already discussed the sensitiveness 
and inherent bias of measurement theory. One 
important property of a measure is that the produced 
value of complexity for a component of a program 
should not be more than that of the program that it is 
part of.  In other words, a component cannot be 
more complex than the program that it is part of. 
Another important property of a good measure 
relates to interaction between two programs. It 
implies that given three programs ProgX, ProgY and 
ProgZ, where Prog X is called from both ProgY and 
ProgZ, then the interaction of ProgY and ProgX will 
exhibit different properties than those between Prog 
Z and ProX. In other words the complexity of 
concatenation ProX-ProgY will be different from 
complexity of concatenation ProgX-ProgZ. The 
third property states that any measure should 
consider statement order within a program. The 
fourth property states that a metric should not be 
affected if variables in a program are renamed. 
According to the last property, the sum pf 
complexities of components of a program should not 
be greater than the complexity of the program.  The 



 
Life Science Journal 2014 ;10(x)                                                          http://www.lifesciencesite.com 

 

 199

basic drawback in these properties of measures which 
render them unsuitable for any Object Oriented 
paradigm, whether class based or class-less is that 
these are formulated not in terms of objects but in 
terms of programs. In a more formal representation, 

for any program P with complexity │ � │ >  0 and a 
program Q with complexity │ � │ >  0  , either 

│ � │ ≥  │ � │ or │ � │ ≥  │ �  Furthermore if 
│ � │ ≥  │ � │ ��� │ � │ ≥  │ �│, 

Then│ � │ ≥  │ � │. 
This implies transitivity and weak ordering 

which, as discussed above makes a measure 
unsuitable to quantify.                                                                           
We will now discuss these axiomatic properties in 
more detail and offer our criticism of the same: 

Property 1: This property formally states: 
(∃ �)(∃ �)(|�| ≠ |�|) 

It ensures that any complexity metric which 
assigns the same complexity value to all programs or 
program components should not be considered 

Property 2: Let c  be a non negative number. 
Then there are only a finite number of programs of 
this complexity ′c′ . Property 2, ensuring sufficient 
resolution, is counter balanced by Property 3 which 
requires that metric should not be so fine that any 
specific value of the metric is only realized by a 
single program. In other word, it should be possible to 
find two programs that are “equally complex”. 

Property 3:  For two distinct programs P andQ, it 
is possible to have |�| = |�|.  In our opinion, the 
above three properties cannot be termed as measures 
but properties of measures and do not reflect the 
syntactic or semantic nature of software complexity 
measure.                                                     Property 4: 
If two program components P and Q produce identical 
outputs for identical inputs, we can state that they 
have identical behavior i.e., � ≡ �. 

Formally              
(∃�)(∃�)(� ≡ � & |�| ≠ |�|) 

Property 4 suggests that same semantics may be 
implemented differently syntactically in two 
programs. In object oriented systems, two different 
classes having the same message signatures, should 
return identical signatures.                                                                                                                                         
Property 5 expresses the notion of monotonicity. It 
states that complexity of two concatenated (;  
operator )  program components should be greater 
than the complexity of each of the component: 

(∀�)(∀�)(|�| ) ≤ |�; �|  ��� |�| ≤ |�; �|) 
In physical context, the property may hold true. 

The psychological complexity, as determined by 
understanding, for the whole may however be less 
than that of individual components. 

Property 6: If a program component R  is 
concatenated separately with components P  and 

Q , the resulting complexity of each would not be 
identical: 

6(�): (∃�)(∃�)(∃�)(|�| = |�|&|�; �| ≠ |�; �|) 
6(�): (∃�)(∃�)(∃�)(|�| = |�|&|�; �| ≠ |�; �|) 

One factor that may result in different 
complexities is the ordering of statements, for 
example the depth of nesting loops in case of 
functions and procedures. 

Property 7: Program components P and Q exist 
such that Q  may entirely be constituted by 
permutating the order of statements of P such that 
|�| ≠ |�|. 

Property 8: According to this property, 
relabeling of individual variables or objects has no 
effect on complexity. Simply if P is a renaming of Q, 
then |�| = |�|. In our opinion, this may be true for 
some physical measure such as LOC. In context of 
psychological complexity however, renaming 
variables can make a program virtually 
indecipherable. 

Property 9: The final property states that 
complexity of a program that is constituted by 
concatenation of two program components may be 
greater than the complexity of individual 
components such that 

(∃�)(∃�)(|�| + |�| ) < |�; �|) 
In the table below, we evaluate four traditional 

structured metrics against these nine axiomatic 
properties and show that several of these axiomatic 
properties are not satisfied: 

 
4. Discussion and Conclusion 

In our opinion the in inability of the above 
axioms to satisfy traditional complexity metric stem 
for the fact that “complexity” as defined in these 
axioms is sill defined. 

 
Table 1: Evaluation of four traditional metrics 
against nine axiomatic properties 
Axiomati

c 
Property 

Statemen
t Count 

Cyclomati
c Number 

Effort 
Measur

e 

Data Flow 
Complexit

y 
1 Y Y Y Y 
2 Y N Y N 
3 Y Y Y Y 
4 Y Y Y Y 
5 Y Y N N 
6 N N Y Y 
7 N N N Y 
8 Y Y Y Y 
9 N N Y Y 

 
“Complexity” here refers to ease of 

implementation, size, and maintainability and so on. 
Also Property 5 and Property 6, as observed above 
are mutually incompatible. Property 5 is appropriate 
for physical complexity measures is such as size but 
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not suitable for measuring psychological complexity 
such as comprehension. Conversely Property 6, 
although appropriate for measuring degree of 
comprehension, is in appropriate for measures 
relating to size. Moreover, as observed above, these 
axioms are not consistent and not in accordance with 
measurement theory. For example, take the case of 
Property 6, Property 7 and Property 9. Property 9, 
although relevant on a ratio scale, is not meaningful 
on an internal scale whereas Property 6 and Property 
7 totally reject the ratio scale. 

We will now discuss each of these axiomatic 
properties and outline the following observations:                                                       
Property 1: Cannot be applied to all software 
measures. For example, the measure of KNOTS, 
although meaningful for measuring unstructuredness 
of flow graphs, renders useless for structured 
programs as it always results in a zero value thus 
violating Property 1 for structured programs. Thus 
KNOTS, although invalid for structured programs 
cannot be dismissed for structured programs.                             
Property2:  Property 2 does not satisfy condition for 
cyclomatic complexity because of its different 
properties with respect to ordinal scale. It does not 
mean that this property is unsuitable to measure 
cyclomatic complexity.  Property 3 warrants not 
criticism as it satisfies all the four conventional 
Software complexity metrics.  Property 4 is 
applicable for measuring understanding and 
maintainability of structured programs. It is 
inapplicable for object oriented systems which have a 
high level design and implementation details at many 
stages of design. They may however be applicable for 
OO maintenance metrics.                                   
Property 5: According to this property, as discussed in 
extensive structures above, complexity should 
increase by adding new code or program component. 
In our opinion, in context of psychological 
complexity, an incomplete loop is more complex than 
a complete loop. This can be extended to the notion 
that a complete class is more understandable than an 
incomplete class. We however dispute applicability of 
this property into Object Oriented Systems form a 
comprehension point of view.                                       
Property 6: Absence of monotonicity in this property 
prevents it from becoming a ratio scale. This renders 
it useful for some measures and goals but not useful 
globally.  Property 7: Absence of axiom of 
commutativity that is required for extensive structure 
makes ratio scale unattainable.  Property 8: Suffices 
for the four conventional software complexity 
measures and hence no critical discussion required.  
Property 9: The final property is applicable for an 
internal scale but not for a rational scale. Formally  
   (∀�)(∀�)(|�| + |�| ) < |�; �|) 

From the above discussion we suggest that any 
useful validated measure should observe the 
following three principles:                                                                             
i)A zero complexity should result in case of an 
empty set.                                                                                                                    
ii) Complexity of a component of a program should 
always be less than the complexity of the whole 
program. 

 
Table 2: Evaluation of appropriateness of the 
axiomatic   property for complexity measures 

Axiomatic 
Properties 

Appropriate 
Measures 

Inappropriate 
Measures 

1 Structured Programs Measures of 
unstructuredness 

2 All Programs NA 

3 Size related Control for 
complexity 

4 Comprehension 
based 

NA 

5 Size related Comprehension 
based 

6 Comprehension 
based 

Size related ; ratio 
scale 

7 Psychological 
complexity 

Extensive 
structure; ratio 

scale 

8 Size Comprehension 
related 

9 Ratio scale Ordinal Scale 

 
iii) Measurement of a set of components of a 

program must produce a value less than or equal to 
the use of individual values produced when 
measuring the individual components. 

The above three principles can be formally 
expressed through the following equations; 
�(����� �� , �� , … ��  ��� )
≥  Σ�(�� )                                                                  (�) 
2��(�� ) + �(�� )� ≥ �(�� � �ℎ�� �� ���� �� )

> �(�� ) +  �(�� )                  (�) 

2�(�� ) ≥ �(�ℎ��� � �� �) >
�(�)                                                                            (�)  
Applicability in Prototype (Class-less) and Class 
based OO Metrics 

Although the requirements of both Class –less 
and Class based OO complexity metrics are 
different, our proposed properties are reasonably 
applicable to these. Property 1 and Property 2 are 
applicable as such. Property 3 in context of OO 
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approach implies that two classes can have the same 
complexity. Property 5, applied to OO systems 
implies that complexity of combination of two objects 
cannot be less than either of the component objects. 
Property 6 and Property 9 need further modifications 
to be fully applicable on OO systems. In near future , 
based on axioms and properties defined in this work, 
we will try to define a set of generic metrics that are 
suitable for a universal set of contexts and conditions. 
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