
 Life Science Journal 2014;11(3)       http://www.lifesciencesite.com 

 

112 

ICA Based Dictionary Learning for Image Denoising 
 

M. EL-SayedWaheed
1
, H. Ahmad Khalil

2
 and O. Farouk Hassan

3 

 

1.
Department of Computer Science, Faculty of Computers & Informatics, Suez Canal University, Ismailia, Egypt 

2.
Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt, P.O. Box 44519 

3.
Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia, Egypt 

osamafarouk4@gmail.com 

 

Abstract: Image denoising problem can be addressed as an inverse problem. An extension to the probabilistic framework 

for solving Image denoising problem is introduced in this paper. The approach is based on using over complete basis 

dictionary for sparsely representing the signal under interest. To learn the over complete basis, we used Generalized 

Gamma Distribution based ICA. We used the FastICA algorithm that works in sequential mode. The learned dictionary 

used after that for denoising speech signals. The results shows that our algorithm produced either equal or often 

significantly better than some of the best-known algorithms in signal denoising. 
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1. Introduction 

Image denoising has been a well-studied problem in 

the image processing community and continues to attract 

researchers with an aim to perform better restoration in the 

presence of noise. Denoising often requires solving an 

inverse problem. An ideal image x is measured in the 

presence of an additive zero-mean white and Gaussian 

noise, e, with standard deviation s . The measured image y 

is, thus 

y = x+e. 

Estimating x requires some prior information on the 

image, or equivalently image models. Finding good image 

models is therefore at the heart of image estimation. 

Indeed, numerous contributions in the past decays 

addressed this problem from many and diverse points of 

view. Statistical estimators of all sorts, spatial adaptive 

filters, stochastic analysis, partial differential equations, 

transform-domain methods, splines and other approximation 

theory methods, morphological analysis, order statistics, and 

more, are some of the many directions explored in studying 

this problem. 

Mixture models are often used as image priors since 

they enjoy the flexibility of signal description by assuming 

that the signals are generated by a mixture of probability 

distributions [1]. Gaussian mixture models (GMM) have 

been shown to provide powerful tools for data classification 

and segmentation applications, however, they have not yet 

been shown to generate state-of-the-art in a general class of 

inverse problems. Ghahramani and Jordan have applied 

GMM for learning from incomplete data, i.e., images 

degraded by a masking operator, and have shown good 

classification results, however it does not lead to state-of-

the-art in painting [2]. Portilla et al. have shown image 

denoising impressive results by assuming Gaussian scale 

mixture models (deviating from GMM by assuming 

different scale factors in the mixture of Gaussians) on 

wavelet representations [3], and have recently extended its 

applications on image deblurring [4]. Recently, Zhou et al. 

have developed an nonparametric Bayesian approach using 

more elaborated models, such as beta and Dirich let 

processes, which leads to excellent results in denoising and 

in painting [5]. 

The now popular sparse signal models, on the other 

hand, assume that the signals can be accurately represented 

with a few coefficients selecting atoms in some dictionary 

[6]. Recently, very impressive image restoration results have 

been obtained with local patch-based sparse representations 

calculated with dictionaries learned from natural images 

[7,8]. Relative to pre-fixed dictionaries such as wavelets [6], 

curve lets [9], and band lets [10], learned dictionaries enjoy 

the advantage of being better adapted to the images, thereby 

enhancing the sparsity. However, dictionary learning is a 

large-scale and highly non-convex problem. It requires high 

computational complexity, and its mathematical behavior is 

not yet well understood. In the dictionaries aforementioned, 

the actual sparse image representation is calculated with 

relatively expensive non-linear estimations. Such as l1 or 

matching pursuits [11,12]. More importantly, as will be 

reviewed in Section III-A, with a full degree of freedom in 

selecting the approximation space (atoms of the dictionary), 

non-linear sparse inverse problem estimation may be 

unstable and imprecise due to the coherence of the 

dictionary [13]. 

Structured sparse image representation models further 

regularize the sparse estimation by assuming de- pendency 

on the selection of the active atoms. One simultaneously 

selects blocks of approximation atoms, thereby reducing the 

number of possible approximation spaces [14-19]. These 

structured approximations have been shown to improve the 

signal estimation in a compressive sensing context for a 

random operator U. However, for more unstable inverse 

problems such as zooming or deblurring, this regularization 

by itself is not sufficient to reach state-of-the-art results. 

Recently some good image zooming results have been 

obtained with structured sparsity based on directional block 

structures in wavelet representations [20]. However, this 
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directional regularization is not general enough to be 

extended to solve other inverse problems [21-23]. 

This work shows that the over complete basis 

dictionary which learning by using the ICA technique can 

capture the main structure of the data used in learning the, 

lead to results in the same ballpark as the state-of-the- art in 

a number of imaging inverse problems, at a lower 

computational cost [25-28]. 

2. Sparse representation and Dictionary Learning 

Sparse representations for signals become one of the 

hot topics in signal and image processing in recent years. It 

can represent a given signal 
nx R as a linear 

combination of few atoms in an over complete dictionary 

matrix 
n kA    that contains K atoms (K>n). The 

representation of may be exact or approximate, 

, satisfying , where the vector  is the 

sparse representation for the vector x. 

To find  we need to solve either 

P0( )  min
s
s

0
 subject to x = As  (1) 

Or 

  (2) 

,where is the  norm, the number on non-zero 

elements. 

In this paper we use an algorithm to learn the basis of an 

over complete dictionary. Like the known K-SVD algorithm 

but instead of using the SVD decomposition for dictionary 

atoms update we used the FastICA algorithm with 

nonlinearity from the Generalized Gamma Distribution for 

sparse representation for the data matrix,. Also we choose 

the Gabor dictionary as an initial dictionary instead of the 

DCT dictionary used on the K-SVD. 

 
3. ICA for over complete dictionary learning 

In comparison with the probabilistic framework to basis 

learning in [18], that in part is also based on the use of ICA, 

the use of ICA proposed here is motivated by two reasons: 

1. It extends the probabilistic framework to learn the over 

complete basis, this is achieved through the use of the 

FastICA algorithm, [6], that works in sequential mode 

2. In regard to the probabilistic framework to basis learning 

presented in [18], the adopted ICA approach is more 

flexible, this is due to the fact that proper selection of the 

nonlinear functions (that are related to parameterized form 

of the probability density functions of the representation) 

enables basis learning that is tied with a representation with 

the pre-specified level of sparseness without affecting the 

structure of the basis learning equation (by ICA the basis 

inverse is actually learned). 

As opposed to that, in the Bayesian paradigm to the basis 

learning presented in[18], the structure of the basis learning 

equation depends on the choice of what was previously 

imposed on the probability density function of the sparse 

representation coefficients. We suppose that the linear 

model y = D x is valid; where y and x are random vectors 

(we interpret columns of the data matrix Y, denoted as yi , as 

realizations of y), and D is the basis matrix we want to 

estimate. For now we consider only the complete case (D is 

a n´ n square matrix, and y and x are n dimensional). 

Hence, the basis D is what in blind source separation is 

referred to as a mixing matrix. Extraction of the code matrix 

X (also referred to as a source matrix in blind source 

separation) can be performed by means of the ICA 

algorithms. 

Herein, we are interested in the ICA algorithm that: 

1. Can be casted into the probabilistic framework tied with 

the linear generative model as in [18]. 

2. Can be extended for learning the over complete basis. 

When blind source separation problem, 

 
y = Dx

, the minimization of the mutual information I(x) is 

used: 

1

1

( ) ( ) ( ) log det
n

i

i

I x H x H y D 



  
   (3) 

where H (xi ) stands for the differential entropy of the 

representation and H(y) stands for the joint entropy of the 

data. 

The ICA algorithms that maximize information flow 

through nonlinear network(Infomax algorithm), maximize 

likelihood (ML) of the ICA model y = D x, or minimize 

mutual information between components of x = D-1y , are 

equivalent in a sense that all minimize I(x) and yield the 

same learning equation forD
-1

. 
1 1 1( 1) ( ) [ ( ( ) ( ) ] ( )TD i D i I x k x i D i          (4) 

where 

fi = -
1

pi

dpi

dxi  
is the score function. 

The unknown density functions pi  can be parameterized, as 

Generalized Gamma Density (GGD), which is characterized 

by the following probability density function 
1

( | , , , ) exp( )
2 ( )

x c
p x c x c




   





  
    (5) 

where c is the location parameter, b ³ 0  is the scale 

parameter, a ³ 0 is the shape/power parameter and g ³ 0 is 

the shape parameter. 

If generalized Gamma probability density function is 

inserted in the optimal form for score function the 

expression for flexible nonlinearity is obtained: 

fi = (
-1

pyi (yi )
)
gbasign(yi - c) yi - c

(ag -1)
exp(-b yi - c

g

2G(a )
[(ag -1)- bg yi - c

g
]

 (6) 

 

This enables learning the basis matrix D that gives sparse 

representation for yi .For learning an over complete 

dictionary basis we used the FastICA algorithm with the 

nonlinearity obtained from the GGD. Thus, nonlinear 

function in the FastICA algorithm can be also chosen to 

generate sparse distribution of the representation xi . In the 

ai{ }
i=1

K

x x=As

x » As x - As
p

£ e s

s

(P0,e )  min
s
s

0
  subject to x - As

2
£ e

0 l0
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experiments we have used the nonlinearity comes from the 

GGD, which models sparse or super-Gaussian distributions 

In the sequential mode of the FastICA, basis vectors are 

estimated one at a time. After every iteration, the basis 

vector is orthogonalized with respect to previously estimated 

basis vectors using the Gram-Schmidt orthogonalization. 

This idea can be extended to over  complete case as follows 
1

1

( )
i

T

i i i j j

j

d d d d d




  
 (7) 

and the dictionary updated using equation (4) 

 

wherefi represents the score function defined as 

fi = -
1

pi

dpi

dxi  
Reconstruction: reconstruct the denoised image 

 
⌢
x = D-1y 
4. Experiments and Results 

In this work, we used an over complete Gabor 

dictionary as an initial dictionary of size 64x256 generated 

by using Gabor filter basis of size 8x8, each basis was 

arranged as an atom in the dictionary. The dictionary then 

learned and updated by using the FastICA algorithm. We 

applied the algorithm to Lena image, and a speech signal. 

The results showed that using the over complete 

dictionary learned by using the FastICA gave a good results. 

We used that method for image denoising and evaluate our 

method by calculating the PSNR and compare our results 

with the K-SVD methods, which showed that our method 

gave a better results over the K-SVD specially with low 

level noise energy. 

 
Fig. 1. (a) The original image. (b) The noised image by 

adding Gaussian noise with sigma=30. (c) The denoised 

image by using A-CMF algorithm and (d) the denoised 

image by using K-SVD. 

Fig. 1 From upper to down: the original image, the noised 

signal, and the cleaned signal by using the over complete 

dictionary learned using ICA 

 
Fig. 2 The original image in a, the image with additive noise 

in b, the denoised image by using ICA_DL in c, and the 

denoised image by using k_SVD in d. 

 

Table 1. The PSNR computed for speech signal and Lena 

image with different noise variance level (sigma). 
S

ig
m

a 
Speech Lena 

KSVD ICA_D KSVD ICA_D 

10 32.1236 31.8481 33.3948 37.0749 

15 30.1523 30.0193 31.1033 32.6425 

25 28.0565 28.2762 28.4547 28.8607 

30 25.4521 25.5401 27.2819 27.5758 

 

5. Discussion and Conclusion 

In this paper, we address the image denoising problem 

based on sparse coding over an over complete dictionary. 

Based on the fact that the ICA can capture the most 

important component of real data, which implies on real 

images. We presented an algorithm ICA_LD, which used 

the technique of learning the dictionary to be suitable for 

representing the important component in the image by using 

the FastICA technique that uses the nonlinearity induced 

from the GGD for updating the dictionary in the learning 

process. Experimental results show satisfactory recovering 

of the source image. Future theoretical work on the general 

behavior of this algorithm is on our further research agenda. 
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