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Abstract: This article is concerned with the numerical investigation of two-dimensional population balance models 
for batch crystallization processes with fines dissolution. In batch crystallization, dissolution of smaller unwanted 
nuclei below some critical size is of vital importance as it improves the quality of the product. The crystals growth 
rates for both size-independent and size-dependent cases are considered. Moreover, a delay in the recycle pipe is 
also included in the model. The space-time conservation element and solution element method, originally derived 
for non reacting flows, is used to solve the resulting model. This scheme has already been applied to a range of 
PDE's, mainly in the area of Fluid mechanics. The CE/SE method has been successfully applied to disciplines other 
than it originated from, this distinguishing feature confirms the method's robustness and generality. The numerical 
results in this article demonstrate the excellent performance of proposed numerical schemes in solving the current 
physical problem. 
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1. Introduction 

Crystallization is a very important unit operation, 
often used to produce solids from liquids. It has a 
wide range of speciality applications in chemical, 
pharmaceutical, material, and semiconductors 
industries. The process is proficient to provide high 
purity products and offers a potential to adjust the 
operating conditions for achieving the desired product 
properties. Its advantages such as its high product 
purity and low operating costs, make it more desirable 
as compared to other separation processes like 
extraction and distillation. It is important to 
understand and optimize the crystallization process for 
improving the product quality and for minimizing the 
production costs. This goal can be achieved by 
modeling and developing advanced control algorithms 
that can be implemented for online optimization of 
crystal size distribution.An accurate simulation of the 
distribution can be challenging as the distribution can 
extend many orders of magnitude in size and time. 

In batch crystallization process, dissolution of 
small crystals (fines dissolution) can improve the 
quality of a product. The dissolution appears when the 
solution with crystals already formed is warmed up, 
taking place as a diminution in the CSD. The 
dissolution and the crystallization are being 
considered as the opposite processes to each other. 
Normally, large size crystals are of more interest in 
the industry. The fine dissolution reduces undesirable 
small crystals and helps in achieving the desired CSD. 

Furthermore, it facilitates downstream processes like 
filtration.  

 Population balance based modeling is 
considered to be the most useful modeling approach 
for describing crystallization process along with 
several other chemical engineering processes. The 
Theory of population balances begins in 1960 when 
Hulburt and Katz [1] as well as Randolph and Larson 
[2] introduced them in the field of chemical 
engineering. Their wide range of application in 
industry provoked the researchers to get high interest 
in the solution of PBEs. Population balance equations 
are hyperbolic partial differential equations. 
Analytical solutions are possible only for a limited 
number of simple problems, which is why researchers 
have invested a lots of efforts to develop appropriate 
numerical schemes. With the passage of time, several 
numerical schemes were developed for Population 
balance models such as method of moments Marchisio 
et al. [3] and Barret et al. [4], the method of 
characteristic Kumar and Ramkrishna [5] Qamar and 
Warnecke [6], the method of weighted residuals Singh 
[7], the Monte Carlo method Shah et al. [8], Maisel et 
al. [9], Song [10], finite difference scheme Kumar and 
Ramkrishna [11], and the high resolution finite 
volume schemes Gunawan et al. [12], Qamar et al. 
[13], Qamar et al. [14].  

 In this article, a model for the simulation of a 
one and two-dimensional batch crystallization process 
with fines dissolution is derived. A simplified 
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dynamic model of ideally mixed batch crystallizer is 
considered here. It is assumed that fines completely 
dissolve at the end of recycle pipe attached to the 
crystallizer (see Figure (1)). The crystal growth rates 
can be size-dependent or size-independent and a delay 
in the recycle pipe is also integrated in the model. The 
space-time conservation element and solution element 
method is implemented for solving the resulting 
model. The CE/SE method originally developed by 
Gunawan et al. [15] is a new numerical frame work 
for solving conservation laws. Numerous striking 
features of CE/SE method such as extremely low 
numerical dissipation and simplicity of construction 
makes the CE/SE method very promising for CFD 
simulation.  

 This paper is organized as follows. In Section 2, 
two-dimensional batch crystallization model is 
presented. In Section 5, two-dimensional CE/SE 
scheme is derived. In Section 6, numerical test 
problems are presented. Finally, Section 7 gives 
conclusions and remarks.  

 

 
Figure 1: Single batch process setup with fines 
dissolution 
 
2. Two dimensional batch crystallization with fines 
dissolution  

In this section, we give two-dimensional 
mathematical model for the simulation of a batch 
crystallizer. In the two-dimensional case, the evolution 

of CSD 0),,( yxtn  is given as: 
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denotes the CSD of seed crystals added at the 

beginning of the batch process, 
0),(1 xtG

 and 
0),(2 ytG  are the crystals growth rates along the 

characteristic directions x  and y , 
0)(0 tB

 is the 

nucleation rate at minimum crystal size ),( 00 yx , and 

  is the Dirac delta distribution. Moreover, rzVc  is 

volume of the crystallizer and V


 is volumetric flow 

rate. The death function 
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 describes the 
dissolution of small particles below some critical size. 
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Balance law for the liquid phase yields an 
ordinary differential equation (ODE) for the solute 
mass of the form:  
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(4) 

Here, cV  represents the volume of a single 

crystal and c  is a crystal density. Due to fines 
dissolution this equation has two mass fluxes. The 
inner and outer fluxes are defined as: 
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The expressions for size dependent growths are 
given as follows: 
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 where 1gk
 and 2gk

 are the growth rates 

constant. The exponents 1g  and 2g  denote the 

growths order and 1  , 2 , 3 , 4  are constants 
representing the size-dependency. The nucleation is 
defined as: 
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b  is nucleation rate constant and the exponent 

b  gives the nucleation order. The model reduces to a 
batch crystallization model without fines dissolution 
when the first term on the right hand side of (1) and 
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the first two terms on the right-hand side of (4) are 
zero. Then equations (5) and (6) are not required. 

 
3. The two dimensional CE/SE method 

A detailed discussion on the derivation of two-
dimensional CE/SE method is given in Ref. [16] as 
well as Ref. [17].Here, we give a brief overview of 
this scheme. The equation of the two-dimensional 
batch crystallization model given in equation (1) can 
be re written as: 
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Here w = n(t,x,y), f = G1(t,x)n(t,x,y), g= 
G2(t,y)n(t,x,y) and
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that t , x and y  are the coordinates of a three-

dimensional Euclidean space 3E . The integral 
representation of Eq. (10) is:  

 0=
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Here 

TQgfwh ],,,[= 
  represents the current 

density vectors in 3E  and )(Vs  is the boundary of an 

arbitrary space-time domain V .  

 
Figure 2: Space-time geometry of the modified CE/SE 
method: (a) representative grid points in x-y plane, (b) 
the definitions of CE and SE. 

  
The whole domain is divided into non-

overlapped uniform rectangular cells as given in 
Figure (2). The centroid of each cell is denoted by a 
circle symbol that also represents the grid point in this 

CE/SE method, for instance point 
Q

 in Figure 2(b). 

The set of these points is denoted by  . In contrast to 
the original CE/SE method, only one conservation 
element (CE) and associated one solution element 
(SE) belong to each element. =150,0mm Space-time 
geometry of the modified CESE method: (a) 

representative grid points in x-y plane, (b) the 
definitions of CE and SE.  

 In Figure (2)(b), the grid points 321 ,,, AAAQ  

and 4A  are lying at time level 
ntt =  at which the 

new numerical solutions of flow variables are to be 

calculated. The points 321 ,,, AAAQ 
 and 4A  are the 

corresponding points at time level 
1/2= ntt  and the 

points 321 ,,, BBBQ 
 and 4B 

 are located at time level 
1/2= ntt . The same rule is applied to all mesh points 

for denoting the time levels. The SE associated to 

point 
Q

 is defined by the union of one horizontal 

plane segment 4321 AAAA  and two vertical plane 

segments 3311 BBBB 
 and 4422 BBBB 

. The CE 

associated to point 
Q

 is given by the cylinder 

44332211 BABABABA  44332211 BABABABA 
. The 

centroid 
Q

 of the top surface of this CE, denoted by 

polygon 44332211 BABABABA  is taken as the solution 
point. All the variables and their spatial derivative are 

stored at point 
Q

 denoting the set of solution points 
 . 

Inside each SE, the flow variables are assumed 
smooth and the structure of the flow solution is 
discretized by a prescribed function. Following 

Chang's approach, the distribution of W , k  and 
g

 
can be approximated by first-order Taylor expansions 

about point 
Q
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Here 
nt , QQ yx ,

 are the space-time coordinates 

of 
Q

. The variables w , tw , xw  and yw
 on the right 

hand side of Eq. (12) are the discretized variables. If 
these variables are available, the flow solution 
structure within SE is fully specified. However, the 
above variables are not completely independent.By 
employing Eq. (10), we obtain: 
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To derive the scheme, the continuous space-time 

flux vector 
),,( yxth

  is replaced by a discrete one 

 Tyxtgyxtfyxtwyxth )],,(),,,(),,,([=),,( ****


 (16) 

and the Eq. (11) by its discrete counterpart 
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for 1,2,3,4=l  indicating the spatial flux 
contribution from the four neighboring points. Here 

),( )()( l
q

l
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 and 
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 are the spatial coordinates of the 

centroid and the area of the four neighboring 

quadrilaterals 411 QBBA , 122 QBBA , 233 QBBA  and 

344 QBBA . Moreover, 
Tl

my
l

mx
l

m nn ,0],[= )()()(

 represent 
the eight surface vectors of the eight lateral planes: 

4141 BABA 
, 1111 BABA 

, 1212 BABA 
, 2222 BABA 

, 

2323 BABA 
, 3333 BABA 

, 3434 BABA 
 and 4444 BABA 

. 
Note that, the surface vector is defined as the unit 
outward normal vector (outward from the interior of 

the CE) multiplied by its area. Finally, s  is the area 

of the polygon 44332211 BABABABA
 that also 

represents the top surface of the present CE. Because 

all flow conditions at the 1/2n  time level are 
known, Eqs. (18) and (19) represent an explicit 

method for calculating 
nw  at point 

Q
.  

 To calculate Qxw )(
 and Qyw )(

, a central 
difference-type reconstruction procedure is employed. 
Due to Taylor series: 
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 Similarly, the solutions at 2A , 3A  and 
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In Eqs. (24) and (25), the value of constant   
can be either 1 or 2. The Eqs. (24) and (25) are simple 
and effective to suppress spurious oscillations near the 
shocks. This concludes the derivation of two-
dimensional CE/SE method on rectangular grids. 
 
4. Numerical test problem 
4.1 One dimensional case study 

In this section we have considered a numerical 
test problem in order to validate our numerical 
schemes for the given model.The initial data is given 
as: 

 ,
2

)(
exp

2(0)
=)(0,

2

2

3

seeds













 



xx

k

m
xn

cv

 
 
(27) 

 



 Life Science Journal 2014;11(2s)          http://www.lifesciencesite.com 

 

73 

where 
=0x

 and 
0.005=maxx

 are the minimum 
and maximum crystal sizes respectively. The interval 

][0, maxx  is divided into 300 grid points and the 
simulation time is taken to be 800 minutes. The 
temperature of the crystallizer was kept constant at 

Co33
. The kinetic parameters are given in Table (1).  

 
Table 1: Parameters for the test problem 1 

 Description   Symbols   Value   Unit  
 Growth rate 
constant  

 gk   1.37.10-5 
 

 m/min  

Growth rate 
exponent  

 1g   0.73   _  

Nucleation 
rate constant  

 bk   3.42.107  
 

1/ m3 min  

Nucleation 
rate 
exponent  

 b    2.35      

Density of 
crystals  

 c    1250   kg/ m3  

Volume 
shape factor  

 vk    0.029      

Initial solute 
concentratio
n (mass)  

 (0)m    0.09915   kg  

Saturated 
mass 
fraction  

 satw    0.090681     

Mass of 
seeds  

 seedsm   2.5.10-3  kg  

Mass of 
solvent  

 solvm    0.8017  kg  

Density of 
solution  

 solu    1000  kg/ m3 

Constant 
(Eq.(28)  

     3.2.10-4   m  

Constant 
(Eq. (28))  

 x    1.4.10-3  M 

volume of 
the 
crystallizer  

 rzVc    
310

 10-3 m3 

volumetric 
flow rate  

 V    2x10-5 m3/min 

volume of 
the pipe  

 pV    2.4x10-4   m 

  

The death function )(xh  is defined as: 
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where 0.0011547=  and 0.6=maxn . Final 
crystal size distribution for size-independent growth 

and size-dependent growth is shown in figure (5). In 
this figure final CSD for the model without fines 
dissolution, fines dissolution with and without time 
delay are compared. From figure it can be seen that in 
case of without fines dissolution there is a large 
number of small unwanted nuclei which can affect the 
product quality, while the dissolution unit dissolves 
the small crystal below some critical size and reduces 
the number of small crystals in the crystallizer. In case 
of fines dissolution without time delay small crystals 
are dissolve back as soon as they are introduced in the 
solution, so its effect on crystal growth rate is 
negligible. On the other hand, fines dissolution with 
time delay permits nuclei to grow for a certain time 
and the concentrated solution from dissolution unit get 
back to the crystallizer with a time delay. As a result 
the seed crystals grow at a faster rate. Furthermore, 
figures (6) and (7) gives a comparison of the proposed 
scheme and the finite volume Koren scheme for fines 
dissolution with and without time delay for both size-
independent and size dependent growth rates. The 
numerical results for both the schemes are almost 
overlapping. However the current scheme gives better 
results for the proposed model. 

 
4.2 Two dimensional case study 

In order to validate our numerical schemes for 
the given model, we consider the following numerical 
test problem. The initial data and other parameter in 
this problem are chosen for numerical purpose and are 
not belonging to any experimental setup. The initial 
data are taken as (see Figure (4)):  
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We assume the rectangular shaped crystals of 

volume 
yxVc

2=
, where x  is the width and 

y
 is the 

length of the crystal. Let 
(0,0)=),( 00 yx

 and 
),0.005(0.0025=),( maxmax mmyx . The interval 

][0,][0, maxmax yx 
 is subdivided into 400200  grid 

points and the final simulation time is 600  minutes. In 
the case of size-dependent growth rates we choose 

150=1  300=3 , while 42 =1=   in all cases. 

For size-independent case 31 =0=  . The kinetic 
parameters and other constants are given in Table (2). 
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The crystallizer was kept at a constant temperature of 

Co33
.  

 
Table 2: Parameters for the test problem 2  

 Description   Symbols   Value   Unit  
 Growth rate 
constant  

 
1gk    0.68.10-5   m/min 

Growth rate 
constant  

 
2gk   1.37.10-5   m/min  

Growth rate 
exponent  

 1g    0.73     

Growth rate 
exponent  

 2g    0.73      

Nucleation 
rate constant  

 bk   3.42.107  
 

1/m3 min 

Nucleation 
rate exponent  

 b   2.35      

Density of 
crystals  

 c    1250   kg/ m3 

Initial solute 
concentration 
(mass)  

 (0)m    0.09915   Kg 

Saturated 
mass fraction  

 satw    0.090681     

Mass of seeds   seedsm    2.5.10-3   kg  

Mass of 
solvent  

 solvm    0.8017   kg  

Density of 
solution  

 solu    1000  kg/ m3 

Constant (Eq. 
(29))  

     2.1.10-4   m 

Constant (Eq. 
(29))  

 x    7.0.10-4   m 

Constant (Eq. 
(29))  

 y    1.0.10-3   m  

volume of the 
crystallizer  

 rzVc    10-3  m3 

volumetric 
flow rate  

 V    2x10-5   m3 /min 

volume of the 
pipe  

 pV   2.4x10-4   m 

 

The following death function ),( yxh  is assumed 
in this problem (see Figure (3)): 





  

.otherwise,0

,)10,410(2),((0,0)if,0.6
=),(

44yx
yxh

 

 
(31) 

 
Figure 3: Death function h(x,y) 
 

 
Figure 4: Initial CSD 
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Figure 5: Top: Comparision of withoug fines 
dissolution, fines dissolution with and without time 
delay for size independent growth rate. Bottom: size 
dependent growth rate 
 

 
 

 
Figure 6: Top: Comparison of CE/SE and Koren for 
without time delay and size independent growth. 
Bottom: size dependent growth rate. 

 
 

 
Figure 7: Top: Comparion of CE/SE and Koren for 
time delay and size independent growth. Bottom: size 
dependent growth rate. 
 

 
 



 Life Science Journal 2014;11(2s)          http://www.lifesciencesite.com 

 

76 

 
Figure8: Top: 3D plots for size independent and size 
dependent growth rate. 
 

 
 

 
Figure 9: Top: 3D plots of fines dissolution without 
time delay for both size independent and size 
dependent case. 

 
 

 
Figure 10: Top: 3D plots of fines dissolution with time 
delay for both size independent and size dependent 
case. 
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Figure 11: Top: Comparison of CE/SE and Koren for 
size independent growth. Bottom: size dependent. 
 

  
 

 
Figure 12: Top: Comparison of CE/SE and Koren for 
without delay and size indepent growth. Bottom: size 
dependent. 

 
 

  
Figure 13: Top: Comparison of CE/SE and Koren for 
time delay and size independent growth. Bottom: size 
dependent. 

 
In Figures (8) to (10) the finial CSDs from the 

CESE method are given. In these figures, the three 
dimensional plots of final CSDs without fines 
dissolution and with fines dissolution as well with and 

without (
0=pt ) time delay are compared. Both size-

independent and size-dependent growth cases are 
considered in this figure. Moreover, Figure (11) to 
(13) gives the comparison of the proposed CE/SE 
method and the High resolution Koren scheme. In 
these figures, the one-dimensional plots of CSDs 

along the line 
yx 2=

 are given for without fines 
dissolution and with fines dissolution(with and 
without time delay). Both size independent and size 
dependent cases are considered. 

 
 
 
5. Conclusion 
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In this paper, a mathematical model for two-
dimensional batch crystallization process with fines 
dissolution was derived. From the case study it was 
observed that the dissolution of smaller nuclei below 
some critical size helps in improving the product 
quality. Crystals growth rates were considered to be 
both size-independent and size-dependent. Moreover, 
a delay in the recycle pipe was also incorporated in the 
model. The space time conservation element and 
solution element method , originally derived for non-
reacting flows, was used to solve the resulting model. 
These schemes have already been applied to a range 
of PDE's, mainly in the area of Fluid mechanics. The 
numerical results show excellent performance of 
proposed numerical schemes for solving the current 
model. 
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