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1. Introduction 

Chaos synchronization is an important topic 
both theoretically and practically that has been studied 
in the recent decades because of its potential 
applications in secure communications, chemical 
reactions, information science, biological systems, 
plasma technologies, etc [1-7]. Since Pecora and Carrol 
[8] introduced a method to synchronize two identical 
systems with different initial conditions, a variety of 
approaches have been proposed for the synchronization 
of chaotic systems which include complete 
synchronization [9,10], phase synchronization 
[11],[12],[13],14], lag synchronization [15], projective 
synchronization [16,17], etc. In the 
anti-synchronization it is aim to see opponent 
behaviour from master and slave system so the sum of 
two system will converge to zero. 
Anti-Synchronization is a prevailing phenomenon in 
symmetrical oscillators. It is well known that the first 
observation of anti-synchronization of two oscillators 
by Huygens in the seventeenth century was, in fact, AS 
between two pendulum clocks. So far, some progresses 
have been made in the researches of Synchronization 
and also AS. Kim et al. [18] have found an based on a 
suitable separation of systems, Zhang and Sun [19] 
have presented some simple but generic criteria for 
synchronization and anti-synchronization for chaotic 
systems. Recently, using different control methods, the 
Synchronization for some typical chaotic systems has 
been discussed [20-22].In this paper we will use 
nonlinear active control method by using Lyapunov 
stability theorem. The organization of this paper is as 
follows. Section 2 briefly gives the definition of 
anti-Synchronization, describes Liu system and Genisio 
system and then will introduce the active control 
schemes. Anti-synchronization by using active scheme 
will apply for those systems in Sections 3 ,4 and 5. 
Conclusion is obtained in the final section. 

 

2. Definitions 
For definition of synchronization consider a class 

of chaotic systems that described by  
 

 ),(= xtfx                       (2.1) 

 ),,(),(= yxtuytgy                 (2.2) 

 
where nRyx ,  are the state vectors and nn RRgf :,  

are continuous functions. Eq. (2.1) is the drive system, 
Eq. (2.2) is the response system and ),,( yxtu  is the 

imputed control function. It is said that the system (2.1) 
and system (2.2) have the property of 
anti-synchronization between )(tx  and )(ty , if there 

exists a synchronous manifold )(=)(:))(),((= tytxtytxM  

such that all trajectories ))(),(( tytx  approach M  as 

time goes to infinity, that is to say,  
 

 
0=lim=lim xye

t




                 (2.3) 

where is the Euclidean norm. 

The chaotic Genisio system is described by  

21 = xx  

32 = xx  

3x 2
1321= xcxbxax               (2.4) 

 
where the state variables, and ba,  and c  are the real 

constants. When 2.92=6,= ba  and 1.2=c  system 

(2.4) has positive Lyapunov exponents, and shows 
chaotic behavior with initial conditions 

(.1,.3,.2)=(0))(0),(0),( 321 xxx .  
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Figure 1: Genisio system 

 
Liu system describe as:  

)(= 121 xxax   

3112 = xxbxx   
2
133 = dxcxx                       (2.5) 

where 1,...,3=, ixi
 are the state variables, and cba ,,  

and d  are real parameters. The system has positive 
Lyapunov exponents over a wide parameter region. 
When 2.5=40,=10,= cba  and 4=d  system (2.5) is 

chaotic figure, (2.1) shows the system chaotic 
behaviour with initial conditions (2,3,3)=(0))(0),(0),( 321 xxx  

.  

 
Figure 2: Liu system 

 
The chaotic Rossler system [24] is described 

by  
 =1x 32 xx   

 =2x 21 axx   

 =3x )( 13 cxxb                (2.6) 

where 1,...,3=, ixi
 are the state variables, and ba,  

and c  are the real constants. When .2=.2,= ba  

and 5.7=c  system (2.6) has positive Lyapunov 
exponents, and shows chaotic behavior with initial 
conditions 4,2)(5,=(0))(0),(0),( 321 xxx .  

 
Figure 3: rossler system 

 
3. Active Anti-synchronization of two identical 
Genisio system 

In this section, nonlinear control method will 
use to synchronize two identical Genisio chaotic 
system. We assume that (2.4) as a drive system and 
system (3.1) as slave one as follow:  

  
121 = uyy   

  
232 = uyy   

  
3

2
13213 = uycybyayy      (3.1) 

where 1,2,3= ),,,(= ieyxuu iiiii
 are the control functions. 

In order to determine the control functions such that the 
synchronization between systems (2.4) and (3.1) are 
realized, we sum (2.4) from (3.1) and so the error 
system is:  

  
1221 = uxye   

 
2332 = uxye   

3
2
1321

2
13213 = uxcxbxaxycybyaye          (3.2) 

For any initial conditions, if active 
controllers chosen as  

  
121 = eeu   

  
232 = eeu   

 
3

2
1

2
1213 = eyxbeaeu          (3.3) 

then system (2.4) synchronizes system (3.1). It is 

obvious that eigenvalues of error matrix A  are 
negative Therefor, system (3.2) is asymptotically 
stable, which implies that system (2.4) synchronizes 
system (3.1). In the numerical simulations, figures 4 
and 5, the fourth-order Runge-Kutta method is used to 
solve the system. In the time step size 0.001, the 

parameters of the drive system are chosen to be 

2.5=40,=10,= cba  4=d  so that it exhibits chaotic 

behaviour. The initial values of the drive system and 
the response system, 

2211 ,;, yxyx  and 
33, yx  are 

chosen as (5,1,1)=(0))(0),(0),( 321 xxx  and 

6,6)6,(=(0))(0),(0),( 321 yyy  respectively. Hence, the 

error system has the initial values 

5,7)1,(=(0))(0),(0),( 321 eee  the simulation results are 
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shown in Figures 4 and 5. Figure 4 shows the state 
trajectories of the drive system and the response 
system. Figure 5 displays the synchronization errors 
between systems (2.4) and (3.1).  

  
(a):

11, yx             (b):
22 , yx  

 
   (c):

33 , yx  

Figure 4: Time evaluation identical Genisio 
system 

 

  
(a): 

1,et              (b): 
2,et  

 
(c): 

3, et  

Figure 5: Time evaluation error system 
 

4. Active Anti-synchronization between two 
different Liu and Rossler systems 

In this section, we apply the active 
anti-synchronization on two different Liu and Rossler 

chaotic systems based on the Lyapunov stability 
theorem. We assume that liu system (2.5) is the drive 
system and the controlled Rossler system (4.1) is the 
response system,  

  
1321 = uyyy   

  
22212 = uyayy   

  
321323 )(= ucyyby      (4.1) 

which parameters 321 ,, uuu  
are control inputs and 

222 ,, cba  are known constants. The error dynamical 

system between drive system (2.5) and response system 
(4.1) is described by  

1121231 )(= uxxayye   

231112212 = uxxxbyaye   

3
2
1131321323 = uxdxcycyybe            (4.2) 

For any initial conditions, the 
synchronization between systems (2.5) and (4.1) will 
be obtained if the controller will designed as below: 
 

11121231 = kexaxayyu   

231112212 = kexxxbxayu   

3
2
1131323123 = kexdxcxcyybu          (4.3) 

 
Consider that the following Lyapunov function:  

  
)(

2

1
= 2

3
2
2

2
1 eeeV 

 

The time derivation of V  along the trajectory of the 
systems is  

332211= eeeeeeV    

0<)()()(= 333222211 keceekeeaekee   

that obviously is negative, since V is positive definite 

and V is negative definite in the neighborhood of zero 
, according to the Lyapunov stability theorem, the error 
system (4.2) can converge to the origin asymptotically, 
which implies that the synchronization of systems (2.5) 
and (4.1) is achieved. To verify the effectiveness and 
feasibility of (2.5) and (4.1), we simulate the dynamics 
of the drive system and the response system. In the 
simulation, the parameters are chosen as 

5.7=.2,=.2,=4,=2.5,=40,=10,= 2221111 cbadcba  and the 

initial condition of the drive system and the response 
system is (1,4,7)=(0))(0),(0),( 321 xxx  and 

(10,3,5)=(0))(0),(0),( 321 yyy  respectively. Therefor, the 

error system has the initial values 
2).1,(9,=(0))(0),(0),( 321 eee   
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(a): 

11, yx                   (b): 
22, yx  

 
(c): 

33, yx  

Figure 6: Time evaluation drive and master system 
 

 
(a): 

3,et          
(b):

2,et  

 
(c):

3,et  

 Figure 7: time evaluation error system 
 

5. Conclusions 
Active control is applied when parameters 

are known. In this paper, Active control schemes for 
anti-synchronization between different and identical 
chaotic dynamical systems with known parameters is 
demonstrated. based on the Lyapunov stability 
theorem, controllers are designed and numerical 

simulations are used to verify the effectiveness of the 
proposed control techniques. 
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