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Abstract: In this paper, we will discuss the problem of estimating the parameters, reliability and failure rate
functions of the finite mixture of two components from exponentiated Frechet distributions (MEFD). The maximum
likelihood estimation (MLE) and Bayes methods of estimation are used. An approximation form due to Lindley
(1980) is used for deriving the Bayes estimates under the squared error loss (quadratic loss) and LINEX loss
functions. Through Monte Carlo simulation, the mean square errors (MSE'S) of the estimators are computed and

compared between them.
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1. Introduction

Mixture models play an important role in many
applicable fields, such as medicine, psychology,
cluster analysis, life testing and reliability analysis
and so on. Mixture models have been considered
extensively by many authors, for an excellent survey
of estimation techniques, discussion and applications,
(see Al-Hussaini (1999), Al-Hussaini et al. (2000)
and Everitt and Hand (1981). Mixture distributions
are obvious reason when dealing with lifetime
distributions because such distributions always have
several sub populations, as a unit can have more than
one reason of failure. The mixture distribution from
new distribution in the area which consists of two or
more models from life time. However, several
researchers are interested with different parameters of
mixture  distributions, see, Teicher (1961),
Titterington et al. (1985), McLachlan and Basford
(1988), Lindsay (1995), McCulloch and Searle
(2001). The mixed Weibull distribution as a model
for atmospheric data was proposed by Falls (1970),
who used the method of moments for obtaining the
estimators from a complete sample. The maximum
likelihood estimation of parameters in mixed Weibull
distribution with equal shape parameter from
complete and censored Type I sample was considered
by Ashour and Jones (1976). Jaheen (2005) used the
maximum likelihood of mixture distribution. Nassar
and Mahmoud (1985), Nassar (1988) presented
statistic of characteristic this models. One of those
who were interested in statistical inference about
mixtures distribution parameters Rider (1961), Al-
Hussaini (1999). Chen et al. (1989) considered the
Bayes estimation for mixtures of two Weibull
distribution under Type I censoring. They obtained
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Bayes estimate approximately for  mixture
distribution consisting of two models from Weibull
distribution based on Type II censoring. Al-Hussaini
et al. (2000) and Kao (1959) studied properties to
mixture distribution consisting of two models from
Gompertz and parameters estimate by using
maximum likelihood and Lindley (1980) method for
Bayes estimate John (1970) used the moment method
and maximum likelihood estimate of parameters for
mixture distribution consisting of two models from
gamma. Abu-Zinadah (2006) presented the mixture
consisting of k components from exponentiated
Pareto distribution for life time distribution and found
maximum likelihood estimate and Bayes estimates
for parameters of mixture based on Type II
censoring. Bakoban (2007) studied two parameters of
mixture from exponentiated gamma distribution,
reliability and failure rate function by maximum
likelihood estimate and Bayes estimates by using
Lindley approximately. One of the important families
of distributions in lifetime tests is the exponentiated
Frechet distribution (EFD) with probability density
function (pdf),

fl; 8) = 0x~2e* (1 —e* )01,

x>0, 6>0, (1.1)
and the cumulative distribution function (cdf) is
given by

Flx;0)=1-(1- e—fl)e, x>0,60>0, (1.2)
see, Nadarajah and Kotz (2003).

In this paper, the basic idea of Lindley (1980)
approximate form for Bayes estimation is used in the
case of mixtures of two EFD under Type II
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censoring. The approximate Bayes estimates are
obtained and compare with their corresponding
maximum likelihood estimates for different complete
sample and censoring size.

2. The mixture of exponentiated Frechet
distribution.

Let the probability density function (pdf) of k
mixture EFD be

f(t;6,)= Z?zlp]-f]-(t;&), t>0,6,>0,
kipp=1, 0<p;<1l (1)

where p; is mixing proportions, f]-(t; 9-) is the pdf
of EFD which defined in (1.1).

The cumulative distribution function (cdf ) of k
mixture EFD is given by

F(t;0;) =Xk ,p;F(t:6;), t>0, 6, >0,
kopj=1 0<p <1, (2.2)

where F;(t; 6;) is the cdf defined by (1.2).
The reliability function of k mixture distribution is
given by

R(5:6;) =X p;R;(t;6;), t >0, 6; >0, (2.3)

where R;(t; 6;) is reliability function of EFD,
Ri(t;6)=(1—etH%, t>0, 6;,>0, (24)
Also, the hazard rate function ( HF ) is

£(:6))

h(t:6;) = 2ayy

(2.5)

Now, when k=2, the pdf, cdf, reliability and hazard
functions for finite mixture of two components from
EFD, (say, MEFD), respectively, are

f(t:6,,0,) =phre~t t2(1—et )BT 4
6,—1

(A —p)oet t2(1—et7")" 7,
£>0,0,,0,>0, 2.6)
F(t0,,6,) = p[1 - (1— =) |+ = p)[1
(1-et ™)™, @.7)

R(t;0,,60,) =1—F(t;0,,0,)
_1:0 _1.0
= p(l— et 1) s (1—p)(1—e‘t 1) 2 (2.3)

t;604,0
h(t; 61,6,) = L 2.9)

A mixture is identifiable if there exist a one-to-one
corresponding between the mixing distribution and a
resulting mixture. That is, there is a unique
characterization of the mixture. A class D of a
mixture is said to be identifiable if and only if]
V f(t) € DD the equality of the two representations,

Y. pifi(t16)) = X5, 0;;(¢16)), (2.10)
implies that ¢ = ¢ and for all i there exists some j
such as 6; = 9]- and p; = p;, see Titterington et al.
(1985). In the following theorem, we provide the
identifiability of a mixture of K- EF components.

Theorem
A finite of K- EF components is identifiable.
Proof

Teicher (1961) showed that a finite mixture of K
exponential components is identifiable. If

Y~EXP(6), by Y =, follows that T~EF(8), this
transforrnation is bijective, so a finite mixture
of EF(Hj),j =1,2,...,K components is identifiable,
which follows that

11 0; N
ant= (- e =2 [1-

(1-e"],
this implies that k = k moreover, for all i, there
exists some j such that p;=p; and 6; = 9]-.
Therefore, a finite mixture of K- EF( 6;),j =
1,2, ..., k components is identifiable.

3. Statistical properties
3. 1. Moments
The rt* moment about the origin, u, = E(T"),
of MEFD with the pdf (2.6) and the cdf (2.7) can be
written, by

iy =E(T7) = [J 7 [1=F(t;6,,6,)]dt ,
r= 01,.., 3.1
o=t p(i—e )" -
»(1- et ™). (3.2)

On setting y = t™1, (3.2) is reduced to

="y p(l —e™)f + (1 -p)A -
e )%]dy. (3.3)
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This integral converges if 6;, 6, > r. However, it is
not known how (3.3) can be reduced to a closed-
form (see, Nadarajah and Kotz (2006)).

3. 2. The median
The median of MEFD can't be found in an

explicit form. We derive the median m by solving the
given equation
—m-1\01
pli-(1-e™ ) T+ -p)[1-

(1- e—m‘l)ez] =05

3. 3. The mode
The mode for the MEFD can be found

differentiating f(t) with respect to t, so Eq. (2.6) gives
f@) =pfi(®) {t‘z —2t71
1 EA
— (6, —Dt?e’t (1 - e‘t) }+
1
(1-p)f(®) {t‘z —2t71— (0, — Dt 2et (1 _

e _1}. (3.4)

By equating (3.4) with zero, it cannot be found in an
explicit form. We observe that the MEFD, may
be unimodal (see, Fig. 1), in which the mode can be
found numerically by solving (3.4). Figure 1 Shows
the graphical for the probability density function
(pdf) curve for MEFD with parameters (p, 8;,0,) =
(0.3,0.2,0.6),(0.3,2,7), (0.7,5,0.9), (0.8,0.7,5)

035¢
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Fig.1-a: (p, 6, 6,) = (0.3,0.2,0.6)
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Fig. 1-b: (p, 6,, 6,) = (0.3,2,7)
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Fig.1-c: (p, 8,,0,) = (0.7,0.9,5)

05+

‘02‘ ‘0.4”‘01’)”‘0.8”‘1.0‘
Fig.1-d: (p,6,,6,) = (0.8,0.7,5)

The bold curve for EF(6,), the regular curve for
MEFD(p, 6,, 8,) and the dashed curve for EF(6,).
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4. Maximum likelihood estimator

Suppose that only the r smallest observations in a
random sample of n items are observed (1 < r < n).
That is, suppose that the data consists of the r
smallest lifetimes X(;y <+ < X(;; out of a random
sample of n items Xj,..,X,, (Type II censored
sample). The likelihood function based on a Type II
censored sample (see, Lawless (1982) and
Titterington et al. (1985)) can be written as

L(elt) =
Y (T f (tin; 01, 0)[R(tyys 63, 0,)17,
4.1)

(n-r)!

where R(t,.,) = 1— F(t,.,.)
The natural logarithm of the likelihood function (4.1)
is given by

I(61t) =104L(81 £)]

=1lo (n’i)!] + X1 ogf(tin) +
(n - ‘I")l Oge(tr:n)'

4.2)

Assuming that the parameters 6; and 6, are
unknown and p is known, the likelihood equations
are given by

o _ v [ 1 0f(ti:n)] (n-7) R(tr:n)
a6 Bl ftin) 09 R(trm) 96
=0, j=1,2. 4.3)

From (2.8) and (2.10), respectively, we have

af(ti:n) —
a0,
_ 18011
p Hlti:n_ze_ti:n 1(1 - e_ti:n 1) ! kl(ti:n),
4.4)
Of (tin =2 ,=tin~
%2) = (1= p)b,t;, e tin !
1021
(1 - e—ti:n 1) ’ kz(ti:n):
4.5)
where
.o =1
o(ti,) =1 1{1 — e~ tin ],
k]’ (ti:n) = (p(ti:n) + 9]'_1' ] = 1' 2' (46)
OR(tr:n) —ty. e
S =n(1—e ) Mo (te), (4.7)

OR(trm _=1\0
Ra(; ! = pz(l —e tr:‘}l) z(p(tr:n)-
2
(4.8)
From (4.4) and (4.7) in (4.3), we obtain
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ol
36 =
pio1 o (i ey (i) + (n—
3 () @(tr)} = 0. 4.9)

Also, by substituting (4.5) and (4.8) in (4.3), we

obtain
al
E =
P2{2io1 o (i) ko (tin) +
(n - ‘I")(; (tr:n)(p(tr:n)} = O’ (410)
where
i), fltin)
(1(ti:n) - f(ti:n)’ (2 (tl:n) - f(ti:n)’
* _ Rl (tr:n) ¥ _ RZ (tr:n)
(1 (tr:n) - R(tr;n) ) CZ (tr:n) - R(tr;n) )

—2 ¢t _t1 —
fl(ti:n) = pglti:r%e tin (1 —e tl:n)el 1:

-1

_ 6,—1
f2 (ti:n) = (1 - p)gzti_:r%e_ti!"% (1 — e_ti:n) ,

Ry (t;in) =p(1 - e_ti_:%)ell 041 - e_ti_:’%) and

Ry(tin) =1 —p) (1 - e‘ti_:rll)(92 1 oil - e‘ti?r%).
4.11)

The solution of the two nonlinear likelihood
equations (4.9) and (4.10) yield the maximum
likelihood ~estimate (MLE) 8 = (8y,,8,y) of
0 =(0,,6,). The MLE's of R(t) and h(t) are
respectively given by (2.8) and (2.9) after replacing
0, and 6, by their corresponding MLE's éLM and

Oy -
5. Bayes estimation

When the mixing proportion p is known, the
parameters 0,0, are assumed to be independent
random variables and the joint prior density for

random vector @ = (0, 0,), is thus given by

g9(8) = g(6,,0,) = g(6,)9(8,). (5.1

Let O; follow Gamma distribution with shape
parameter f; and scale parameter @ =1, ie.
G(ﬁj, 1), the pdf for ©; random variable is

B]-—l -0
9]. e J
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Then, the joint prior probability density function for

- =02
random vector @ is I35 = 26,
9(0) = = 01710, el o .
RIAGES Now, we apply Lindley's form (5.4), we first obtain
9 >0, ﬁ] >0, j=12. (5.2) the elements g;j as follows
It is well known that the posterior density function of 014 = _l L0y = _ 01y = Opy = 11—2’ (5.6)
. . . . D D D
0 given the observation (data), which is denoted by
q(0[t), is given as follows where
(81606 D =1yl — U, (5.7)
q(81t), = U@ _ (5.3)
lo 1(elD)g(8)a0 iz = lpy = —p(1 — p){Xiy wltin) +
(n— P (trn)}, (5.8)
where L(Blg) is given by (4.1), g(6) by (5.2) and
Q is the region in the 8,0, plane on which the W(tin) = Kk (tinhz (E1:n) 31 (Ein) o (Ein)
posterior density q(8[t) is positive. ,
Then, under the squared error loss function, the B(trm) = ()l Er) (Y ()

Bayes estimator ¢ of a function of the parameter

¢(0) is given by Ly = p{ELlA (ten) — (G s (6)) ] +

2 *
?p — E[¢(0|£)] — fQ ¢(0)Q(0|£)d0 (n - r)[(y(tr:n)) (1 (tr:n)Bl(tr:n)]}' (59)
L. =
Jo ©@)L(81t)g(6)a6 2
- 4 _
PR (5:4) (1= p) {ZalAs (i) — (G (tindka i) ] +
(‘I’l - ‘I") (y(tr:n)) (2 (tr:n)BZ (tr:n)]}:
The ratio of the integrals (5.4) may thus be (5.10)
approximated by using a form due to Lindley (1980),
which reduces in the case of two parameters, to the A, (tin) = 0(t.) 0 ) [0t + 2671,
form B, (tr:n) =1-d (tr:n)’
5 s 1 Az(ti:n) = Q)(ti:n)(z (ti:n)[(p(ti:n) + 292_1]’
@ =¢"(0) + ot P1512 T P25z + > [[30v12 + By (trn) =1 — G5 (trn)-
31612 + 261 + lo3vas], (5.5) (5.11)
where Furthermore
. al
0=(6,,6,), S=X%, Y0050 i) =12 30 =55, =
_ 9% _ : : 8A(t; aB (t)
@i = FEETI o;j = (i,/)th element in the matrix (T, 619( oMt (p(t)[(l(t) 1
- 221 6( (tl)
. T=-UO. JO =[]ty =5 B, (t) %50,
1 =11L(8It)], L(BIt) is as given by (4.1). (5.12)
. . _al a4,(t)
Fori #j, S;j = @0+ @jo5, s =2 =—-(1-p)2i, azet -
6Bz(tl) 6(2(&)
<ﬂ(t)C(t) + B, (t)
Vij = (‘Piaii + ‘Pj”ij)aii, [ 2 (5'213)
¢ij = 39,040y + ¢; (04,05, + 207), T aw(t)
L =-2=-p(1-p){Zi ‘:,Ve
— 99 —9p -
@; = 6_19i’ pi = 6_91 , p=1ng(@], i=1 [ (tl)aq)(tl)}
g(0) is given in (5.2). Finally, (5.14)
Ohy Oz o Obz Similarl
l3°_ae , l21—691 ’llz_aez and tmilarly
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P
12 = 39, —
ad (t) — a
—P(1 = P)Zie T - — Zist 07 (6 55- 9},
j#*s, j,s=12, (5.15)
where

_o 0 _
=0; ZE(j(ti) —2673;(t) +

0A;(ty)
26,

] ok ;(t;)

psls(t){k? (ti)afoj(j(ti) + 20 (t)k; () —2

.

agi(t) _ fFOO@F(t/06))~f;(t)(Of (t;)/96])
26, )2 ;

"’Zi_;ji) = ()¢ ({1 + p; G ()},

61;;;;1') =k (t);(€) + pot)T; (6)C (t:)

=7 (t){k; (&) + pjo ()} (t)},

fj (trm)
R(trm)’

T (trm) = p1=p P2=1-p.

In Bayesian estimation, we consider two types of
loss functions. The first is the squared error loss
function (quadratic loss) which is classified as a
symmetric function and associates equal importance
to the losses for overestimation and underestimation
of equal magnitude. The second is the LINEX (linear
exponential) loss function which is asymmetric, see
Varian (1975). These loss functions were widely used
by several authors; among of them Rojo (1987), Basu
and Ebrahimi (1991), Pandey (1997), Soliman
(2000), Shawky and Bakoban (2009).

The quadratic loss function for Bayes estimate of a
parameter [ say, is the posterior mean assuming that
exists, denoted by 5 . The LINEX loss function may
be expressed as

L(A) xe®—cA—1, c#0, (5.16)
where A= f# — . The sign and magnitude of the
shape parameter c reflects the direction and degree of
asymmetry respectively. If ¢ > 0, the overestimation
is more serious than underestimation, and vice- versa.
For ¢ closed to zero, the LINEX loss is
approximately squared error loss and therefore almost
symmetric.

The posterior expectation of the LINEX loss
function equation (5.16) is

397

Eg|L(B — B)] o« exp(cp) Eglexp(—cp)] -
¢ (B - Eﬁ(ﬁ)) -1,
(5.17)
where Eg(.) denoting posterior expectation with
respect to the posterior density of f.

By a result of Zellner ( 1986 ), the ( unique ) Bayes
estimator of 8, denoted by S, under the LINEX loss
is the value # which minimizes (5.16), is given by

B, =211 Eglexp(-cp)]], (5.18)

provided that the expectation Eg[exp(—cf)] exists
and is finite, see Calabria and Pulcini (1996).

5.1 Bayes estimation under quadratic loss function
5.1.1 Estimation of two parameters

The two parameters 6,, 0, can be estimated by
using Lindley's approximation from (5.5) as follows:

(i) Bayes estimation of parameter 0

Put 8, = ¢*(6) in (5.5) for values i,j =1,2.
Then

afp* 0(p* 02(,0*
* * *
$1 26, » P2 26, » P11 PYE, ,
0%¢p*
V3, = (P2 =0, 031 = @12 =0,
06,

— * * * * —
S = 911011+ 912012 + 931021 + 93,05, =0,
— * * j—
Si2 = 91011 + 9301, =014,

_ _ 2 _
Sy1 =0C12, Viz = 0i1, Va1 = 01203,

_ _ 2
C12 = 3611012, Ca1 = 022011 + 2037.

By using the above functions, (5.12) — (5.15) and
(5.5), yields the Bayes estimator under squared error
loss function, él,sﬂ of 6,.

(ii ) Bayes estimation of parameter 0,

Put 8, = ¢*(0) in (5.5) for values i,j = 1,2,
then
d¢" _ « _ 00
s, $2 = a6,

*

= =1, ¢i; =0,

®1

03, =0, 91, =3, =0,

§=0, S5 =021, S21 = 032, Vi = 043043,
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_ 2 _ 2 _
Vg1 = 033,C13 = 611023 + 207, €31 = 30,0,1.

By using the pervious functions, (5.12) — (5.15) and
(5.5), yield the Bayes estimator under squared error
loss function, éz,s, of 9,.

5.1.2 Bayes estimation of reliability function

Put (P*(H) =R(t) )in (5.5) for values i,j = 1,2,
where R(t) defined by (2.8), then

@1 = 1R (O (t), 93 =pR,()(t), @11 =
PR (D)9* (), (5.19)

©32 = DR, (D@2 (), @31 = @5, =0,

S = 11011+ ©3505,, (5.20)
S12 = Q1011 + @30, =
[p1R: (D) @(D)]o11 + [P2R, () ()] 024,
S21 = [P2R () @(t)]o22 + [p1R1 (D) (t)] 012,
Vij = (pjou + (p;O-ij)O-ii'
V1, = [P R (D9O]of; + [p2R,(D9(D)]o12014,
Va1 = [P2Ra (9007, + [p1 R, (O)p(D)] 041055,

cij = 39; 0,0, + @; (0,05, + 207)

c12 = 3[p1Ri(®)p(t)]o1161, +
[p2R, () ()] (011021 + 205),

31 = 3[p2R, (D (t)] 05205, +
[p1 R, (D) ()] (02,014 + 203,)

Substituting (5.19), (5.20) and (5.12) — (5.15) in
(5.5), yield the Bayes estimator under squared error

loss function, R, of R(t).
5.1.3 Bayes estimation of failure rate function

Put ¢*(0) = h(t) in (5.5) for valuesi,j = 1,2,
where h(t) defined by (2.9), then

9} (©) = G ROk (©) -
FOR (O}, (5:21)
95 = G [Ex — B2, (5.22)

where
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E, = (R(®) RO, (D) f; (©)k; (£) -
R@®f;()6;2 +p; f;()k; (OR; () p(t) —

(R®)*0®)[pf; Ok ) + R (Op®)],
(5.23)

E, = 2p;R(OR; () (O{ROf; (k; () —
FOR @)}, (5.24)

f;@®), f(©),R;(t),R(t), k;(t) are defined in (2.2),
(2.1), (2.6), (2.10) and (5.6), for valuesi,j = 1,2, we
get

_ [E1-E3]

i = Ry (5.25)
Bf = o [P0k (OR(De(®) ~
Pip;fi Ok (DR, (O (0)}, (5.26)
E; =
G ()) —{p f;(OkORE) -
PR OFOeOPR@De®).  (527)

Substituting (5.21) - (5.27) and (5.12) — (5.15) in
(5.5), yield the Bayes estimator under squared error

loss function, Ag, of h(t).
5.2 Bayes estimation under LINEX loss function
On the basis of the LINEX loss function (5.18),

the Bayes estimate of a function gq =
q(6,,0,), where 8;, 8, unknown, as follows

G, =—=1E(e7lt)], c#0, (5298

where

Jo e7€9L(81t)g(8)do

E(e™t) =
(e71t) I, Lol)g@)d0

(5.29)

Let ¢ (0) =ec®  so we can use Lindley's
approximation for finding the estimators of unknown
parameters, as follows

5.2.1 Estimation of two parameters

(i) Bayes estimate of the parameter 0,

Put ‘P* (8) = e¢%1 in (5.5), we get

. 0p" 2
(plza(ep = —ce™%, (pZ_ (p =001, =
1
c?e=%1, @3, =0, for values i ] =1,2.
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%"

* p— — — p— * *
Qi = 26,00, 0, $=0, 5 = ;0 +@;oj,
S, = —ce~%g,,, S, = —ce %0y,

Then

_ * *
vy = (@; 0y + 9j03;) 0,

— 2 —cf — —cf
Viz = =01 "7, Uz = —0130ce 7t

— * * 2
¢ij = 39; 0,05 + 9; (0,05 + 207),
= -3 —c6,
C12 = 011012C€ ,
— 2 —cO
Ca1 = —(052041 + 203, )ce™ "1,

Substituting (5.12) — (5.15) in (5.5) then into (5.28),
yield the Bayes estimator under LINEX loss function,
0., of 6,.

(ii ) Bayes estimation of parameter 6,

Put ¢*(8) = e %2 in (5.5), we get

ap* dp* —co 92¢*
¥ = i — c * _
= = =——=—ce ‘%2 = =
$1 26, P2 = g, » P11 302
22" - .
0,93, = 202 c?e=% | for values i,j =12,
2
L= _05=0, S, = gloy +
Pij 30,00, =V, 9 = 9,05 T @0y,
c —cO
S1p = —ce” %20y, Sy = —ceT20,,.
Then
_ * *
Vij = (‘Pi o; + (pjo-jj)o-ii’
— —cé _ —c6, 2
Vip = —Ce 201,00, Uy = —ce 20,

cij = 3¢{0,0;; + ¢} (0,055 + 203,),
¢, = —ce™%2 (0,05, + 20%,),
€1 = —3ce g, 06,,.
Substituting (5.12) — (5.15) in (5.5) then into (5.28),
yield the Bayes estimator under LINEX loss function,
0, of 0,.
5.2.2 Bayes estimation of reliability function

Put ¢*(8) = e R® in (5.5) for values i,j = 1,2,
where R(t) defined by (2.8), then
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v« _ 00" _ -
P =5g, = CPs € RO R () (1),

* 2% -
Pij = 3595 = PR OR(D)e O (p(0)2,

2, %
*

Qi; = 667? = _ij((ﬂ(t))z-

R;j()e ™ RO{p,R;(t) + 13, (5.30)

— * *
Sij = 1011 + 9304,

Syp = —ce"ROp(0)[p,R, ()01, + PR, ()04 ],

Sy = —ce™ RO (t)[p,R,(t) a7, + p1Ry(t)15].

Then
vy, = —ce"ROp(t)[p, R, ()02
+ P2R,()01,014],

Va1 = _Ce_CR(t)(p(t)[szz (t)o-zzz + lel(t)o-mo'zz],
cij = 39; 0,0 + @} (0,05 + 203,),

¢1p = —ce~ RO @(t)[301,01,p, R, (1) +
P2R, (1) [01102;, + 205,],

1 = —ce” RO @(t)[30,,0,1p,R, () +
(022011 + 20‘221)p1R1(t)]~

Substituting (5.30) and (5.12) — (5.15) in (5.5) then
into (5.28), yield the Bayes estimator under LINEX

loss function, R, of R(t).
5.2.3 Bayes estimation of failure rate function

Put ¢*(0) = e~°"®) in (6.3) for values i,j = 1,2,
where h(t) defined by (2.11), then
. ep;

007 _ P -ch(t) 5,
9 =3 = ~wor 8, (5.31)

where

§; ={R@Of;Ok; () — FOR; (O (1)},

Pj; =
- (158—)4 ff‘“h(”{(R(t))2 [p; f;(OR() (k]- (t)) _
RS 677} +pyky (O, (OR; ()] -

cpi6?
L — 28R (Do)},

ROY. (5.32)
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Pij = —cpip; (R(t))4{( ®)* [(R(t))z +

fi@®©k;(OR;(p(8) — 9(OR; () (D k; ()]
—28;R(OR; (D)D)},

% *
Sij = @i0y + @0y,

ce —ch(t)

512 =~ RO

———{p161011 +P28,0,}
—ch(t)

S21= (R(t))2

——— {26202, + 16,012},

_ * *
vy = (@ioy + j0i;)0y,

—ch(t)

Uiz = (R(t))2 —— {16,001 + P26,01,011},

ce —ch(t)

(R())? {P26,0%; + 16102102, },

Uiz = —

l.] - 3(p1 O-l.lo-l.] + (P] (O-u JJj + 20-22)

Ce—ch(t)
Cip = _W{3p1610110-12 + P26, (0-110-22 +
20_122)}’
—ch(t)
Cyy = (R(t))2 ———{3020,0,,0,1 + P16,(05,01; +

2031)}.

Substituting (5.31) and (5.12) — (5.15) in (5.5) then
into (5.28), yield the Bayes estimator under LINEX

loss function, h; of h(t).
6. Simulation Study

We obtained, in the above sections, Bayesian and
non-Bayesian estimates of the vector parameters
0 = (6,,0,), reliability function R(t) and failure rate
function h(t) of the MEFD. We can obtain Bayes
estimation by using quadratic and LINEX loss
functions. The MLE’s are obtained as well. In order
to assess the statistical performances of these
estimates, a simulation study is performed for
samples of different sizes and censoring percentages
of 80% and 100% (complete sample case). We can
use the mean square errors (MSE’s) and biases to
compare between these estimators.

The following algorithm will be used to generate
the random samples and then calculate the estimators:

1. For given values of the prior parameters f3;
and 5, one generate a random values for 6;
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and 6, from the
G(Bj,1) forj = 1,2.

gamma distributions

2. Using 6; and 8,, obtained in step (1), one
generate random samples of different sizes
n= 30, 40 and 55 from MEFD as given by
(2.6). The computations are carried out for
such sample sizes and censored samples of
sizes r= 24, 32, 44, respectively.

3. The MLE’s Oy = (éLM ,HAZVM) of the vector
parameters 0 = (6,,60,) are obtained by
solving (4.9) and (4.10) iteratively. The
estimators Ry (t,) and hy(t,) of the
functions R(t) and h(t) are computed at
some values t,.

4. The Bayes estimate relative to squared error
loss, B, = (éLS ,éz,s) , R, and hg are
computed, using (5.5) together with the
appropriate changes according  to
subsections (5.1.1), (5.1.2) and (5.1.3). Also,
the Bayes estimates relative to LINEX
loss, 8, = (él,L'éz,L)' R, and h; are
computed, using (5.5) together with the
appropriate changes according  to
subsections (5.2.1), (5.2.2) and (5.2.3).

5. The above steps (2-4) are repeated 1000
times, the biases and MSE are computed for
different sample sizes n and censoring sizes
r. In all above cases the prior parameters
B = 2, f, = 1.5 which yield the
generated values as 8; = 1.8107, 8, =
0.3841 are preparing two real values. The
true values of R(t) and h(t) whent = t;, =
0.5, are computed to be R(0.5) =
0.8571and h(0.5) = 0.64009.

The biases (first entries) and MSE's (second entries)
are displayed in Tables 1-4. The computations are
achieved under complete and censored samples.

Tables 1, 2, 3 and 4 contain estimated biases and
MSE's of MLE's, Bayes estimators under squared
error and LINEX loss functions of
6,,0,, R(t) and h(t) respectively.
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Table 1: The biases (first entries) and MSE's (second
entries) of different estimators for shape parameter 6;.

Table 3: The biases (first entries) and MSE's
(second entries) of different estimators for R(t).

n r O1,m O 0. n r Ry (t) R,(®) R,(0):
c=-15 c=-15
24 -1.22920 -0.80448 -0.81072 24 -0.74826 0.03773 -0.10730
30 11515322‘; 2232? gg?gé; 30 0.20518 0.00278 0.00151
30 — = = -0.68702 0.03784 0.04017
1.30913 0.65623 0.65205 30 0.196683 0.00277 0.00161
-1.24623 -0.80729 -0.80764 - - -
40 32 1.28505 0.65172 0.64953 32 '8?825(9) 88(3)322 883?2?
20 -1.14649 -0.80843 -0.80545 40 . . .
1.23431 0.65167 0.64874 40 -0.68722 0.03877 0.04157
44 -1.25186 -0.22501 -0.78152 0.17008 0.00181 0.00159
55 1.22229 0.65063 0.61077 44 -0.66041 0.03729 0.03916
o -1.15190 -0.22542 -0.71635 0.16987 0.00173 0.00153
122200 0.63052 0.60967 > -0.70191 0.03657 0.04235
33 0.10884 0.00157 0.00153

Table 2: The biases (first entries) and MSE's
(second entries) of different estimators for shape

parameter 0,.

Table 4: The biases (first entries) and MSE's (second
entries) of different estimators for h(t).

i} A _ n |r [hy,@® hy(0) R, ():

n r O2m 025 0y c=-1.5

c=-1.5 30 24 -0.36986 -0.73716 0.08041

9 0.29671 0.11685 0.09629 0.27103 0.94341 0.13736

30 0.40751 0.01139 0.19271 30 -0.42676 -1.11052 1.13388

30 352?2@ géifz‘; g(l) gi; 0.21414 0.83321 0.06679

0.18038 0.11599 0.11266 401 32 'g'gggz 'g'ggggé (1).(3)222113

40 i 029527 00118 001269 40 -0.42445 -0.65665 1 ) 16384

20 0.28011 0.11594 0.11155 0.18544 0-43119 0.06115
0.26450 0.01136 0.01258 . . .

0.17475 0.11592 0.11154 55 44 -0.45226 -0.55043 0.76678

44 0.11995 0.01135 0.01143 0.18463 0.12280 0.05137

53 - 0.27469 0.11501 011154 55 | 043373 | -0.44261 0.78023

0.07974 0.01034 0.01087 0.10716 0.12197 0.05020

401
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6. Concluding Remarks

Based on results which obtained in Tables 1-4,
we compared between maximum likelihood
estimators, Bayes estimators under quadratic loss
function and LINEX loss function for parameters,
reliability and failure rate function for mixture
exponentiated  Frechet distribution with two
components of EFD in case of complete and type II
censoring samples. The Bayes estimators are derived
in approximate forms by using Lindley’s method.

Our observations about the results are stated in
the following points:

1. Tables 1 and 3 show that the MLE’s are the
best estimates as compared with the biases of
estimates under squared error or LINEX loss
functions. This is true for both complete and censored
samples. It is immediate to note that MSE’s decrease
as sample size increases. On the other hand, the
Bayes estimates under the LINEX loss function have
the smallest MES’s as compared with the other
estimates in both complete and censored samples

2. In Table 2, the Bayes estimates under
quadratic loss function have the smallest estimated
MSE’s as compared with the estimates of the other
methods for complete and censored samples. On the
other hand, the Bayes estimates under the LINEX loss
function have the best biases as compared with the
others estimates. Also, we note that MSE’s usually
decrease as a sample size increases.

3. In Table 4, the Bayes estimates under
LINEX loss function have the smallest estimated
MSE’s as compared with the other estimates. On the
other hand, the Bayes estimates under the squared
error loss function have the best biases as compared
with the other methods for complete and censored
samples. In general, we note that MSE’s usually
decrease as a sample size increases.

From the previous observations, the estimations
of a finite mixture of two EF components data is
possible and flexible using Bayes approach,
especially using asymmetric loss function such as
LINEX function, which is the most appropriate for all
parameters as shown throughout this article.
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