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1.Introduction: 

The study of the approximation property is 
important in Banach space theory. The approximation 
property due to the following fundamental result in the 
theory of operators on Hilbert spaces: if X and Y are 
Hilbert spaces, then the compact operators from Y to 
X are the norm closure of the finite – rank maps. The 
initial conjecture was that every Banach space satisfies 
the approximation property. 

Let X and Y be Banach spaces. In this paper we 
use the following notations: 

L(X,Y ) the space of bounded linear operators 
from X to Y. 

F(X, Y ) the space of bounded and finite rank 
operators from X to Y. 

C(X, Y ) the space of compact operators from X 
to Y. 

�∗(X, Y)= {�∗: �: � → �}. 
C(X, Y, �)	the space of compact operators from 

X to Y satisfying ‖�‖ ≤ � where 1≤ λ< ∞. 
In the following, we will denote for isomorphic 

between B-spaces by ≅ 
1. We say that a Banach space has the 

approximation property (in short AP ), if every 
compact operator is a limit of finite rank operators. In 
fact, this notion can be formulate in an equivalent 
definition as follows: A Banach space Y possess the 
approximation property if for every �	> 0 and every 
compact set K in Y there is a finite rank operator 
�: � → � such that ‖�� − 	�‖≤ ϵ for every y ∈ �, i.e, 
a bounded 

linear operator of finite rank operators can be 
represented as �� = ∑ ��

∗�
��� (y) �� , for some 

{��
∗}���

� 	in	�∗ and {��}���
� 	in	�. 

Notice that: A closed subset K of a Banach space 
Y is compact if and only if there is a sequence 
{ ��}���

�  in Y such that ‖��‖ → 0  and �	 ⊂
�����������{��}���

� .See[1] 
Before we formulate the theorems of the 

approximation property, we need the following 
theorem. 

 
Theorem 1.1 [1] 

Suppose X and Y are Banach spaces, define on L 
(X, Y) the topology 	�  of uniform convergence on 
compact sets in X. Then, the continuous linear 
functionals on (L(X, Y),	�	) consist of all functionals φ 
of the form �	(�) = ∑ ��

∗(���)
�
��� , for some 

{��
∗}���

� ⊂ �∗,{��}���
� ⊂ �	with ∑ ‖��

∗‖‖��‖ < ∞�
��� . 

The topology τ on L (X,Y) of compact 
convergence is the locally convex topology generated 
by the seminorms of the form	∥ � ∥�=sup {‖��‖: x 
∈ �}, where K ranges over all compact subsets of 
�	∀� ∈ �(�, �). Besides, the dual space (�(�, �), �)∗ 
can be identified exactly with the projective tensor 
product �∗⨂��. 

We remark that a B-space X has the 

approximation property if �� ∈ �(�, �)�����������,  where ��  is 
identity operator on X [2]. 

For �∗ we have the following: 
 

Theorem 1.2 
There is a Banach space Y with a boundedly 

complete basis such that its dual �∗ of Y is separable 
and does not have the AP. 

To prove theorem 1.2 we need the following 
result of Lindenstrauss. 
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Lemma 1.1. 
If V is a separable Banach space, then there is a 

separable Banach space W such that �∗∗	 has a 
boundedly complete basis, �∗∗/� ≅ �,  and �∗∗∗ ≅
�∗ ⊕ �∗. 

 
Proof of the theorem 1.2 

The proof of the theorem 1.2 depends on the fact 
that there is a Banach space which does not have the 
AP. let Y be separable Banach space which does not 
have the AP. By lemma 1.1 there is a separable 
Banach space X such that its �∗∗ has a basis such that 
�∗∗ �⁄ ≅ �  and �∗∗∗ ≅ �∗ ⊕ �∗ , where there is a 
projection from �∗∗∗  into �∗ . This projection is the 
map which determines to every functional on �∗∗ its 
restriction to X. Since Y does not have the AP, then 
the 	�∗  does not have the AP. Any complemented 
subspace of a space having the AP must have the AP, 
therefore �∗∗∗ which is a dual of a space �∗∗  with a 
basis, does not have the AP. Since Y and �∗  are 
separable, then �∗∗∗ is separable. □ 

here we clarify the definition of X, let {��}���
�  

be a sequence which is dense on the boundary of the 
unit ball of Y. The space X consists of all the 
sequences 

x = (��, ��,… . . ) of scalars for which 

(1) ‖�‖= sup �∑ ∥ ∑ ���� ∥
���

��������
�
��� �

�

�
		 < ∞ 

(2) ∑ ���� = 0�
���  

The supremum in (1) is taken over all choices of 
integers m and 

�� < �� <. … . < ��. 
Another construction of space X having the 

properties required in theorem 1.2 is given in [3]. [3] 
contains the construction of space X satisfying 
�∗∗ ∕ � ≅ �  also for a large natural class of non–
separable space Y. Every space X obtained in theorem 
1.2 is not reflexive but has a separable second dual. 

2- We shall investigate the approximation 
property by constant independent of compact set K. 

Let λ≥ 1, we say that a Banach space Y has the 
λ- approximation property 

(λ–AP in short), if for every compact set K⊂ � 
and every ϵ>0, there is an operator �: � → �of finite 
rank such that ‖�� − �‖ ≤ �  for every y ∈ �  and 
‖�‖ ≤ �. 

We say that a Banach space Y has bounded 
approximation property (BAP in short) if it has the λ –
AP for some λ and has metric approximation property 
(MAP in short) if it has 1-AP. 

The next result clarifies the relation between the 
AP and the MAP. 

 
 
 

Theorem 2.1 
Let Y be a separable space which is isometric to 

a dual space and which has the AP then Y has the 
MAP. 

For the proof of 2.1 see [4]. 
It follows from 2.1 that, for separable reflexive 

space, the AP implies the MAP. The same is true for 
non separable reflexive space. 

In the fact, for general the BAP does not imply 
the MAP and the AP does not imply the BAP this was 
shown by [5]. 

We say that X has the weak approximation 
property (in short, WAP) if for every � ∈ �(�) , 
compact K⊂X and � > 	0, there is a �� 	∈ 	�(�) such 
that ‖��� − ��‖ ≤ � for all x ∈ K. We say that X has 
the quasi-approximation property (in short, QAP) if 
for every � ∈ �(�), and � > 	0, there is a �� 	∈ 	�(�) 
such that ‖�� − � ‖ ≤ � . Now we consider dual 
problems for approximation properties. It is well 
known that the AP, BAP, and MAP are not inherited 
from X to �∗. See [6], also in [6] it was shown that the 
WAP, BWAP and QAP are not inherited from X to�∗. 

Grothendieck [4] systematically investigated the 
AP and showed the following fact: 

(a) X has the AP if and only if for every Banach 
space Y, C(Y, X) = �(�, �).���������� 

(b) �∗	has the AP if and only if for every Banach 

space Y, C(X, Y ) = �(�, �).���������� 
Now we introduce a characterization of the AP. 
 

Lemma 2.1 
Y has the approximation property iff for every 

Banach space X, C(X,Y,1) = F(X,Y,1). 
 

Proof 
Suppose that Y has the AP. Let X be a B-space 

with �	 ∈ �(�, �, 1) and ϵ > 0. Let � > 0 with 
�

���
<

�

�
. 

Since Y has the AP, by fact (a) there is �� 	∈
�(�, �) such that 

‖�� − �‖ < �. 
Then we see �� 	∈ �(�, �, 1 + �) , and define 

�� =
�

(���)��
.  Then �� 	∈ �(�, �, 1)  with ‖�� − �‖ ≤

�

���
‖�� − �‖ +

�

���
‖�‖ ≤ ϵ. Hence �	 ∈ �(�, �, 1).������������� 

Conversely: �� use fact (a), let X be B-space and 
�	 ∈ �(�, �), then by assumption we have 

�	 ∈ �(�, �, ‖�‖) = ‖�‖�(�, �, 1) = ‖�‖�(�, �, 1)������������

= �(�, �, ‖�‖)���������������� 	⊂ �(�, �)����������. 

Hence �	 ∈ �(�, �)���������� and the proof is complete. □ 
● Let S be the trace mapping from the projective 

tensor product �∗ ⊗� � to F(Y, Y)∗, the dual space of 
F(Y, Y) is defined by 

(��)(T) =  trace (�� ), u∈ �∗ ⊗� �, � ∈ �(�, �) , 
that is, if � = ∑ ��

∗ ⊗ ��
�
���  then ( ��)(�) =
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∑ ��
∗���� ��

��� .  We shall always regard Y as a 
subspace of �∗∗. Thus the identity operator �� on Y is 
also considered as embedding identifying �� with 
canonical embedding 	��: � → �∗∗.  The following 
results hold for the general version of the metric 
approximation property defined by operator ideal 
�	(in the sense of pietsch, see [7]). In Banach space Y 
we denote the closed unit ball by �� . We say that a 
Banach space Y has the metric �	 approximation 
property (M �	�	�), if for every compact set K in Y 
and every ϵ > 0 there is an operator T∈ ��(�,�)	such 

that ‖�� − �‖ ≤ � for all y∈ �. 
 

Notice that: 
�(�,�)  is equipped with the norm topology 

from L(Y,Y). Thus the trace mapping S: �∗ ⊗� 	� →
�(�, �)∗ has norm 1. 

Recall that: if Y is a Banach space. The trace 

mapping S: �∗ ⊗� 	� → �(�, �)∗  with the condition 
�� 	∈ 	 �

∗(��(�,�)∗∗) implies that Y has the M�	�	� , 

where �	 is operator ideal. Indeed, the condition 

�� 	∈ 	 �
∗���(�,�)∗∗�  clarify by using canonical 

identification (�∗ ⊗� 	�)∗=L(Y,	�∗∗). 
With using the canonical identification 

( �∗ ⊗�� �)∗ =L( �∗, �∗ ) the condition becomes 
equivalent to ��∗ ∈ �∗(��(�,�)∗∗) . Hence, since 

L(Y, �∗∗)	 is canonically identified with L( �∗ , �∗) 
under the mapping � → �∗ ∘ ��∗  the identity operator 
��	or �� ∘ ��	identifies with (�� 	 ∘ ��)

∗ ∘ ��∗ = ��
∗ ∘ ��

∗ ∘
��∗ = �∗� ∘ ��∗ = ��∗. Besides, an operator ideal �	is 
symmetric if �∗ ∈ �(�∗, �∗) where T ∈ �(�, �). 

 
Theorem 2.2 

With an operator ideal �, a Banach space Y has 

M�	�	� if the trace mapping S :�∗ ⊗� � → �(�, �)∗ 
is isometric. 

 
Proof 

Since ( �∗ ⊗� �)∗ = �(�, �∗∗)  we have 
S∗:�(�, �)∗∗ → �(�, �∗∗) is adjoint of an into 
isometry, for every �	 ∈ �(�, �∗∗).  In particular for 
T= ��  there is φ∈ �(�, �)∗∗  satisfying S∗� = �  and 
‖�‖ = ‖�‖ . Hence, �� ∈ 	 �∗���(�,�)∗∗�,  this means 

that Y has the ����□ 
Now, we say that the trace mapping � ∶

�	 ⊗� � → �(�, �∗)∗  is isometric for every Banach 
space Y, if a Banach space X has the M�	�	�, where 
�. is an operator ideal. 

 
Proposition 2.1 

Let Y be a Banach space does not have the 

����,	 then the trace mapping �:�∗ ⊗� � →
�(�, �)∗  is not isometric, but its dual space �∗  has 

the 	���� , then �:�∗ ⊗� � → �(�, �∗∗)∗  is 
isometric, where in the two cases �	is a symmetric 
operator ideal. 

 
Proof 

By theorem 2.2, if Y does not have	��	��, then 
S is not isometric. Suppose that �∗  has the 
��	��.	 According to above the trace mapping 

�∗ ⊗� � → �(�∗, �∗)  is isometric. Since �  is a 
symmetric operator ideal, �(�,�∗∗)  is canonically 
identified with �(�∗, �∗)  under the mapping � →
�∗ ∘ ��∗. Hence W is isometric □ 

3-We say that a Banach space Y has λ-bounded 
compact approximation property (λ–BCAP in short) if 
for every ϵ > 0 and every compact set � ⊂ �, there is 
� ∈ �(�, �) such that ‖�� − �‖ ≤ � for all � ∈ �. If 
Y has the λ – BCAP for some λ	 > 0, then Y is said to 
have the bounded compact approximation property. 

A Banach space Y is said to have the bounded 
weak approximation property (BWAP in short), if for 
every � ∈ �(�), there is �� > 0 such that for every 
compact set � ⊂ �  and for every ϵ > 0, there is 
�� ∈ �(�, ��) , such that ‖��� − ��‖ < �  for all 
� ∈ �	[8, 9]. 

For spaces Y and �∗  we have the following 
results. 

 
Theorm3.1 

Let Y be a Banach space and 1 ≤ λ<∞.Then, the 
following three assertions hold. 

(i) Y Possess the λ – BAP iff � ∈ �(�, �)����������� 

(ii) Y Possess the λ – BCAP iff � ∈ �(�, �)����������� 
(iii) Y Possess the BWAP iff for each 

� ∈ �(�) there is a ��>0 such that � ∈ �(�, ��)�������������. 
For �∗ we have following. 
 

Theorem 3.2 
Let Y be a Banach space. Then the following 

three assertions are equivalent: 
(i) �∗ Posses the BWAP. 
(ii) For every � ∈ �(�∗), there exists a �� > 0 

so that there exists a net( ��
∗)in �∗(�, ��) such that 

�∗∗��
∗�∗ → �∗∗��∗ for every �∗ ∈ �∗ and �∗∗ ∈ �∗∗. 
(iii) For every � ∈ �(�∗) there is �� > 0 

such that there are (��
∗)���

� ⊂ �∗ and (��
∗∗)���

� ⊂ �∗∗, if 
|∑ �∗∗(�∗��

∗)�
��� | ≤ 1  for all �∗  in �∗ (Y, 	��) , then 

|∑ �∗∗(�	��
∗)�

��� | ≤ 1. 
To prove the above theorems we need the 

following topologies and the relation between them. 
 
Definition 3.1 

Let X and Y be Banach spaces and let S be the 
linear span of all linear fuctionals φ on L(X,Y) of the 
form φ(T) =�∗�� for x∈ � and �∗ ∈ �∗, then the weak 
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operator topology (wo, in short) on L(X, Y) is 
topology generated by S. 

For a net (��) ⊂ �(X, Y) and � ∈ �(�, �), �� →
�  in (L(X, Y), wo) i�	���	����	�� for each x∈ � 
and	�∗ ∈ �∗, �∗��� → �∗��   (1) 
 
Definition 3.2 

Let X and Y be Banach spaces, for compact set 
� ⊂ �, � > 0  and � ∈ �(�, �)we put ℬ ={R∈ � (X, 
Y):	����∈�‖�� − ��‖ < � }. 

Let β be the collection of all such ℬ(�, �, �) . 
Then, the τ – topology on L(X, Y) is topology 
generated by β. This topology is called the topology of 
compact convergence. 

By the definitions of BAP, BCAP and BWAP we 
proved the following: 

Y Possess the λ - BAP if and only if � ∈

�(�	, �)�����������	  (2) 

Y Possess the BWAP if and only if	� ∈ �(�	, �)�����������	
  (3) 

Y Possess the BWAP ⇔ for every � ∈ �(�) 
there is �� > 0 such that 

� ∈ �(�	, ��)
������������.     (4) 

For a net (��) ⊂ �(�, �)and � ∈ �(�, �), �� → � 
in (L(X,Y),τ) ��	���	����	�� for every compapct 
K⊂ �		����∈�‖��� − ��‖ → 0   (5) 

On other hand there is a topology called the 
topology of pointwise convergence which is defined 
by the strong operator topology at each of x ∈ X (sto, 
in short) on L(X, Y). 

The next theorem shows the relations between τ, 
sto and wo. 
 
Theorem 3.3 [8] 

Suppose X and Y are Banach spaces, let Z be a 
bounded subset of L(X, Y), and let C be a convex 
subset of X, then 

(i) τ = sto on Z. 
(ii) (L(X,Y), sto)∗=(L(X,Y),wo)∗ and the form of 

the linear bounded functional φ on L(X,Y) is given by 
�(�) = ∑ ��

∗(���)
�
��� , for some (��)���

� ⊂ �  and 
(��

∗)���
� ⊂ �∗ 
(iii) X has two locally convex topologies 

�� and	�� such that the dual spaces of X under the two 
topologies are the same, then the ��- closure of C is 
the same as its ��- closure. See [10,11]. 

(iv)  
 
Statement 3.1 

The following statements are true from theorem 
3.5 

(1) �
���

= �
��

.where C is a convex set in 
L(X,Y) 

(2) �
�
= �

��
. where C is a bounded convex set 

in L(X,Y) 

(3) The �  - closure in �	(�∗)  can be identified 
with the �  - closure in �∗(�)	 with � > 0,  that is 

�(�∗, �)����������� = �∗(�, �)�����������. 
(4) Since for � > 0	�∗(�, �)  is bounded and 

convex. Then by (2) and (3) we have �(�∗, �)����������� =

�∗(�, �)������������. 
 
Proof of theorem 3.1 

(i) Since F(Y, 	� ) is bounded and convex for 
λ>0.there is C in F(Y,	�) is bounded and convex. such 

that by Statement 3.1(2) we have �
�
= �

��
, implies 

that �(�, �)����������=�(�, �)����������� , therefore � ∈ �(�, �)����������� . By 

(2) Y has the λ –BAP iff � ∈ � (�, �)�������������. 
(ii) Since C(Y,	�) is bounded and convex for λ>0 

there is subset K in C(Y,	�) is bounded and convex. 

Then, ��� = ����  implies that �(�, �)���������� = �(�, �)����������� 

therefore ∈ �(�, �)�����������. By (3) Y has the λ- BCAP iff 

� ∈ �(�, �)�����������. 
(iii) From the statement 3.1 (2) we have 

��� = ���� in C(Y,	�) and �
�
= �

��
 in F(Y,	�), hence 

�(�, ��)������������=�(�, ��)�������������. 
Now T∈  

�(�)is	the	limit	of	a	sequnce	of	oprators	T�	with	�inite	rank. 

Then, for �� > 0  a 	� ∈ �(�) ⊂ �(�)��������,	 that is 

there is �	�� > 0	 such that � ∈ �(�, ��)������������ 

=�(�, ��)
��������������������  � ∈ �(�, ��)

������������� , that is Y has 
the BWAP □ 
 
Proof of the theorem 3.2 

We notice that �∗ has the BWAP if and only if 
for every � ∈ �(�∗) there is �� > 0 such that � ∈

�∗(�, ��)��������������.  By statement 3.6 (3) we have 

�(�∗, ��)������������� = �∗(�, ��)��������������,  and by 3.3 and 3.5, for 

every � ∈ �(�∗) there is a net (�∝) ⊂ �∗(�, ��)
�������������� =

	�(�∗, ��)
������������� , ��

∗ → �  in �∗(�, ��)
��������������  for �∗ ∈ �∗	 and 

�∗∗ ∈ �∗∗such that �∗∗��
∗�∗ ⟶ �∗∗��∗ so (i)⇔(ii). 

In the following we show that (i)⇔ (iii). By 
theorem 3.5 (ii) with T ∈ C(Y∗)	 we have 
(C(Y∗), sto)∗ = (C(Y∗),wo)∗  and bounded linear 
functional φ on C(Y∗)	is 

φ(T) = ∑ y�
∗∗(Ty�

∗)�
���  for {y�

∗}���
� ⊂ Y∗  and 

{y	
∗∗}���

� ⊂ Y∗∗. Since F∗(Y, λ) is balanced and convex 
for λ > 0, then the set C in F∗(Y, λ) is balanced and 
convex. Hence by the separation theorem (see [11- 
theorem 2.2.28]) for every φ ∈ (F∗(Y),wo)∗ such that 
|φ(S∗)| ≤ 1  
for	all	S∗	in	the	weak − closure	of	C	in	F∗	(Y, ��), we 
have |φ(T)| ≤ 1 that is 

|φ(S∗)| = |∑ y�
∗∗(S∗y∗)�

��� | ≤ 1 ⟹ |φ(T)| =
|∑ y�

∗∗(Ty�
∗)�

��� | ≤ 1 □ 
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