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Abstract: Remote sensing technology have showed robust capacities in meeting challenges of water resource 
management, in the countries like kingdom of Saudi Arabia where rapid population growth is imposing stress on 
scarce water resources. Also, continual Earth observations from space are important to manage water resources for 
the benefit of humankind and the environment, as well provide important forecasting services to prevent water-
related disasters such as floods and droughts. Remote sensing approaches to assess and manage of water resources 
are important especially in the region of Saudi Arabian because no satisfactory hydrological networks exist. Cloud 
detection is important issue in extracting information of geophysical, geomorphological and meteorological interest 
from remotely sensed images. Present work aimed at imposing a new method for cloud detecting and producing 
cloud probability mapping of multispectral images acquired using MERIS images. The algorithm was implemented 
on 59 satellite imageries collected from January 2006 to October 2011. 
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1. Introduction 

Water cycle is all about storing water and moving 
water on, in, and above the Earth. Although the 
atmosphere may not be a great storehouse of water, it is 
the superhighway used to move water around the 
globe. There is always water in the atmosphere. Clouds 
are, of course, the most visible expression of 
atmospheric water, but even clear air contains water in 
particles that are too small to be seen. One estimate of 
the volume of water in the atmosphere at any one time 
is about 12,900 km3. That may sound like a lot, but it is 
only about 0.001 percent of the total Earth's water 
volume. 

Clouds exert a dominant influence on solar energy 
absorbed by the Earth and on infrared radiation emitted 
to space. It is known that clouds present a problem they 
act to cool the planet by reflecting solar radiation to 
space and warm the planet by reducing radiation 
emitted to space [1; 2; 3]. Accurate detection of clouds 
from remote sensing images is with a major concern 
for a wide range of remote sensing applications, 
especially by sensors detecting  ultraviolet (UV) and 
visible and near-infrared (VNIR) range of the 
electromagnetic spectrum [4; 5]. 

Cloud screening involves discriminating between 
clear and cloudy pixels in an image. Reviews of cloud 
detection methods can be found in Goodman and 
Henderson-Sellers [3], Rossow [6] and Rossow et al. 
[7]. Methods for identifying clouds are based on 
radiance threshold, radiative transfer model, or 

statistical techniques making use of spectral and 
textural features in the imagery. Radiance threshold 
techniques work monthly, and single or multiple-
channel thresholds are defined which are then used to 
divide clear and cloudy pixels. Radiative transfer 
model techniques use one or more spectral radiance 
measurements as input to an atmospheric radiative 
transfer model and retrieve a physical quantity such as 
cloud optical thickness or altitude. Pixels are then 
determined to be clear or cloudy based on thresholds in 
the retrieved quantity. Statistical techniques use groups 
of adjacent pixels. Among these are methods based on 
spatial coherency between adjacent pixels [8] artificial 
neural networks [9], maximum likelihood decision 
rules [10], and clustering routines [11]. Specific cloud 
detection algorithms applied to satellite data have 
features which are worthwhile for a particular scene 
class [12]. 

In particular, performance of the presented 
approach is tested on images from recent multispectral 
instrument with the following characteristics: the 
Medium Resolution Imaging Spectrometer (MERIS) 
instrument on board the European Space Agency 
(ESA) ENVISAT environmental satellite. Two of the 
key features of the MERIS instrument are its temporal 
resolution (revisit time of 3 days) and it's spatial 
coverage (swath width of 1150 km), which make 
unavoidable the presence of cloud covers. In Reduced 
Resolution (RR), MERIS provides 1000 m pixel-size 
images with 15 narrow bands, in the spectral range 
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from 400 nm to 1000 nm, at unprecedented spectral 
and radiometric resolutions [13]. For further details see 
Brockmann et al. [14]. 

The aim of the current study is to examine the 
spatiotemporal distribution of the conducted cloud 
likelihood maps over the Southern part of KSA using 
MERIS data collected from January 2006 till October 
2011. 
 
2. Material and Methods 
2.1. Study area 

Asir region is located at the southwestern Saudi 
Arabia (Figure 1). Asir consists of about 100,000 km2 
of Red Sea coastal plains, high mountains, and the 
upper valleys of the wadis (seasonal watercourses) are 
Bīshah and Tathlīth. Asir is a prosperous agricultural 
region. It has an area of 77,088 km² and an estimated 
population of 1,563,000. It shares a short border with 
Yemen. Its capital is Abha. The average annual rainfall 
in the highlands probably ranges from 300 to 500 mm 
falling in two rainy seasons, the chief one being in 
March and April with some rain in the summer. 
Temperatures are extreme, with diurnal temperature 
ranges in the highlands the greatest in the world. It is 
common for afternoon temperatures to be over 30 °C, 
yet mornings can be frosty and fog can cut visibility to 
near zero percent. As a result, there is much more 
natural vegetation in Asir than in any other part of 
Saudi Arabia. 

2.2. Cloud probability 
2.2.1. Algorithm specification 

The cloud probability algorithm has been 
developed and performed by Free University Berlin 
and Brockmann Consult. It is also used in the Global 
MERIS Land Albedo map project [13]. The cloud 
probability algorithm is using nine spectral bands of 
MERIS. Specifically, the ratio of band 10 (Cloud 
optical thickness, cloud-top pressure reference), band 
11 (Cloud-top / Surface pressure) and band 12 
(Aerosol, vegetation) which is an indication of the 
absorption due to oxygen, the European Center for 
Medium-Range Weather Forecasts (ECMWF) surface 
pressure and the exact wavelength of band 11 as input. 
As an output, it yields a probability value (0 to 1) 
pointing out if a pixel can be regarded as a cloud or 
not. Such a probability permits a more flexible way to 
work with identified clouds compared to a binary cloud 
mask. 

The algorithm uses two different artificial neural 
nets. The first one is used over the open ocean and the 
second one overland. The distinction between ocean 
and land is done using the altitude information. If the 
altitude is lower than 50 meters then, the ocean 
Artificial Neural Network is not used and the land 
Artificial Neural Network is implemented like the 
current study. 

 
Figure 1, Administrative boundaries of KSA regions with location of the study area highlighted 

 
The following Figure 2 shows the general 

structure of the cloud detection algorithm. During 
development of the algorithm by Fischer and Grassl 
[14]; Fell and Fischer [15], using the radiative transfer 

model MOMO (Matrix Operator Method), simulated 
cloud and noncloud top of atmosphere radiance have 
been produced and an Artificial Neural Net has been 
trained. Thus, Artificial Neural Network is now used in 
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the Cloud Probability Processor, where it is fed with 
the reflectances and the pressure as shown in the Figure 
2. A post-processing is applied after the net (nn2prop) 

which scales the output of the Artificial Neural 
Network into a probability value. 

 

 
Figure 2, Cloud detection algorithm. 

 
2.2.2. Algorithm basics 

According to Lindstrot et al. [17], clouds are 
easily to detect when a manual classification of satellite 
images is done, their automatic detection is difficult. 
Clouds have four special radiative properties that 
enable their detection: 1) clouds are white, 2) clouds 
are bright, 3) clouds are higher than the surface and 4) 
clouds are cold. However clouds, as the most variable 
atmospheric constituent, seldom show all four 
properties at the same time. 

Thin clouds show a portion of the underlying 
surface spectral properties, and low clouds are 
sometimes warm. Also, some surface types like snow 
and ice have spectral properties that are similar to some 
of the cloud properties. Therefore simple thresholding 
algorithms often fail, and existing cloud detection 
schemes use several different cascaded threshold based 
tests to account for the complexity [18; 19; 20]. 
2.2.3. Algorithm specification 

In general, cloud detection algorithms can be 
separated into two classes: clear sky conservative and 
cloud conservative. Clear sky conservative algorithms 
are constructed such the probability of a first order 
error in clear sky detection is low; in other words: if a 
pixel is detected as clear the probability of cloudiness 
should be low [21]. This often has the side effect that 
many cloud free pixels are detected as cloudy. The 
opposite is true for cloud conservative algorithms. Here 
the probability of a first order error in cloud detection 
is low, with the side effect that many cloudy pixels are 
missed. 

Pure "clear sky" conservative algorithms mark 
pixels as cloud free or as probably cloudy, whereas 
pure cloud conservative algorithms detect cloudy or 
probably cloud free pixel. However, in practice most 
cloud detection algorithms try to minimize the 
probability of the first and second order errors in cloud 
and cloud free detection, only with the tendency to 
cloud or to clear sky conservative respectively. What 
cloud detection algorithm should be used is mainly a 
question of the consecutive algorithm. Algorithms 
relying on cloudy pixels need a cloud conservative 
detection and conversely; climatological applications 
often require balanced detection to be bias free [22]. 

MERIS measures radiances in 15 channels 
between 400nm and 1000nm. Thus the very valuable 
thermal information and information about the liquid 
and ice water absorption at 1.6µm and 3µm are not 
available. The cloud detection for MERIS therefore 
relies on bands 10), 11) and 12) according to Lindstrot 
et al. [17]. In addition a slight absorption of snow at 
900nm could be used to discriminate snow from low 
clouds [13]. 

To perform the algorithm, the simulated MERIS 
bands radiance used to train the Artificial Neural 
Network to discriminate between the cloudy and cloud 
free. MOMO training datasets simulation used to 
conduct one of the three general atmospheric cases 
namely: a tropical, a, a subarctic summer and winter, 
and U.S. Standard Atmosphere [23]. For proper 
Artificial Neural Network implementation, the 
following inputs are needed [17]: 
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1. The radiance in MERIS band 10, 
2. The radiance ratio r of MERIS band 11 (stray 

light corrected) and the window radiance interpolated 
from bands 10 and 12. 

3. The aerosol optical thickness at 550nm (fixed 
to 0.15) 

4. The cosine of the solar incident angle 
5. The cosine of the viewing angle 
6. The cosine of the azimuth distance (viewing 

azimuth – solar azimuth, 0° ≡ sensor opposite of sun) 
times the sinus of the viewing angle. 

7. The central wavelength of MERIS band 11. 
To corroborate the certainty of the produced cloud 

probability maps, seven flags were used to classify the 
MERIS imagery data according to the Table 1. The 
previously mentioned procedures were followed for all 
MERIS data sets (59 acquired MERIS images) in order 
to conduct the spatiotemporal final map over the 
designated area. 

 
Table 1, Flags used to corroborate the cloud probability maps of MERIS imagery 
Name Value Description 

Cosmetic 1 Pixel is cosmetic 
Duplicated 2 Pixel has been duplicated (filled in) 
Glint_Risk 4 Pixel has glint risk 

Suspect 8 Pixel is suspect 
LAND and/or OCEAN 16 Pixel is overland, not ocean 

Bright 32 Pixel is bright 
Coastline 64 Pixel is part of a coastline 
Invalid 128 Pixel is invalid 

 
2.2.4. Cell statistics 

Under GIS environments [24], cell statistics 
calculates a per-cell statistic from multiple rasters (59 
raster), in the current case the “Sum” command which 
calculates the sum or all input raster values as it 
illustrated in Figure 3, is the used one for cell statistics. 
All the inputs rasters are integer; the final output is then 
integer and had been converted into percentages raster 
based on 0 and 1 cloud probability. 

The final raster cloud probability map values 
rangers from 0 to 59 as the maximum total, 0 sum 
corresponded to 0% clouds and 59 corresponded to 
100% clouds. Classifying the final spatiotemporal 

cloud probability map was based on Jenks rule of 
classification, where the output classes were based on 
natural groupings innate in the data [24]. Jenks rule 
identifies break points by picking the class breaks that 
best group similar values and heighten the differences 
between classes. The features were divided into classes 
whose boundaries were set where there were fairly big 
jumps in the data values. The final output map were 
divided into three classes, 

a- Not cloudy 
b- Marginally cloudy and 
c- Cloudy. 

 

0 1 0 1 1   1 0 0 1 1   1 1 0 2 2 

1 1 1 0 1   0 1 1 1 0   1 2 2 1 1 

0 1 1 0 1 + 1 0 0 1 1 = 1 1 1 1 2 

1 0 1 0 1   0 1 0 1 0   1 1 1 1 1 

0 1 1 0 0   1 1 0 1 1   1 2 1 1 1 

Raster 1               Raster 2                     Sum-up raster 
Figure 3, Sum command illustration 
 

3. Results and Discussion 
Implementing the algorithm over the southern 

part of Kingdom of Saudi Arabia (Asir region) proved 

accurate results that performed under the tropical 
atmosphere case of Artificial Neural Network 
implementation [17; 25]. In a more limited study of a 
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similar approach from March (2000), Mecikalski et al. 
[26] reported the method determined the correct sky 
conditions is successful by 75% of the time. Cloud 
probability algorithm produced cloud maps with three 
levels of certainty (Figure 4): A- more than 80% of 
cloud probability (cloudy), B- from 80 to 20% cloud 
probability (marginally cloudy) and C- less than 20% 
cloud probability (not cloudy). Certainty levels were 
converted into three cloud probability classes as shown 
in Figure 5. According to table 1, most of the used 
flags belong to suspect pixels (value of 8) and to 

overland pixels (value of 16; Figure 6) to confirm the 
capacity of the algorithm performance over the 
designated study area which is mainly an agricultural 
land and desert [27; 28]. There is a significant 
difference between cloud free water and cloudy water 
pixels from Figure 7. Therefore, the clear pixels could 
be separated from cloudy pixels if a proper threshold 
value was selected. However, this is also indicates the 
discrimination between land and sea by using the 
image of brightness temperature is successful [29; 30]. 

 
 

 
Figure 4, Cloud certainty map over the southern part of KSA 

 

 
Figure 5, Cloud probability map over the southern part of KSA 
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Figure 6, Cloud probability classification flags used over the Southern part of KSA 

Jan. 2006

Feb. 2006

Mar. 2006

Oct. 2011  
Figure 7, Cloud probability map of 59 MERIS data set of Asir region in KSA from January 2006 to October 2011 

 
Figure 8, Total cloud probability map of Asir region in KSA from January 2006 to October 2011 
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Figure 9, Spatio-Temporal distribution of the total cloud probability map of Asir region in KSA from January 2006 
to October 2011 

 
The algorithm had been applied repeatedly to the 

59 data sets of MERIS data collected and processed 
from January 2006 till October 2011 (Figure 8) to 
fulfill the defined purpose of producing spatiotemporal 
cloud distribution map (Figure 9).   Maps with more 
than 80% cloud certainty were only selected to be 
further processed under GIS environment to avoid the 
validation of the used technique [31; 32]. 

Figure 9 illustrates the spatiotemporal 
distribution of the clouds over Asir region for the last 
5 years classified into three category according to 
Jenks rule as following: not cloudy area is about: 
22802 km2 (29.5%), marginally cloudy area is about: 
53141 km2 (69.0%) and cloudy area is about: 1145 
km2 (1.5%) of the total area Asir region (77088 km2). 

It is not easy to compare different algorithm of 
cloud detection because the different setting and 
requirements of each technique. The current algorithm 
proved to be efficient in cloud detection over 
agricultural land and desert [27; 33; 34; 35]. 

Using different flags for cloud detection method 
produced qualitative and reliable results in 
corresponding to the infrared window channel exits in 
MERIS data. Frey et al. [31] reported that different 
flags indicate that different cloud flags do well in 
capturing the gross cloud features on this day and 
time. Flags capture the obvious cold clouds observed 
in the infrared image, but some differences exist in 
cloud detection for low (warm) clouds over the ocean 
and land regions. 

According to McNally and Watts [36], an 
interesting feature in the Mediterranean image is a 
swath of what is believed to be aerosol. The scheme 

has obviously reacted to the adopted method and 
flagged the area cloudy in correlation to the sensitivity 
to Saharan dust [37; 38; 39]. 
 
4. Conclusions and Recommendations 

The aim of the present work is to apply the cloud 
probability algorithm developed by the Institute for 
Space Science, Free University Berlin. Performing the 
algorithm resulted in a robust cloud probability maps 
over the designated area. Classifying the resulted maps 
into two classes cloudy and not cloudy eases the sum 
of all the cloudy pixels of the 59 probability maps 
conducted. The spatiotemporal distribution of the 
clouds raises the quest for the proper use of such a 
method. The correlation between the cloudy pixels and 
land use land cover beneath is the keystone of proper 
practice of the current approach. As the clouds are the 
main source of precipitation so using the cloud 
probability maps will be strongly correlated to water 
resources management in the area. The practices of 
water resources management are many but the present 
methodology helps decision makers to decide where 
the dams need to be built to increase the potentials of 
groundwater recharge as a direct implementation of 
the adopted method. However, several applications of 
integrated water resources management or risk 
assessments may benefits from the current method, 
i.e.: estimation of soil moisture content, improvement 
of rainfed agriculture and/or to produce risk maps to 
avoid the drastic results of flooding events that may 
occur. Further work on the correlation between the 
cloud probability maps and land use land cover 



 Life Science Journal 2014;11(1)       http://www.lifesciencesite.com 

 

199 

beneath may need to be carried out. 
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