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Abstract: The development of water resources systems in arid and semiarid zones suffers from data availability,
especially for storm runoff. Measurements of runoff in arid zones are often not available; therefore, there is a need to
estimate runoff that is produced from rainfall events. In the current study, a regional stochastic model is developed to
assess the correlation between rainfall and runoff in arid and semiarid zones based on recorded data (383 data pairs
were collected) at five gauged watersheds in the southwestern part of the Kingdom of Saudi Arabia during the period
1981 -1984. The model is formulated using the bivariate joint log-normal probability density function of both rainfall
and runoff. The estimated correlation coefficient is 0.5 which is considered significant particularly in arid and semi-
arid zones. The logarithms of rainfall and runoff data were tested for normality via the application of the Q-Q plot of
the marginal distributions. The correlation coefficients of the Q-Q plots were 0.97 and 0.993 for rainfall and runoff
respectively. The Mahalanobis square distance and Chi2 distribution quartiles were used to test the normality of the
joint distribution. The correlation coefficient was found to be 0.996. A spreadsheet simulation model was constructed
and used to generate realizations of the runoff process conditioned on the recorded rainfall data. A Monte Carlo method
is adopted to generate 200 realizations of the runoff process and the conditional ensemble mean and the conditional
ensemble variance were estimated and compared with the theoretical model. The model results fall within the 95%
confidence intervals. This model could be updated in the future by having experimental watersheds in the region to
study the impact of climatic changes on the water resources systems.
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1. Introduction
Nearly half the countries of the world are facing

problems of aridity. This has been unveiled by
UNESCO [1] classification and Pilgrim et al. [2].
Therefore, there is an obvious need for improved
understanding of the hydrology of arid and semiarid
regions, and for the development of appropriate
techniques for modeling rainfall-runoff relationship.
Even in those humid regions where a large number of
studies have been carried out, hydrological modeling
is at best of only moderate accuracy, and involves
many assumptions, simplifications and averaging over
space and time. However, some aspects of arid zone
hydrology require simplified modeling. It is highly
probable that applying hydrologic models that has
been developed in humid regions to arid regions could
produce greater errors and uncertainty will continue to
characterize results for arid zones. Recognition of
these issues is fundamental to a realistic approach to
arid zone modeling, and to a rational interpretation and
application of the results obtained [3].

Rainfall-runoff modeling is a major activity
among hydrologists around the world. There remains
a very practical need for rainfall-runoff modeling for
practical problem in water resource assessment.
Rainfall-runoff models are amongst the most

important tools for the practical solution of flood
estimation problems, as well as for theoretical
investigations of controls on the flood frequency curve
or for analysis of catchment and climate change.
Several types of models have been proposed for the
rainfall-runoff relationship, based on either
deterministic (lumped or distributed) or stochastic
approaches (e.g. classical time series analysis). Since,
the current study focuses on stochastic approach,
therefore review of deterministic models is beyond the
scope of this paper. In the stochastic approach,
complex hydrologic processes often require
knowledge of the joint distribution of several variables
and the correlation between them [4]. These
hydrologic events must be studied as the joint
occurrence of two or more random variables, and the
frequency analysis must therefore consider their joint
probability distribution. Many bivariate gamma
distribution models are difficult to be implemented to
solve practical problems, and seldom succeeded in
gaining popularity among practitioners in the field of
hydrological frequency analysis [5]. Aldama and
Ramirez [6] have developed a new approach for
estimating the design flood of dams and reservoirs.
The method is based on the use of the bivariate
extreme-value probability distribution of peak
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discharge and volume and they developed a model for
such relation. Yue [7] has applied the joint probability
density function approach to correlate annual
maximum storm intensities and total storm amount at
specific duration. The Box-Cox transformation
technique [8] is used to normalize the data regardless
of the original distribution of the data. The theoretical
distribution shows a good fit to the observed ones.
Zhang and Singh [9] have applied bivariate frequency
distributions using Archimedian copulas for rainfall
depth, intensity and durations on a data set collected
from the Amite River basin in Louisiana, United
States. They concluded that the Ali-Mikhal-Haq and
Frank copula families can be used to represent both the
negatively and positively variables. Grimaldi and
Seinaldi [10] have utilized asymmetric Archimedian
copulas in multivariate flood frequency analysis. They
have correlated flood peak, flood volume and duration
using trivariate density function to have clearer picture
for flood inundation management.

For the development of water recourses in arid
and semiarid zones, there is a need to measure runoff
that is produced from rainfall events. Measurements of
runoff in arid zones are often not available. Therefore,
there is essential to develop a rainfall-runoff relation
from gauged watersheds in arid and semi-arid zones.
In the current study, a stochastic model is developed to
assess the correlation between rainfall and runoff in
arid zones based on recorded data at five watersheds
in the Kingdom of Saudi Arabia during the period
between1981-1984 due to data limitation. To the best
of the authors’ knowledge, there is no such a stochastic
model that has been developed neither in the
hydrological literature in general nor in arid and semi-
arid zones in particular. The model is formulated using
the bivariate log-normal probability density function
of both rainfall and runoff [11]. A simulation model
has been formulated and used to generate realizations
of the runoff process conditioned on the recorded
rainfall data. A Monte Carlo approach is adopted to
generate 200 realizations of the runoff process and the
conditional ensemble mean and the conditional
ensemble variance have been estimated and compared
with the theoretical model.
Description of The Study Basins

In the period of 1981 to 1984, Saudi Arabia Dams
and Moore [12] has developed a detailed study of five
selected basins in the southwestern part of Saudi
Arabia. The locations of the five study basins are
shown in Figure 1. The rain gauges are spread over the
basins with the number of rainfall gauges per basin
varying from 12 gauges in Wadi Liyyah (456 km2) to
35 in Wadi Habawnah (4930km2), while the number
of runoff gauges ranges from 2 gauges at Wadi Liyyah
to 5 gauges at Wadi Habawnah. The region is
dominated by the Asir escarpment which runs parallel

to the Red Sea coast with elevations of up to 3000 m.
As shown in Figure 1, three of the catchments, Wadi
Al Lith, Yiba and Liyyah, drain towards the Red Sea
and in these basins altitude generally increases from
southwest to northeast. The other two basins, Tabalah
and Habawnah, drain from the mountains to the
interior, towards the Rub al Khali or “the empty
quarter". The region is subject to two major influences
with respect to the supply of moisture for precipitation.
In the winter period, weather systems from the north
and west, generally of Mediterranean origin
predominate, while in the summer moist air from the
southwest monsoon systems penetrates the region
[13]. Local climate is modified by the influence of the
Red Sea, the hot interior of Saudi Arabia and the
orographic effect of the Asir Mountains. It can
therefore be expected that rainfall characteristics will
be subject to complex regional and seasonal
variability, with topographic effects likely to exert a
significant influence on rainfall distribution.

Annual rainfall is strongly related to elevation,
with annual totals of the order of 30-100 mm on the
Red Sea coastal plain (Tihama) and up to 450mm at
elevations larger than 2000m a.s.1..
Data collection

During the study period (1981-1984), data on
rainfall and runoff has been collected at these basins
from the storm events recorded in this period. The
collected rainfall – runoff data has been transferred
into a time series of monthly rainfall and runoff as
shown in Figure 2. The figure portrayed a typical
rainfall and runoff records at station SA 401 in Wadi
Al Lith basin. The data is utilized for setting up a
stochastic model that relates rainfall and runoff. Figure
3 shows a scatter plot of the rainfall-runoff data. The
data shows a sparsely pattern.

2. Methodology
In this study, a logarithmic transformation of the

data has been performed, and the statistical tests of
normality have been executed to validate the normality
assumption.

It is assumed that

   mmRunoffyandmmallRax ,ln,,infln 
The joint probability density of a bi-variate normal
density function, f(x,y), is given by

   MKyxf exp,  (1)
where K is given by,
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and M is given by,
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Where

x
= mean of the logarithm of the rainfall, where

rainfall is measured in mm,

y
= mean of the logarithm of the runoff, where

runoff is also measured in mm,

x
= standard deviation of the logarithm of the

rainfall,

y
= standard deviation of the logarithm of the

runoff, and
 = correlation coefficient between logarithm of

rainfall and runoff.
The covariance matrix of the joint distribution is

given by,
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In order to have a complete description of the

joint distribution, the marginal distribution of the X
and Y variates should be introduced as,
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and the conditional density of Y given that X=x
for any bivariate distribution, is defined as,
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The condition density is given by,
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Estimation of the Model Parameters

The model parameters have been estimated from
the observed data in the gauged watersheds presented
in this study. The model parameters (the mean,
variance of both variables and the correlation
coefficient) are estimated by the method of moments
as follows,
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and the correlation coefficient is calculated by,
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Table 1 shows the statistical parameters

estimated from the original and the transformed data.
The parameters of the original data show high values
of skewness and kurtosis for both rainfall and runoff
depths, while the degree of skewness and kurtosis for
the runoff data are relatively high when compared with
the rainfall data. The mean and median of both rainfall
and runoff data are far apart. After the logarithmic
transformation, the skewness and the kurtosis are
reduced. The skewness is moved to the right for
rainfall data, while there is almost no skewness for the
runoff data that provides some manifestation of
normality. On the other hand the kurtosis of the rainfall
data is very close to three that provides also some
manifestation of normality. The mean and median of
both transformed rainfall and runoff data are very
close as well that gives some evidence of normality or
at least near normality. The correlation coefficient for
both original and transformed data is similar, and
equal to 0.5 which is significant particularly in arid
zones [14]. This value has been supported by the
analysis made by Saudi Arabian Dames and Moore
[12].
Goodness of fit tests
Marginal Distributions:

A Q–Q plot is used to compare the shapes of
distributions, providing a graphical view of how
properties such as location, scale, and skewness are
similar or different in the two distributions. The
method is described in Johnson et al. [15]. Q–Q plots
are commonly used to compare a data set to a
theoretical model. The Q-Q plot provides an
assessment of the "goodness of fit" that is graphical,
rather than reducing to a numerical summary. The idea
is that if a sample is supposed to follow a normal
distribution, a plot the sample quantile versus the
quantile of the normal distribution should be made, the
points should lie very nearly on a straight line. If the
points deviate much from a straight line, normality is
suspect. In addition, the pattern of deviation can give
some information about the nature of the non-
normality. The correlation coefficient for the Q-Q plot
is a powerful test of normality.
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Figure 1. The representative basins: (a) General layout of the locations of the basins, (b) wadi Al-Lith basin, (c) wadi
Yiba basin, (d) wadi Tabalah basin, (e) wadi Lyyia basin, and (f) wadi Habawna basin.
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Figure 2. Sample of rainfall data (a) and runoff data (b) at a typical station (SA 401) at a representative basin (Wadi
Al Lith), during the period 1981-1984 (44 months).

Figure 3. Scatter plot of the rainfall-runoff data from
all stations.

Table 1. Statistical parameters of rainfall-runoff data

Statistical parameter Rainfall Runoff

Arithmetic mean (mm) 26.48 2.02
Geometric mean (mm) 17.17 0.57
Harmonic mean (mm) 3.82 0.18
Median (mm) 19.70 0.52
Standard deviation (mm) 27.71 4.20
Skewness 2.23 5.60
kurtosis 11.17 46.59
Coefficient of variation (CV) 1.05 2.08
Correlation coefficient 0.504
Mean of the logarithms 2.59 -0.56
Median of the logarithms 2.98 -0.66
SD of the logarithms 1.41 1.68
Skewness of the logarithms -0.84 0.08
kurtosis of the logarithms 3.13 2.23
CV of the logarithms 0.54 -2.97
Correlation coefficient 0.501

Figure 4 shows the Q-Q plot of the data and the
corresponding normal distribution. The data shows
good agreement with the Normal distribution in the
sense that they reasonably fit the line of 45 degrees for
both the rainfall and the runoff.

Figure 4. Q–Q plot of rainfall and runoff transformed
data with the normal distribution.

The straightness of the Q-Q plot can be measured
by calculating the correlation coefficient of the points

on the plot. The correlation coefficient, Qr , for the Q-
Q plot is defined by Johnson et al. [15] as,
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Where,

jx
is the quantile j of the data,

x
is the mean of the quantiles of the data,
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jq
is the quantile j of the theoretical distribution,

and

q
is the mean of the quantiles of the theoretical

distribution.
The correlation coefficient between the quantiles

of the data and the quantiles of the normal distribution
are 0.97 and 0.993 for the rainfall and the runoff data
respectively. This shows that the normal distribution
represents the data reasonably well confirming the
adequacy of the normal distribution.
Joint Bivariate Normal Distribution:

A Q‐Q plot for multivariate normality is built as
presented in the following steps:

1. Calculate the Mahalanobis square distance,
2D ,

for multivariate data by,

       xxD 1'2

(13)
Where,
x is the p-vector of the variables,
 is the mean vector,

1 is the inverse of the
covariance matrix of the variables, and

 'x is the transpose of the vector

 x .
In the case of bivariate data, the Mahalanobis

square distance can be derived from the above
equation to give,
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2. Ordering the Mahalanobis square distance

from the smallest to the largest across all observations,
3. Calculating the quantiles of each data point,
4. Looking up the quantiles of each data point

using Chi2 distribution (df = # of variables, in our case
df = 2),

5. Plotting the data against the value predicted by
the theoretical statistical distribution, and

6. Calculating the correlation coefficient between
the quantiles of the data and the predicted quantiles
from the theoretical Chi2 distribution. Figure 5
displays the squared distance versus Chi-square Q-Q
plot for the bivariate normality test. The correlation
coefficient between the quartiles of the squared
distance and the quartiles of the Chi-square has been
calculated to give a value of 0.996 reflecting almost
perfect correlation and manifesting bivariate
normality.

Figure 5. Squared distance versus Chi-square Q-Q plot
for bivariate normality test.

Stochastic Generation Model
To set up the model for generating realizations of

the joint distribution, the covariance matrix is
introduced as,
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The covariance matrix is decomposed into lower

and upper matrices as,
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The generation model is represented in a matrix

form as,
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Where, iX
is the realization # i of the logarithm

of rainfall,

iY
is the realization # i of the logarithm of

runoff, and

i
and 1i

are random numbers drawn from a
normal distribution with a zero mean and a unit
variance.

The generation of realizations of the logarithm of
the rainfall-runoff process using unconditional
distribution is given by,

ixxiX  
(18)

1
21  iyiyyiY 

(19)
Consequently, for the generation of realizations

from a conditional distribution given that,

ji XX 
(20)
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iX
is a given conditional value of the

logarithm of rainfall to condition on.
The conditional mean of the logarithm of the

runoff is given by,
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and the conditional variance is given by,
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The equations are implemented within a

spreadsheet model to perform the statistical parameter
estimation and the generation process with a graphical
interface. The results are displayed in the following
section.

3. Results and Discussion
The conditional stochastic generation model,

described in the previous section, has been applied on
the rainfall data to make runoff predictions. A Monte
Carlo approach is followed to generate realizations of
the runoff predictions conditioned on rainfall data. 200
realizations have been generated based on the model
parameters estimated from the data namely, the mean,
variance of both the logarithm of the rainfall and the
runoff data and the correlation coefficient between
them.

Figure 6 shows four realizations, out of 200
realizations, generated by the model and compared
with the runoff data. The model results are conditioned
on the rainfall data. The figure shows reasonable
agreement between the generated runoff results and
the runoff data. The probability contours of 0.5 and
0.05 have been displayed on the figure together with
the centorid of the data.

Figure 6. Four different realizations of the generated Ln (Runoff, mm) conditioned on Ln (Rainfall, mm) compared
with the data from all stations.

The probability contours of constant probability
density for p-dimensional normal distribution are
ellipsoids defined by x such that [15],

        pxxD 21'2 
(24)

Where,  p2 is the chi-squared distribution
with p-degrees of freedom.

In case of bivarite case, the formula (Eq. 24)
leads to,
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Further manipulation of Eq. 25 will lead to the

equation of the ellipse in a functional form as,
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Where, the plus sign in the front of the square

root makes the upper part arc of the ellipse and the
minus sign makes the lower arc of the ellipse.

Eq. 26 has been evaluated for two values of joint
probabilities at 0.5 and 0.05 that correspond to 50%
and 95% confidence respectively. It is obvious that the
majority of the data points lie within the joint

probability elliptic contour of 0.05 that corresponds to
95% confidence.

Figure 7 shows the ensemble average over 200
realizations of the logarithm of the runoff conditioned
on the rainfall data values. The ensemble conditional
mean of the logarithm of runoff fits well with the
theoretical mean model. Also, the ensemble of the
upper and the lower 95% confidence limits for the
conditional variance are fitting well the theoretical
model. The figure shows the data points fall within the
95% confidence limits.

Figure 7. Conditional theoretical mean of the Ln(Runoff, mm) conditioned on Ln(Rainfall, mm) and its theoretical
upper and lower 95% confidence intervals compared with the data from all stations with its corresponding ensemble
upper and lower 95% confidence intervals estimated from 200 Monte Carlo runs.

Figure 8 shows the conditional distribution
function (CDF) calculated FROM the 200 Monte
Carlo runs. These conditional distributions are made at
three values of the logarithm of the rainfall namely
condition on the mean, the mean minus standard
deviation (SD), and the mean plus standard deviation.
The figure shows the theoretical normal curve and the
empirical conditional distribution. According to our
aim to do develop a stochastic model based on joint
probability distribution for rainfall-runoff, the results
show very good agreement between the theory and the
numerical simulation experiments. Figure 8. Comparison between conditional theoretical

(CDF) of Ln(Runoff, mm) conditioned on Ln(Rainfall,
mm) at mean rainfall, mean+SD and mean-SD and the
corresponding empirical CDF.
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Conclusions
A stochastic model has been formulated based on

the bivariate log-normal probability density function
of both rainfall and runoff in arid and semiarid basins.
The estimated correlation coefficient is 0.5 which is
significant particularly in arid and semi-arid zones.
Tests for normality for logarithms of rainfall and
runoff data has been archived via the application of the
Q-Q plot of the marginal distribution and the normal
distribution with correlation coefficient of 0.97 and
0.993 for the rainfall and the runoff respectively. Also,
the Q-Q plot of the Mahalanobis square distance with
Chi2 distribution for the bivariate normal distribution
has been made with correlation coefficient of 0.996. A
Monte Carlo approach is adopted to generate
realizations of the runoff process conditioned on the
rainfall data. The conditional ensemble mean and the
conditional ensemble variance have been estimated
and compared fairly well with the theoretical model.
The runoff data and the runoff predictions fall within
the ellipse of 95% confidence interval that gives
confidence in the proposed model. This model could
be updated in the future by having experimental
watersheds in the region to study the impact of climatic
changes on the water resources systems.

The finding of the current research is to predict
runoff from rainfall with confidence limit. Model
implementation is to generate flood as depth over the
catchment and can be transferred into volume by
multiplying with the area. It can asset in flood
estimation as a new tool.
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