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1. Introduction 

Today Robust analysis for linear systems is 
one of the active fields of research. Models with 
parametric uncertainty perform important function in 
both the theory and practical applications of robust 
control. They are described by the mathematical 
model containing parameters that are not precisely 
known, but the values are within given intervals. 
Such type of uncertainty can occur in the control of 
real processes, for example, as a result of modeling 
effort, inaccurate measuring (worn parts, weight 
change of the aircraft, temperature, fuel quality) or 
the influence of certain external conditions. The high 
research interest of robust stability analysis 
techniques was developed before. Nevertheless, 
many of them specialized for concrete systems of 
uncertainty structure. This paper provides a method 
aimed at usage of a universal approach in robust 
stability analysis for linear systems. An important 
task is to solve the problem of analysis of control 
systems and synthesis of control laws. All this 
ensures the best protection from high uncertainty of 
object properties. The considered problem is robust 
controllability of linear systems with parametric or 
non-parametric uncertainties [1,2]. Assuming that the 
linear system is controllable, a sufficient condition is 
proposed to preserve the properties of object 
(parameters of control systems) when system 
uncertainties are introduced. The most important idea 
in the study of robust stability is to specify 
constraints for changes in control system parameters 
that preserve stability. 

For the purpose of studying the system 
dynamics and their control, we considered models of 
observing input and output signals of the object and 
the representing its behavior in the state space as 
most suitable. 

The content of this paper is organized in 
next way: in section #2 we made analyses of 
literature review and robust stability discussion by 
the our considering problem. We introduce the basic 
equations of the model and their expanded form in 
section #3. Section #4 is devoted to explain the 
control method. We received the Lyapunov function, 
geometric interpretation, gradient vector components 
and superstability condition of system. The main 
points ( the radius of the robustness) of this work are 
presented in section #5. In section #6, we move on to 
the proof method of the proposed method. We show 
how the proposed approach is applied to the sample 
and construct block diagonal matrix. In the part # 7 
we given a case study with practical example. 
Finally, the main conclusions of this work are 
presented in Section 8. 
 
2. Literature Review In Robust Stability 
Discussion. The theory of robust control began in the 
late 1970s and early 1980s and soon developed a 
number of techniques for dealing with bounded 
system uncertainty. The Robust stability is closely 
related to the pioneering studies [1-4] and today we 
see many works in this field [3-13]. However, many 
of them address either linear systems or nonlinear 
systems with specific constraints. Successful results 
were reported when Lyapunov theory [4-5], [7-8] 
was employed to achieve robust stability of control 
systems with uncertain parameters. When the method 
of Lyapunov functions is applied, it is possible to 
demonstrate that asymptotic stability of zero 
solutions can be achieved in time-delay systems as 
well. The results reported in [14-20] are of particular 
interest, where increased robustness based on 
catastrophe theory lead to structurally stable systems. 
In particular, [7, 10] presents both analysis and 
synthesis steps of the process. However, linear 
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systems are still emphasized and most of the non-
linear systems with uncertainties are considered only 
as special cases. In addition, the examples discussed 
in these papers demonstrate stability. This limits the 
range of robustness [13]. Therefore this paper 
presents the approach of the construction of 
Lyapunov functions based on the geometric 
interpretation of the Lyapunov’s direct method (also 
called the second method of Lyapunov) [13,19,20] 
and on gradient of dynamical systems in the state 
space of systems. 
 
3. Model Formulation. The control system is given 
by the linear equation 

lmn RyCxyRuRxBuAxx  ,,,,
.

 (1). 
The controller is described by the equation 
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coefficients of control system, 
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lRty )( - 
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Let us denote BKAG   matrix of the closed 
system and the system (3) in matrix-vector form, we 

can write 
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4. The Geometric Interpretation Of The 
Lyapunov Function. Stability is a fundamental 
notion in the qualitative theory of differential 
equations and is essential for many applications. In 
turn, Lyapunov functions are basic instrument for 
studying stability; however, there is no universal 
method for constructing Lyapunov functions. 
Nevertheless, in some special cases, a function can be 
constructed by applying special techniques. We 
construct the Lyapunov function for system and then 
use geometric interpretation to find the region of 
stability. Thus, from the geometric interpretation 
point of view the second method of Lyapunov, the 
study of stability is reduced to the construction of a 
family of closed surfaces surrounding the origin. As 
the integral curves have property to intersect each of 
these surfaces, then stability of the unperturbed 

motion will be set [2]. . If dtdV  is a function with 

negative definite 
 0dtdV

, then every integral 
curve starting from a sufficiently small neighborhood 
of the origin, will be sure to cross each of the 

surfaces constCCtxtxtxV
n

 ,))(),..,(),((
21  of 

the outside to the inside, as the 

CtxtxtxV
n

))(),..,(),((
21  function is 

continuously decreasing. The gradient vector of the 
Lyapunov function is always directed from the origin 
toward the highest growth of Lyapunov functions. 
Also note that, in the study of stability [1] the origin 
corresponds to the stationary states of the system or 
the set of the system. The state equation (1) or (4) 
shall be made in respect to deviations from the steady 

state 
 )()( tXtXxxX

ss


. 

Therefore the left side of (1) or (4), dtdx/  
expresses the velocity vector changes and deviations. 
We can assume that the velocity vector of deviations 
submitted to the stability of a system to the origin. 
Thus, we can assume that the velocity vector changes 
deviations directed towards the origin. Components 
of the gradient vector Lyapunov functions in the 
opposite direction, but they are equal in absolute 

value. Then, if the Lyapunov function
)(xV

is 
specified as a vector of functions 

))(),...,(),((
21

xVxVxVV
n , then gradient vector 

Lyapunov function can be written as 

  .xBKAdtdxxV 
 Vector 

components of the gradient of a potential function 

),...,(
1 n

xxV
 are given in the form of vector 

Lyapunov functions with components 
 ),...,,(),...,,...,,(),,...,,( 21212211 nnnn xxxVxxxVxxxV  
we write in the form: 
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In this system by substituting values of the 
components of the velocity vector we get:  
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From here we can find the components of the 
gradient vector for the component vector functions 
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Total time derivative of the components of the vector 

Lyapunov function 
)(xV

i  given by the equation of 
motion (1) and (4) is determined by 
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From the expressions (8) that the total time derivative 

of the vector-Lyapunov 
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i  functions in the 
performance of the initial assumptions resulting from 
the geometric interpretation of a theorem A.M. 
Lyapunov will be negative sign function. This means 
that the conditions for asymptotic stability of the 
system will always be performed (4). 
Now, using components of the gradient vector we 
will restore components of the vector Lyapunov 
functions: 
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The positive definiteness of all components of the 
vector Lyapunov function will be expressed by 
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transposed matrix of a closed system [4]. 
 

5.The Radius Of The Robustness.Let us investigate 
the robust stability of the vector-Lyapunov functions. 
Then let us transform the condition of robust stability 
of the components of the vector Lyapunov function.  
For this, we can turn to a parametric family of 
coefficients the vector-Lyapunov functions, such as 
the interval family, defined as [4]: 
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corresponds to a positive-definite Lyapunov 
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Now, we require that the positivity condition 
coefficients stored for all functions of the family: 
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Thus, the stability radius of interval family of 
positive definite functions is the smallest value of the 
coefficients of the vector Lyapunov functions.  
As an example, we consider the system described in 
state space.  
 Let n=2,m=1 i.e., 
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With inequality [4] characteristic equation has roots 
with negative real parts. 
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We investigate the stability of the system using the 
idea of Lyapunov functions. Let us investigate the 
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The next step - discovering vector Lyapunov 
functions 
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Thus, from (9) and (10) we can determine the radius 
of robust stability of a second order system, if system 
parameters are uncertain: 

        
2222122121121111

* ,,,min kbakbakbakba 
6. The Proof Of The Proposed Method. We will 
show how the proposed approach is applied to the 
sample and construct block diagonal matrix from 

matrix A . 

},,...,,,...,,{
~

11
1 

 
km JJJJdiagAPPA  (12). A 

block diagonal matrix is a block matrix which is a 
square matrix, and having main diagonal blocks 
square matrices, such that the off-diagonal blocks are 

zero matrices. A block diagonal matrix A  has the 

form 
};,...,{ 1 lssdiag

(13) 

i

i

i

i

i

s

s

s

s

J

0...00

1...00

00...0

00...1



 miNN ii ,...,1,   
 (14);  

,
jj

jj

jJ


 


 kj ,...,1  (15) 

where lss ,...,1 - Simple Real, is
-real, iN

- multiple, 

jjjs  
- complex conjugates eigenvalues of 

the matrix A , and, naturally, nkNNl m  2...1 . 

The columns of the nonsingular matrix P  in the 
canonical transformation (13) are determined by the 

eigenvectors of the matrix A , the rules and 
algorithms of which are described, for example, in 
[10-12]. 
Let’s demonstrate that stated structure (12) allows 
verifying the validity of suggested approach to the 
construction of Lyapunov function and dividing the 
system (1) depending on proper values of any 

diagonal block of A
~

matrix.  
For this purpose let’s write 

u

b

b

b

x

J

JuBxAx

3

2

1

~

~

~

~

0

0
~~~~ 







; (16) 

xkkkxku TTTT ~~~~~~~
321

  (17) 

where xPx 1~  , APPA 1~  , bPb 1~  , Pkk TT 
~

 
   (18) 
 
and here dimensions of column matrices and row 

matrices 
Tk1

~
,

Tk2

~
, 

T
k3

~
match up with dimensions of 

square matrices  , J , J  . On the basis of (16), (17) it 
is easy to obtain characteristic determinant of closed 
system 

)
~~

()
~~

()
~~

()
~~~

( 333222111
TTTT kbJsIkbJsIkbsIkbAI 

,which clearly shows that further problem amounts to 
sequential development in accordance with proposed 

method of accepted objects. ubxx 1

~~~   (19); 

ubxJx 2

~~~   (20); 
ubxJx 3

~~~ 
 (21). 

With matrices in form of (13) – (15). Set of equations 
(19) is written in expanded form  



















lllll xkbsx

xkbsx

xkbsx

~)
~~

(~

...

~)
~~

(~

~)
~~

(~

22222

11111







 
For candidates of gradient vector from Lyapunov 

function ),...,( 1 lxxV we shall obtain 
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,~)
~~

(~
)~(

1111

1

xkbs
x

xV






 
2222

2

~)
~~

(~
)~(

xkbs
x

xV






 

llll

l

xkbs
x

xV ~)
~~

(~
)~(

,..., 




 
Total derivative with time from Lyapunov function  

22

11

~)
~

(
~

~
)~()~(

ii

l

i
ii

i
l

i i

xkbs
dt

xd

x

xV

dt

xdV









 
will be negative function. Lyapunov function we 
shall obtain in form  

22
2222

2
1111

~)
~~

(,...,~)
~~

(~)
~~

()~( llll xkbsxkbsxkbsxV 

.Positive definiteness of Lyapunov function is given 

by in equations ,0
~~

111  kbs   

0
~~

222  kbs 0
~~

,...,  lll kbs . Here 

likbs iiii ,...,1,
~~

 
are eigenvalues of matrix in 

closed system and we shall obtain acquainted result 
of linear principle of stability 

likbs iiii ,...,1,0
~~

 .Set of equations (20) we 
assume in expanded form for one Jordan block: 

























iiiii NiNiNiNiiNi

iiiiiii

iiiiiii

xkbxsx

xkbxxsx

xkbxxsx

~~~~~

...

~~~~~~

~~~~~~

111211

1







 ;,...,1 mi   
  
Gradient vector candidates of Lyapunov vector 
function in accordance with suggested approach will 
be equal to: 

iiii

i

i xkbs
x

xV ~)
~~

(~
)~(

1






 ; 
1

1

~
~

)~(








i

i

i x
x

xV

 

111

1

1 ~)
~~

(~
)~(





 



iiii

i

i xkbs
x

xV

;
2

2

1 ~
~

)~(




 



i

i

i x
x

xV

 … 

iii

i

i

NiNiNii

Ni

Ni
xkbs

x

xV









 ~)
~~

(~
)~(

; 
Complete derivatives with time from Lyapunov 
vector functions have form: 

2
1 )~~~~~(

)~(
iiiiii

i xkbxxs
dt

xdV
 

;

2
11121

1 )~~~~~(
)~(


  iiiiii

i xkbxxs
dt

xdV

;…;

2)~~~~(
)~(

iiii

i

NiNiNiNii

Ni
xkbxs

dt

xdV





. 
Complete derivatives with time are negative 
functions and meet the condition of asymptotic 
stability. 
Candidates of Lyapunov vector function will be equal 
to: 

2
1

2 ~~)
~~

()~(  iiiiii xxkbsxV , 
2

2

2

1111
~~)

~~
()~(   iiiiii xxkbsxV ,...,

22

1111
~~)

~~
()~(

iiiii NiNiNiNiiNi xxkbsxV  
, 

2~)
~~

()~(
iiii NiNiNiiNi xkbsxV  

. 
Condition of positive definiteness of Lyapunov 
function for system (20) we shall obtain in form 

0
~~

 iii kbs , 

0
~~

1 11   iii kbs ,...,
0

~~
1   ii NiNii kbs

, .,...,1 mi     
  (22) 
Set of inequations (22) also evaluates the condition of 
negativeness of real-valued roots of secular equation 
in closed system. Let’s observe the system (21) in 
expanded form for one block: 















11111

1

~~~~~~

~~~~~~

iiiiiiii

iiiiiiii

xkbxxx

xkbxxx









 ki ,..,1  
If we construct Lyapunov functions in form of vector 

functions with candidates )~(xVi  and )~(1 xVi , we shall 
obtain gradient vector candidates of Lyapunov 
function as follows  

,~)
~~

(~
)~(

iiii

i

i xkb
x

xV







  
,~

~
)~(

1

1









ii

i

i x
x

xV


  

,~
~

)~(1
ii

i

i x
x

xV




 

  

111

1

1 ~)
~~

(~
)~(





 



iiii

i

i xkb
x

xV


.Complete derivatives 
with time from Lyapunov vector function candidates 

2
1 )~~~~~(

)~(
iiiiiii

i xkbxx
dt

xdV
 

,

2
1111

1 )~~~~~(
)~(


  iiiiiii

i xkbxx
dt

xdV


 are negative 
function and meets the conditions of asymptotic 
stability. Lyapunov function in scalar form is given in 
form 

2~)
~~

(2)~( iiiii xkbxV   , ki ,..,1 . Conditions of 
Lyapunov function positive definiteness is written 

0
~~

 iii kb
, ki ,..,1  (23). Condition (22) 

evaluates negativeness of real part of performance 
equation roots in closed system. Thus, the correctness 
of suggested approach is supported by results of 
linear conception of stability, q.e.d.  
 
7. Case study. Then, as an example, we define the 
following initial conditions and find conditions for 
the stability of the system, the radius and transients. 
When the initial settings are follow: 

001.02,
7

2.9
,

03.013

56
 KBA
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In this case, the radius will be equal ( 0160.0*  ). The 
overall the transition process of the system shows on 
the Figure 1 with green color. The second case, when 
the initial settings are follow: 

001.02,
8

11
,

4.013

6.57
 KBA

. In this second 

case, the radius will be equal 3840.0*   and 
eigenvalues are real sample. The overall the 
transition process of the system shows on the Figure 
1 with red color. 

 
Fig. 1.The transition process, exp.1-2. 
 
The third case, when the initial settings are follow: 

001.02,
2.6

8.9
,

45.07.11

156.11
 KBA

 
In this case, the radius will be equal 3876.0*   and 
eigenvalues are real simple. The overall the transition 
process of the system shows on the Figure 2 with 
blue color. For 4-d case, when the initial settings are 
follow: 

001.02,
6

9
,

4.07.11

156.11
 KBA

 
In this case, the radius will be equal 3880.0*   and 
eigenvalues are real simple. The overall the transition 
process of the system shows on the Figure 2 with 
margin color. 

Complex analysis of all examples shown on 
Figure 3.For all the cases the stability conditions of 
the robust control system are executed. The 
experiment part of the proposed system obtained. 
 
Conclusion.  

In our theory robust stability perform an 
important function in the theory of control of 
dynamic objects is [13,14]. The main point of robust 
stability study is to specify constraints on the change 
control system parameters that preserve stability. 
These limits are determined by the region of stability 
in an uncertain and are selected, i.e. changing 
parameters [15,16,17,18].  

 

 
Fig. 2. The transition process, exp.3-4. 
 

 
Fig.3. Compare analysis .  
 

This paper describes a novel idea - a new 
theoretical method of robust stability for linear 
system. This method is an extension of the notion of 
stability where the Lyapunov function is replaced by 
a geometric interpretation of the Lyapunov function 
with dependence on the uncertain parameters 
[17,18,19]. The radius of stability coefficients 
interval family of positive definite functions is equal 
to the smallest value of the coefficients of the vector 
Lyapunov functions. Theoretical results obtained in 
this paper are an important contribution to the theory 
of stability, to the theory of robust stability of linear 
control systems. Thus, for a wide class of systems, 
we believe the theory is sufficiently well developed 
that work can begin on developing efficient approach 
to aid control engineers in incorporating the 
parametric approach into their analysis and design 
toolboxes. The practical importance of these results 
should motivate new theoretical studies on typical 
application techniques, clarification area of the robust 
control and stability [19,20]. Finally, this is the main 
results that theoretical approaches represent the most 
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promising direction. These studies are especially 
important for the designing more effective control 
systems. 
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