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I. INTRODUCTION

Nickerson and Manning studied intrinsic equations for a relaxed elastic line on an oriented surface
(Nickerson and Manning, 1988).
In this paper we study intrinsic equations for non-null dual elastic line on the dual unit sphere.

In this section, definitions were taken from (Clifford, 1973) and (Ugurlu and Caliskan , 1996), (K&se,
1988).

The set D of dual numbers is a commutative ring with the operations (+) and (.) (Clifford, 1973).
< ~ 3
D =PxPxP={X=x+&,, xx,€R}

The elements of D are called the dual numbers.

X=x+&, Y

=y+&y, . . P3 .
Let be dual unit vectors in . The Lorentzian inner product of two dual vectors

)N( and ? is defined by
<)N(,?> = <x, y> + 5(<x, )70> + <§0, y>)
€ Rl3

. . 2 _ X, X
where € is dual unit with € = 0 and 7’ 0>V Yo
3

called dual Lorentzian space '(D’ (Kose, 1988), ( Ugurlu and Caliskan, 1996).

3
. The dual space D with Lorentzian inner product is

X is timelike if the vector ¥ is timelike and X is spacelike if the vector ¥ is spacelike.
p p

512 ={X =x+ g)N(O, H)N(H =(,0) | x,. e 1313, <X, )N(O> = 0, x is spacelike}

3
is called the dual Lorentzian unit spherein =7/ .

Hl={X=x+&,, H)N(H:(I,O)|x,)70eR13,<x,)70>:0, X is timelike }

3
is called the dual hyperbolic unit sphere in D, (Kose, 1988).

Dual arc length of non-null curve B is given by

X(8) = x+ &K, (s . . .
() 0($) dual unit vector draws a curve on a dual unit sphere, this curve corresponds to non-

X(s) = x + &%, (s) R’

null ruled surface in Minkowski 3-space ~'1
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2. INTRINSIC METHOD
3

! parametrized by arc length S .
3

The dual total square curvature K of B in D, is defined by

Let B be non-null dual curve on dual unit sphere in

I
K= '[ x*ds
0 (2)
where K is the dual curvature function of non-null curve 'B .

The non-null dual arc B is called elastic line if it is an extremal for the variational problem of minimizing

the value of K within the family of all arcs of length I on the dual unit sphere having the same initial point and

initial direction as 'B .

. . 3
Assume B lies in a coordinate patch (@, /) > 1)) of dual unit sphere in D,
or or
==, ==
ot 7 0
~ ) or di oOr dj
T(s) = ps) = L2 L8
Ot ds 0J ds

G(s)=p(s), + 2" (),
In order to obtain variational arcs of length ! , it is generally necessary to extend B to an arc p defined for

0<s</ , with I">1 , but sufficiently close to [ so that 'B lies in the coordinate patch. Let H (S) ,

* 2
0<s</ ,be a scalar sunction of class c , not vanishing identically. Define

n(s)=pu()p"(s)  &(s)=u(s)x ()

Along B
7S, + £, = w(G(s) 5
Assume also that
w#(0)=0, #'(0)= 0 (4)
Define
¥(0:1) = r((0) + 17(0). j(0) +1£(0)) | )

Y(o;t)

for 0<o<! . (o) lies in the dual coordinate patch. For constant t, give an non-null dual arc

with the same initial point and initial direction as B .Fort=0, (0.0 _B(s) in dual Lorentzian space.. Also,
we get

=1
(7)
3

Theorem 2.1. The analogue of the Frenet-Serret derivative formulas in the dual Lorentzian space =7 is
J 7; 0 £,0, & 7;
“\G|=|-em, 0 0|G
ds| ~ ~
N - & 0 0N
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~ ~
WhereT =/ is the non-null unit dual tangent vector to B , N(s) is the non-null unit normal to the unit sphere,
@ . <7N",7N">:51, <G,G>=82, <ﬁ,ﬁ>:33

¢ is the dual geodesic curvature and .
For spacelike surfaces are given by

fxézﬁ’ GxN=-T NxT=-G

where X is the Lorentzian vector product.
From Theorem 2.1 (4) and (5), we obtain

oY

=7
oo

=0 0<o <l (8)

which gives
o°Y
oo’

=7'= gzaN)g(N?nLg}]V
=0 : ©)

Also, it follows from (3) that
oY

ot

Using (3), the second differentiation of (10) gives
0’

otoo

=0 : (10)

= —gl,ucT)gYN“ +1'G
=0 (11)

oY
otoo?

=(—6‘1l"6~0g _81/‘67);)7:+(ﬂ”_glgzﬂ@;)é_8183‘115)8)]\7'
1=0 (12)

1 2 -1
a2 oy oyl \ tfov] ow| \ow| oy vl vl Vo a3
di|o\\ool o 0ol f| 3\ool, a0t [\oal ., ool s/ ool ool
Using (10), (11), (13) we obtain
04 [
Et:() =51£qugds

(14)
Let K(1) denote the dual total square curvature of the arc (o3t . Since Cis not generally arc length

for L # O, the dual total square curvature is

oV oY oV o'V

—X—,—X

O\ oo 0o’ 0o 0o’

K@) = | _— o
0 <8‘P 8‘1’>

o0’ 0o

4 —
A necessary condition for B being extremal is that K'(0)=0 for arbitrary dual H satisfying (4). We

compute,
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oF 6‘P> o’y az\{f>
K- || aw\jow ov R R a_\P> oo oo | |\0c* 00’ o
di ||\oc? o007 |\\éo oo ) \oioo oo | [o¥ 6‘P> v ow\|?
O-=ﬂt 7’7 [ —
“ oo Oo ao.’ao.>
'Y o*Y\|/ Y Y
1w\ oo 00 ||\ aroc? dc?
+2 2 2 3/2 15)
o [O°Y OV oV OV
06”006’ | \ oo’ 0o
From (8),(9),(11) and (14), we obtain
‘eza) +€3‘
K'(0)= eljua) ds{‘gza) +€3‘}g ﬂ(o)+2jw (u"-¢,&, 0, )—+8ds
3
‘ ~2+5‘ ‘ 0)+6“ Lo
—2.[(6‘16‘3/,16() ) ds— 2.[(6‘16‘3/,16!) )Tds+351'[ua)g‘gza)g +g3‘ds
&, g+6‘3 6!) + &, 0
Integratlon by parts and (4),
I
2 j p"@,ds =24 (D@, (1)~ 2u(1)é, (1) +2 j i, ds
0 (16)
2.1 Intrinsic equations for dual elastic line on dual unit Lorentzian sphere
In this case, T s timelike, G ve NV are spacelike .
<7N",7N">:gl =-1, <5,5>:52 :1,<ﬁ,ﬁ>:53 =1.
~2
For 529 163 >0 ’
‘525); +53‘ =@, +¢,. a7

Substituting (8), (11), (14), (16) and (17) in (15), we find
K'(0) = j w2 + &, (~a: () -2-a2) s + 24 (D@, (D) - 2u(D)@, (1)

K(O)=O

In order that for all choices of the dual function # (s) satisfying (4), with arbitrary values of

!
H(0) and # @) , the given dual timelike arc B must satisfy two boundary conditions and differential equation

(BC1) @, (D=0
®Bc2) “e (=0 (18)
op 2%+ (g () ~2-dg) =0.

3
2.2 Intrinsic equations for dual elastic line on dual unit Lorentzian sphere in dual Lorentzian space =/

~ ~

In this case, G is timelike, T and V are spacelike.
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~2
1 629 T >0

~2 _ ~2
‘eza)g +e3‘ =—&,0, +&;.

19)
Substituting (8), (11), (14), (16) and (19) in (15), we find K(0) is given by
/
' ~n ~ ~2 ~2 ' ~ ~r
K'(0)= (f)y a)g + a)g (—a)g H+2- a)g) s +2u (l)a)g ) —Zy(l)a)g )

4 —_—
In order that K'(0)=0 for all choices of the dual function # (s) satisfying (4), with arbitrary values of

!
H(0) and # 0 , the given dual timelike arc B must satisfy two boundary conditions and differential equation

(BC1) g (=0
Bc2y “gD=0 (20)
opy 2% % (g () +2-ag3) =0.

3
2.3 Intrinsic equations for dual elastic line on dual unit hyperbolic sphere in dual Lorentzian space ™’

The case 1 , G s spacelike and N s timelike,

~2
For 2@ t&5 >0

~2 )
‘52a)g +83‘—82a)g +&.

21
Substituting (8), (11), (14), (16) and (21) in (15), we find K(0) can be written as
/
K'(0)= (J;,u{2a7é vog @y (1) + g - 2)}ds F2u (D g (1) ~ 2D (1)

4 —_—
In order that K'(0)=0 for all choices of the function # (s) satisfying (4), with arbitrary values of H(0)

!
and # @ , the given dual timelike arc B must satisfy two boundary conditions and differential equation

(BCI) @, (D=0
®c2y @(D=0 (22)
(OE) 20" + @, (&, (1) + & —2)=0.

3.APPLICATIONS
1‘72
Theorem 3.1. On dual hyperbolic unit sphere ~~ °, an dual arc is dual elastic line if and only if it lies on dual
hyperbolic circle.
Proof. The third equation in (22) reduces to
~ ~3 ~
ng +0g —ng =0. 23)

@
With integrating factor ¢, the first integral is
@ )2+1N4_~2_ .
g ] g — g = CONst.
o, (1)=0
The boundary conditions in (22), which reduces to ¢ @)
0, =0

, require that the constant is zero. Thus, we have
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Conversely, any dual circle on

@
If & , the dual curvature

ry2

0 K= ‘82(7) +83‘

0 satisfies (22), trivially.

Corollary 3.1. A spacelike ruled surface in 3-dimensional Minkowski space is dual elastic if and if it correspond a
dual hyperbolic circle on the unit dual Hyperbolic sphere.

S
Theorem 3.2. On dual Lorentzian sphere 1

Lorentzian circle.

, a dual arc is dual elastic line if and only if it lies on dual

32
Proof. On dual Lorentzian sphere S7 () , the third equation in (18) reduces to

With integrating factor

o~ 2o
2 —a)g(a)g+2)—0.

@g

0 . .
& the first integral is

~ 2 1.4
(0g)” ——0
g 4 8
_ . @y (1)
The boundary conditions in (18), which reduces to
w,=0
have ¢ .

With integrating factor

The boundary conditions in (20), which reduces to g

Similarly, the third equation in (20) reduces to
~y o~ ~2
ng — g (—a)g +2)=0.

-~

w . .
&, the first integral is

1]
, require that the constant is zero. We have g

24

- 67)2 = const
g = .

, require that the constant is zero. But then, we must

(25)

=0

Q2
Conversely, any arc of a dual geodesic on dual Lorentzian sphere S7(r) satisfies (20), trivially.
Corollary 3.2. An timelike ruled surface in 3-dimensional Minkowski space is dual elastic if and if it correspond a
dual Lorentzian circle on dual Lorentzian sphere.
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