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I. INTRODUCTION 
     Nickerson and Manning studied intrinsic equations for a relaxed elastic line on an oriented surface 
(Nickerson and Manning, 1988).  
In this paper we study intrinsic equations for non-null dual elastic line on the dual unit sphere. 
     In  this section,  definitions were taken from  (Clifford,  1973)  and (Uğurlu and Çalışkan , 1996), (Köse, 
1988).  

The set D of dual numbers is a commutative ring with the operations (+) and (.)  (Clifford, 1973). 

    DDDD3 },,x~xX
~

{ 3
00 Rxx  

 

The elements of D  are called the dual numbers. 

Let  0x~xX
~


, 0y~yY

~


be dual unit vectors in 
3D . The Lorentzian inner product of two dual vectors 

X
~

and Y
~

is defined by 

   
)x~Y

~
,X

~
,~,(, 00 yyxyx  

 

where   is dual unit with  02   and 
3

100 ,,, Ryyxx 
. The dual space  

3D with Lorentzian inner product is 

called dual Lorentzian space 
3

1D (Köse, 1988), ( Uğurlu and Çalışkan, 1996). 

X
~

is timelike if  the vector x is timelike and X
~

is spacelike if  the vector x is spacelike. 

}xx spacelike isx ,XxX 00 ,~.~{~ 0,
3
1,|)0,1(~,~2

1  xRxS 
  

 

is called the dual Lorentzian unit sphere in 
3

1D . 

  
},0~,,~,|)0,1(X

~
,x~xX

~
{

~
 timelikeis 0

3

100
2
0 xxxRxxH  

 

is called the dual hyperbolic unit sphere in 
3

1D (Köse, 1988). 

Dual arc length of non-null curve   is given by 

0
~,

0

ssdt
ds

d

ds

d
L

t

t




 
. 

 
)(x~(s)X

~
0 sx 

 dual unit vector draws a curve on a dual unit sphere, this curve corresponds to non-

null ruled surface  
)(x~(s)X

~
0 sx 

 in Minkowski 3-space 
3

1R  . 
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2. INTRINSIC METHOD 

Let   be non-null dual curve on dual unit sphere in  
3

1D  parametrized by arc length s . 

 The dual total square curvature K  of 


 in  
3

1D  is defined by  

dsK
l


0

2

                                                           (2) 

where   is the dual curvature function of non-null curve  . 

 The non-null dual arc   is called elastic line if it is an extremal for the variational problem of minimizing 

the value of K  within the family of all arcs of length l  on the dual unit sphere having the same initial point and 

initial direction as 


. 

 Assume   lies in a coordinate patch ),(),( jrjı   of dual unit sphere in 
3

1D  

                                                             j

r
r

r
r j









 ,




 , 

    ds
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j

r
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ssT














 )(')(~

 

    jı rsrssG )()()(
~  

 

In order to obtain variational arcs of length l ,  it is generally necessary to extend   to an arc 
  defined for 

 ls0 , with ll  , but sufficiently close to l  so that 
  lies in the coordinate patch. Let 

)(s
, 

 ls0 ,be  a scalar sunction of class 
2C , not vanishing identically. Define  

)()()( sss   ,  )()()( sss   . 

Along  


 

    
)(

~
)()()( sGsrsrs j   

.                                                        (3) 
Assume also that  

0)0(,0)0(   .                                                    (4)   
Define 

))()(),()(();(  tjtrt  ,                                 (5) 

for  
 l0 . 

);( t
 lies in the dual coordinate patch. For constant  t , 

);( t
 give an non-null dual arc 

with the same initial point and initial direction as 


 . For t =0 , 
)0,(

=
)(s

 in dual Lorentzian space.. Also, 
we get 

ld
t









 








 )(

0

,

.                                               (7) 

Theorem 2.1. The  analogue of the Frenet-Serret derivative formulas in  the dual Lorentzian space 
3

1D  is 
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where '
~

T  is the non-null unit dual tangent vector to  , )(
~

sN  is the non-null unit normal to the unit sphere, 

g
~

 is the dual geodesic curvature and 
321

~
,

~
,

~
,

~
,

~
,

~
  NNGGTT

. 
For spacelike surfaces are given by  

NGT
~~~

 ,    TNG
~~~

 ,     GTN
~~~

 . 
where     is the Lorentzian vector product. 
From Theorem 2.1 (4) and  (5), we obtain 

                                                                       

T
t

~

0







,     l 0                                       (8) 

which gives                                                                  

                                                                       

NGT g

t
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~
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2
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
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 .                             (9) 
Also, it follows from (3) that  

                                                                          

G
t t

~

0






 .                                                      (10) 
Using (3), the second differentiation of (10) gives 
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t

g
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~
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
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Using (10), (11),  (13)  we obtain 

                                                       

ds
t

l

g

t






 0

1

0

~


                (14) 

Let 
)(tK  denote the dual total square curvature of the arc );( t . Since σ is not generally arc length 

for 0t , the dual total square curvature is 

                                                        







dtK
t


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 A necessary condition for   being extremal is that 0)0( K  for arbitrary dual 


 satisfying (4).  We 
compute, 



Life Science Journal 2013;10(12s)                                                       http://www.lifesciencesite.com 

 

55 

                                      

)15(
2/3

2

2

2

3

)(

0

2

2

2

2

2

2

2

2

2/5

2

2

2

2

)(

0

2

)(

2/3

2

2

2

2

,

,

,

,

2

,

,

,

,

,3,,)('































d
t

d
tdt

d
tK

t

t

t
















































































































 
From  (8),(9),(11) and (14),  we obtain 
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~
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Integration by parts and (4), 

 
l

ggg

l

g dsllllds
00

~2)(~)(2)(~)('2~''2 

              (16) 
2.1 Intrinsic equations for dual elastic line on dual unit Lorentzian sphere 

In this case,  T
~

 is timelike, G
~

 ve N
~

 are spacelike . 

.1
~

,
~

,1
~

,
~

,1
~

,
~

321   NNGGTT
 

For 
0~

3
2

2  g  , 

                                                 
.~~

3
2

3
2

2   gg                                                                (17) 
Substituting (8), (11), (14), (16) and (17) in (15), we find 

                                

  )(~)(2)(~)('2)~2)(~(~~2)0(
0

22 lllldslK gg

l

gggg   
 

 In order that 0)0( K  for all choices of the dual function )(s  satisfying (4), with arbitrary values of 

)(l
 and 

)(l
, the given dual timelike arc 


 must satisfy two boundary conditions and differential equation 

(BC1)  
0)(~ lg  

(BC2)   
0)(~  lg                                                                 (18) 

              (DE)      
.0)

2~2)(
2~(~~2  glggg 

 

2.2 Intrinsic equations for dual elastic line on dual unit Lorentzian sphere in dual Lorentzian space 
3
1D  

In this case, G
~

 is timelike, T
~

 and N~  are spacelike. 
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If 
0~

3
2

2  g  

                                 
.~~

3
2

23
2

2   gg                                               (19) 

Substituting (8), (11), (14), (16) and (19) in (15), we find 
)0(K 

 is given by  

                                
  )(~)(2)(~)('2

0
)2~2)(2~(~~2)0( lgllgl

l
ds

g
l

ggg
K   

 

 In order that 0)0( K
 for all choices of the dual function 

)(s
 satisfying (4), with arbitrary values of 

)(l  and )(l , the given dual timelike arc   must satisfy two boundary conditions and differential equation 

(BC1)  
0)(~ lg  

(BC2)   
0)(~  lg

                                                                   (20) 

               (DE)      
.0)

2~2)(
2~(~~2  glggg 

 

2.3 Intrinsic equations for dual elastic line on dual unit hyperbolic sphere in dual Lorentzian space 
3
1D  

The case T
~

, G
~

 is spacelike and N
~

 is timelike,  

For  
0~

3
2

2  g  

                                 
.~~

3
2

23
2

2   gg                                                  (21) 

Substituting (8), (11), (14), (16) and (21) in (15), we find 
)0(K 

 can be written as  

                     
  ))0( (~)(2)(~)('2

0
)2

2~)(
2~(~~2 lgllgl

l
dsglgggK   

 

 In order that 
0)0( K

 for all choices of the function 
)(s

 satisfying (4), with arbitrary values of 
)(l

 

and )(l , the given dual timelike arc   must satisfy two boundary conditions and differential equation 

(BC1)  
0)(~ lg  

(BC2)   
0)(~  lg                                                                   (22) 

               (DE)      
.0)2~)(~(~~2 22  gggg l 
 

 
3.APPLICATIONS 

Theorem 3.1. On dual hyperbolic unit sphere 
2
0

~
H

, an dual arc is dual elastic line if and only if it lies on dual 
hyperbolic circle. 
Proof. The third equation in (22) reduces to  

.0~2
3~~2  ggg 

                                                            (23) 

With integrating factor g
~

, the first integral is  

.
2~~

4

12
)~(

4
constggg  

 

The boundary conditions in (22), which reduces to 
0)(~ lg , require that the constant is zero. Thus, we have 

0~ g . 
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 If 
0~ g , the dual curvature 

1~~
3

2
2   g

, 0 . 

Conversely, any dual circle on 
2
0

~
H

 satisfies (22), trivially. 
Corollary 3.1. A spacelike ruled surface in 3-dimensional Minkowski space is dual elastic if and if it correspond a 
dual hyperbolic circle on the unit  dual Hyperbolic sphere. 

Theorem 3.2. On dual Lorentzian sphere 
)(

2
1

~
rS

, a dual arc is dual elastic line if and only if it lies on dual 
Lorentzian circle. 

Proof. On dual Lorentzian sphere )(
~2

1 rS , the third equation in (18) reduces to  

.0)2
2~(~~2  ggg 

                                                          (24) 

With integrating factor g
~

, the first integral is 

.2~4~

4

12
)~( constggg  

 

The boundary conditions in (18), which reduces to 
0)(~  lg , require that the constant is zero. But then, we must 

have 
0~ g . 

 Similarly, the third equation in (20) reduces to  

.0)2
2~(~~2  ggg 

                                                     (25) 

With integrating factor g
~

, the first integral is 

.
2~4~

4

12
)~( constggg  

 

The boundary conditions in (20), which reduces to 
0)(~  lg

, require that the constant is zero. We have 
0~ g

. 

Conversely, any arc of a dual geodesic on dual Lorentzian sphere )(
~ 2

1 rS  satisfies (20), trivially. 
Corollary 3.2. An timelike ruled surface in 3-dimensional Minkowski space is dual elastic if and if it correspond a 
dual Lorentzian circle on dual Lorentzian sphere. 
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