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1. Introduction 

Adomian decomposition method has been 
applied to a wide class of functional equations 
(Adomian, 1985, 1994) since the beginning of the 
1980s. Adomian decomposition method gives the 
solution as an infinite series usually converging to an 
accurate solution. Abbaoui et al.,1994 applied the 
standard Adomian decomposition method to 
nonlinear equations and proved the convergence of 
series solution. El-Tawil et al., 2004 applied the 
multistage Adomian decomposition method for 
solving Riccati differential equation and compared 
the result with standard Adomian decomposition 
method. Babolian et al. 2004 considered a new 
numerical implementation of Adomian 
decomposition method for cases in which evaluation 

of terms of the series 


0
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n

n xu  is impossible 

analytically. Babolian et al., 2004 employed standard 
Adomian decomposition method and presented a new 
computational approach for Laplace transforms. 
Babolian et al., 2004 modified the standard Adomian 
method which was proposed in (Abbaoui and 
Cherruaut, 1994). 

Sumudu transform was probably first time 
introduced by Watagula in his work (Watugala, 
1993). Its simple formulation and direct applications 
to ordinary differential equations immediately 
sparked interest in this new tool. This new transform 
was further developed and applied to many problems 
by various workers. Asiru, 2001, 2002 applied to 
integro-differential equations, Watugala, 1998, 2000 
extended the transform to two variables with 
emphasis on solution to partial differential equations 
and applications to engineering control problem, and 
its fundamentals properties were established by 
(Belgacem et al., 2003, 2006). Rana et al., 2007 
proposed homotopy perturbation method to compute 
Sumudu transform, Siddiqui et al., 2010 applied 

Sumudu transform to Newtonian fluid problems. The 
Sumudu transform has very special and useful 
properties and can help to solve intricate applications 
in science and engineering.  Having units preserving 
properties, it may be used to solve problems without 
resorting to the frequency domain. This is one of 
many strength points for this new transform, 
especially with respect to applications in problems 
with physical dimensions. In fact, the Sumudu 
transform which is itself linear, preserves linear 
functions, and hence in particular does not change 
units (Belgacem et al., 2003). Belgacem et al. 2003 
have shown it to be the theoretical dual to the 
Laplace transform, and hence ought to rival it in 
problem solving.  

The sumudu transform is defined (Watugala, 
1998) by 
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The Laplace and Sumudu Transforms exhibit the 
following duality relation (Belgacem et al. 2003) 
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where )(sF  is the Laplace transform and )(uG  

Sumudu transform of a given function f . 

 Consider the first order differential equation 
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The analytical solution of (4) is given by  
 

 ,)()()()(  dxxfxQxfxy   (5) 

where .)(
)(
dxxP

exf  

Considering a special case in Equation (4) by taking 

,)( sxP   where s  is a positive constant. Then 
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If Equation (5) is considered as a definite integral 
from zero to infinity, then left hand side of this 

equation defines the Laplace transform of )(xQ . 

That is  
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In this paper, we apply Adomian decomposition 

method to propose new computational technique for 
Sumudu transforms. The results reveal that the 
proposed method is very effective and simple. 
 
2. Adomian decomposition method 

The Equation (4) can be written as 
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where .dxdL   The Adomian decomposition 

method gives the solution )(xy  by the series given 

by 
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where the terms  , , , 210 yyy  are determined 

recursively (Haldar and Datta, 1996) by  
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Having determined the terms ,,2,1,0 , nyn  the 

solution )(xy  defined by a series form (9) follows 

immediately. The convergence of the Adomian 
decomposition method is established in (Cherruault, 
1989, 1992). 

 In the next section, Adomian decomposition 
method is employed to derive a new method for 
Sumudu transforms. 
 
3. The new computational method 
 The aim of this communication is to derive a 
new technique for computing Sumudu transforms. In 
view of Equation (3), the Sumudu transform of )(xQ  

can be given by the relation 
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Therefore, according to Equations (9) and (11), we 
have 
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Several examples are provided to illustrate the 
simplicity and reliability of this new computational 
method. 

Example 1. Suppose 1)( xQ . Then from Equation 

(10), we obtain 
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Therefore, from Equation (12), we obtain 
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Example 2.  Suppose ,)( xxQ   then 
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Example 3.  Suppose ,)(
nxxQ   then  
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Example 6.  Suppose ),cos()( axxQ   then  
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Example 7.  Suppose ),sin()( axxQ   then 
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Example 8.  Suppose ),cosh()( axxQ   then  
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Example 9.  Suppose ),sinh()( axxQ   then  
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4. Conclusion 

In this work, we successfully apply 
Adomian decomposition method to compute Sumudu 
transform. It gives a simple and a powerful 
mathematical tool. The proposed method requires 
simple differentiation in contrast of usual method 
which needs integration.  
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