
http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

151

A Computational Geometry technique for Supporting Multiplayer Online Games

Farhad Ranjbar Helan, Shahriar Lotfi

Electronic, Computer Engineering, Information Technology Department
Islamic Azad University Qazvin Branch, Iran

Computer Sciences Group, Tabriz University, Iran
Ite1867@eaedu.org, Farhad.Ranjbar@qazviniau.ac.ir, Shahriar_Lotfi@tabriz.ac.ir

Abstract– This paper presents a geometric technique to support multiplayer online games on a peer-to-peer system.
Assumption in this paper is based on the fact that players are more interested in their region of visibility and
influence than in the other regions. We use a computational geometry technique – Voronoi Diagram – to partition
the game space into regions. The players in a region communicate with other players through the coordinator of the
region. The resulting system scales up with the number of players and is able to distribute region updates in a
scalable manner. We also propose techniques for fault tolerance in the wake of node failures. We have simulated a
simple game to prove the efficiency of this technique.
[Ranjbar Helan F, Lotfi L. A Computational Geometry technique for Supporting Multiplayer Online Games.
Life Sci J 2013;10(6s):151-158] (ISSN:1097-8135). http://www.lifesciencesite.com. 24

Keywords – Peer-to-Peer, Multiplayer Game, Voronoi Diagram, Net Games.

I.INTRODUCTION

This paper uses a computational geometric
technique – Voronoi Diagram [6] – to partition the
game space into regions based on some locality
properties and support it on a peer-to-peer structure.
The players participating in the game form an overlay
structure based on their location in the game space.
Thus all the players contribute memory, CPU cycles
to manage the shared game state.

The game space in a multiplayer online
game (MOG) is shared and inhabited by thousands of
players. Some popular games like Ultima Online and
Quake have recorded 200,000 simultaneous users.
Apart from the exciting story line and graphics,
MOGs are a shared distributed application with some
private state maintained locally, and the shared state
communicated to other players.

Traditionally the MOGs were supported
by a client – server architecture. Since the single
server solution did not scale well, mirror server
architectures were proposed. But the mirror servers
constrain the number of simultaneous players in a
geographic location. Cluster of server architecture
was proposed to share the load by dividing the game
space into regions. But even this solution does not
scale with the number of simultaneous players in a
given region of the game space.

Multiplayer Games are natural application
for peer-to-peer systems. Game players have
incentive to provide resources for managing the
shared state because the participation in resource
sharing is limited to the duration of the game play. A
recent proposal [7] to support MOGs on a peer-to-
peer system divides the game space into a fixed
number of regions. Although this architecture scales

with the number of players, it does not fully exploit
the locality property. The coordinator of a region
may not be playing in the region but still has to
handle the burden of state management and
communication in the region.
 Games are different from the existing peer-to-peer

applications that mostly harness only the storage and
bandwidth of the peers. Games utilize memory and
CPU cycles to manage the shared game state. Hence
some of the problems that have to be addressed are:

 Performance - games have frequent updates
that must be quickly propagated to other players.
Further the propagation of updates must scale with
the number of players.

 Scalable State Management – the state
maintained by the peers must be based on their
current location. Also each peer must manage state
only for the region of game space that is closest to it.

 Fault Tolerance - replicating game state to
improve availability has some problems. With high
frequency of updates maintaining a large number of
synchronous replicas in the system become a
performance bottleneck.

 Security – with the state being maintained
on the peers,instead of the central game server, player
get increased opportunity to cheat.

We propose a technique to partition the
game space and assign coordinators for regions based
on some closeness and locality properties. As we
shall see in the later sections, this technique addresses
the first two problems well. We also address the
problem of fault tolerance with an initial proposal.
We present an architecture marrying MOGs, peer-to-

peer systems and Voronoi Partitioning technique and

http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

152

we also provide an initial evaluation of the technique
to demonstrate its feasibility.

The rest of the paper is organized as
follows: Section II discusses the background and
related work in detail, Section III describes some of
the terms used and our design, Section IV discusses
some of our proposals, which forms future work,
Section V gives some initial evaluation. We conclude
in last Section.
II. RELATED WORK

Traditionally MOGs have been supported
using a client – server architecture, where the server
keeps player account information and handles all
shared state and communication between players.
This architecture clearly does not scale up with the
players. To achieve scalability the servers have to be
over-provisioned for the worst case scenario. Further
this architecture suffers from a single failure point
and has little fault tolerance.

Mirror Server architecture was proposed to
isolate players based on their geographic locations.
Players typically join the closest geographic mirror.
Hence the number of simultaneous players in a
geographic region is constrained. Further the mirrors
have to be synchronized and this synchronization is
normally done on a high speed backbone.

Later, Server clusters were used instead of a
single server to achieve scalability. But even this
scheme limits the number of simultaneous players in
a region. All the client-server architectures lack
flexibility and have to be over-provisioned for peak
loads. Further the client-server model limits the
deployment of user designed game extensions, which
is an important trend in game development and
design. Since a centralized game server is required to
host the core game, the development is slowed down
considerably.

Recently there have been proposals for
peer-to-peer gaming systems with application layer
multicast. One such system is SimMud [7], which is
built on top of Pastry [12] and uses Scribe [3]
application layer multicast for communication. The
game space is divided into a fixed number of regions
and each region is managed by a node assigned to be
the coordinator for that region. Players in a region of
the game space form a multicast group and
communicate using Scribe multicast system. Players,
on switching between regions, leave the multicast
group in the old region and join the multicast group
in the new region.

Even though the above described system
takes into account the locality of interest in a MOG, it
does not fully exploit it. A player may be a
coordinator for a region, but may be playing in
another region of the game space. But still the player
has to maintain state and handle communication for

that region. Hence in this system players maintain
state for regions of game space this is no longer close
to them. As the players move in the virtual space,
their region of influence and interest continuously
change, but this system does not take this into
consideration.

We target Multiplayer Online Games,
which currently use the client-server architecture or a
peer-to-peer architecture described above. Although
the peer-to-peer architecture lowers the deployment
cost with all nodes providing CPU and memory, it
incurs a security risk because the game state is
distributed to peers. Hence some techniques like Run
Time Verification [5] for Anomaly Detection
proposed by Honghui Lu et al., may be applied to our
system.

Replication is an integral part in any peer-
to-peer file sharing system [4], [8], [13] for both
improved availability and performance. However
these systems are read only system, whereas a gaming
system has frequent updates. As a result our system
must maintain data consistency while tolerating
network and node failures. Our approach is to
maintain the replicas at the neighbors. The intuition in
maintaining the replicas at the neighbors is that when
a node leaves or fails, the Voronoi region has to be
refined and the refined mesh has the neighbors taking
over the region of the failed node. However
consistency requirements require us to design a
consistency mechanism with a small window of
vulnerability.

Fault tolerant consistent data services can
be built with quorum systems [9]. In these systems,
updates cannot proceed if the number of nodes in a
region is not large enough to form a quorum.
Group communication and interest management is

used in some distributed game implementations
including AMaze [1] and Mercury [2]. The SimMud
system as discussed before makes use of Pastry and
Scribe. Since our system partitions the game space
into regions using Voronoi Diagram, it is closer to
CAN [11] than to any other DHT like Chord [14] or
Pastry.

CAN is a scalable, robust and self
organizing DHT that considers a d-dimensional
Cartesian coordinate space. The coordinate space is
completely logical and bears no resemblance to any
physical coordinate system. At any point in time, the
entire coordinate space is partitioned among all the
nodes in the system such that every node owns its
individual distinct zone within the overall space. The
node that owns a particular zone stores all keys that
map to any point within the zone. Hence the lookup
for an object may be routed through the CAN
infrastructure until it reaches the node whose zone the
point P, onto which the object maps, lies.

http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

153

Routing in CAN works by following the straight line
path through the Cartesian Space from the source to
the destination coordinates. A CAN node maintains a
coordinate routing table that holds the IP address and
the virtual coordinate zone of each of its immediate
neighbors in the coordinate space. This neighbor
information is sufficient to route between any two
arbitrary locations in the space. Using its neighbor
coordinate set a node routes a message towards it
destination by simple greedy forwarding to the
neighbor with coordinates closest to the destination
coordinates.

For our purpose we need to consider a 2-d
CAN like system to perform the message routing.
Since the Voronoi Partitioning divides the 2-d game
space into regions similar to zones in CAN, we can
use CAN type routing to communicate with players in
other regions. Further in our system each node knows
the address of its neighbors. Message routing to nodes
that are far off in the game space is needed for team
player strategy games like War Craft. In these games,
it becomes essential to have communication between
team mates, who may be at different regions of the
game space at a given time.
III. OUR SOLUTION

This section proposes a mechanism to
support multiplayer games, based on voronoi
partitioning approach. The contents of this section so
organized to act as a step by step guide leading us to
development of the proposed solution. Analyzing the
problem and challenges involved in the support of
massively multiplayer games on peer to peer system,
we explain what motivates the design of proposed
solution. Following that is a detailed explanation of
voronoi partitioning, its application to support
massively multiplayer games, a communication
mechanism amongst peers involved in the game.

A. Multiplayer Games on Peer-to-Peer
System

In multiplayer games, actions and state of a
player need to be communicated to other players. For
example, during a fight between two players if one
player shoots at other; the other player must be
communicated that it has been shot at. (Typically, a
player is controlled by a peer and hence the terms
peer and player are used interchangeably in the
further paper.) Considering this, one obvious
approach to support such games on peer-to-peer
system is to have every player communicate with
every other player in the network. But it is clearly not
scalable to massively multiplayer game as a peer may
not be capable of handling communication with tens
of thousands of other peers involved, at the same
time. It may lead to explosion in the number of
messages leading to network congestion, packet drops
and increased latencies. To make the system scalable,

a peer must be required to communicate with only a
subset of other peers involved in the game. A
challenge here is to find such a subset of nodes so as
to enable communication within the latency
constraints imposed by the game design and to

minimize messages within the network.
B. Region of Influence (RoI)

Consider a game field as shown in Figure 1
with players A-G. The region of influence (RoI) of a
player is defined as region in which the player’s
actions may can be seen or perceived by other
players. This region is dependent upon game terrain
design. Above figure shows region of influence of A.
Actions of player A will be perceived by only those
players who are within this region. Thus, only Players
B and C can perceive A’s actions. In other words, B
and C form subset of nodes A should communicate
to. In addition to this, A may be required to send
some status updates to other players not in this region.
For example, if A and E are team-mates then A will
be required to send its status updates to E. A may also
be required to send status updates to F, like number of
kills in a First Person Shooter game like Quake. F
may not be interested in the actions taken by A but
only in the state of A resulting from these actions.
Although the subset of peers, a node should
communicate to, is completely dependent on game
design, it will always be required to communicate
with the players within its RoI. This is because if, say,
A decides to move forward, then the movement will
be seen by B and C on their display. But G will not be
interested in this update because A is not displayed on
its screen.

Fig. 1 Region of Influnce

B. Voronoi Partitioning

Voronoi Partitioning is a general concept
applicable to n-dimensional space. This section,
however, explains and defines it only for 2-
dimensional space to maintain simplicity and
relevance to this project. figure 2 a screenshot of
applet VoroGlide [15]demonstrating voronoi
partitioning. Consider a set of input vertices,
represented as dots, in a 2-dimensional plane. The
figure shows the partitioning of the plane into

http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

154

polygonal regions. The partitioning is done such that
any point within a polygon is closest to input vertex
enclosed within that polygon than to any other input
vertex. It is restated, for the ease of understanding,
that the input vertices are the points represented as
dots in figure 2.
Formal definition of voronoi partitioning is as

follows:
Definition: Give a set of points in a 2-dimensional

plane, voronoi partitioning of the plane is sub-
division of plane into polygonal regions where each
region is a set of points that are closer to some input
vertex than to any other input vertex.
To apply voronoi partitioning to divide the plane of

the game area, consider that the input vertices
represent positions of the players at any particular
instant. The voronoi partitioning thus divides game
area into polygonal regions, such that, any point in a
polygon is closest to some player than to any other
player. This player, which is closest to all points
within a polygon than any other player, is assigned as
coordinator for the region.

Voronoi partitioning can lead to formation
of very small regions, in case of clustering of nodes.
Figure 2 shows such a clustering and breakup of the
plane into small regions. This can lead to formation of
regions which are smaller than RoI of a player. Such
a small fragmentation is unnecessary and as will be
clear later when communication mechanism is
explained, it may lead to additional communication
overhead. To avoid this, adjacent regions can be
merged together to form a larger region. One answer
to decide which regions to merge could be to merge
the regions with smallest area. This however incurs
additional overhead of determining such regions.
Alternative approach is to merge any two regions.
This can then be implemented recursively to merge
multiple regions. Since the regions are small, merging
of any two adjacent regions may serve the purpose
equally well. Both the techniques have various issues
and trade-offs but those are neither discussed nor
addressed as the problem is outside the scope of this
project. This results in some players without
coordination responsibilities.

One major disadvantage of voronoi
partitioning is the time complexity associated with it.
Fortune’s algorithm [6] has the best known time
complexity of O(n log n). This is for the static points.
For nodes moving at variable speed, which is typical
of any game, the upper bound is predicted to be cubic.
Hence, there is need for an efficient distributed
implementation of algorithm to make it scalable. No
such algorithm exists to the authors’ knowledge

Fig. 2 Sample Voronoi Partition

. However, not all games have players moving
continuously. While First Person Shooter (FPS)
games like Quake have players continuously
changing their position, their activity is largely
limited to a particular region in case of strategy
games like Age of Empires. Voronoi partitioning can
be efficiently implemented for such games. Another
way to overcome this problem is to consider only a
fraction of nodes as input vertices for partitioning.
This also results in nodes without any coordination
responsibilities at a particular instance.
C. Communication
Explained first are the terms used frequently in the

subsequent
report.
 Player: Any node which is alive and

participating in the game.
 Coordinator: A process running on player node

with responsibilities similar to server of client-server
model, within specific region.
 Neighbor: Coordinator of adjoining region with

respect to the node under consideration.
Consider the state of the game after it has been

divided into voronoi partitions and coordinators
assigned for the regions. Each coordinator is informed
of its neighbors.
 A player sends its status update to the

coordinator of the region it is in, currently. For the
moment, assume that player knows the coordinator.
This status message is multicast to other nodes in the
region as well as to neighbors. Figure 3 explains the
message flow.

http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

155

Fig. 3 Message Flow in the System

As a player moves around, it may move
across a region at some point. At this point, it should
be informed of the new coordinator it should contact
to. This is done by the coordinator of the region it was
in, previously. This is explained with the figure 4.

Fig. 4 Movement across regions

 Consider player B moving from A’s region to

D’s region Suppose A and D happen to be
coordinators. B sends its status update coordinator A
notifying its position and irection of motion. From
this information A infers that B is moving into D’s
region and hence, sends a join request to D on behalf
of B. D then sends the join approval message to B.
However, this coordinator switch is performed after
time ə, as the player may cross the region and return
immediately. If the coordinator of a region leaves the
region, the particular area may be repartitioned to
reflect the current state of the game. We advocate
periodic refining of the partitioning to appropriately
reflect the current state of the game and thereby
maintaining the properties of closeness and relevance.
Obviously, there is additional overhead and latency
involved when a player tries to switch region. Hence,
if voronoi regions are very small then players will
switch regions more frequently. This increases
communication overhead.
D. Node Join and Leave

The system has a bootstrap node whose
address is known to other nodes. This can be thought
of as a web server hosting the game any node can join
the game by sending a Join Request message to this
node. The player can select its position or it may be
randomly assigned some position by the coordinator.
Alternatively, a player can join by sending a Join

Request message directly to the coordinator of the
region it wishes to join provided it knows the
coordinator. A player may leave the game by sending
leave message to coordinator. A coordinator can leave
by informing the bootstrap node. The bootstrap node,
in turn, can take action to select new coordinator of
the region. It can be a node which was closest to the
coordinator before the coordinator left or the
bootstrap node may choose to repartition the space.
IV. RESULTS

We present the experimental results
obtained with a prototype implementation of our
system in this section. We have used a LAN
environment to perform the initial evaluation of our
prototype. We concentrate on the networking aspect
of results, mainly the latencies experienced by the
players, and the messages sent and received by the
coordinators.

All experiments were performed on nodes
with 1.2 GHz Pentium III CPUs and 512 MB of main
memory. The machines run Linux 2.4.17 and Sun
JDK 1.4. Our prototype system is written fully in Java
and each node runs in a separate Java Virtual
Machine. We run two processes in each node – one to
act as a coordinator for the region and another to act
as a player in the region. Each of these processes
runs in a separate Java Virtual Machine.

We analyze the effect of total population on
the latencies experienced by the players and the
messages sent and received by the players. We also
compare our results with SimMud, run on a UDP
communication system. In every instance, our initial
results collaborate with our hypothesis that Voronoi
Partitioning technique provides good closeness and
locality property.

Since we have not implemented the
dynamic distributed partitioning scheme, we study the
effect of static partitioning by modeling the game to
make sure the players stay within their respective
regions. In our model simulated players eat and fight
every 10 seconds and always stay within their region.
We are restricting the players to their regions to
perform an initial study of our scheme.

Similarly in our game three or four position
updates would be sufficient, but we send updates
every 100 milliseconds to stress our system to see
how our scheme can be applied to other gaming
environments that need more frequent updates.

Each region of the game space is described
using an MxN array depending upon the area
spanned. Associated with each node is a map of the
entire game space, consisting of immutable landscape
information. In our implementation, object updates
are sent in 200 bytes serialized Java records. The
object arrays, which contain the mutable object
information, are inherently sparse, and in packed

http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

156

format the messages to transfer objects are around 20
KB. In our simulations, we randomize the actions
performed by the players and average the results over
10 runs. We measure 300 seconds of simulated game
play.
A. Join Latency

Join Latency is the time between sending a
Join Requet message to join the game and receiving a
Join Approval message from the coordinator. Join
Request messages are sent both at the time of joining
the game and while switching between regions. But
since we do not allow our players to switch regions, it
is the initial delay in joining the game.

We measure the Join Latency as the
number of players in the system increase. We
compare our latencies with that of SimMud, where
we assume one region and vary the number of
players. Our implementation has as many regions as
there are players. Figure 5 presents latencies
experienced as a function of players in the region.

Fig. 5 Join Latency as a function of Number of

Players

As seen from the graph, the Join Latency in
the Voronoi Partitioning Scheme remains more or
less constant. This can attributed to partitioning the
game space into regions based on closeness. In our
implementation, say with 6 nodes, the entire space is
managed by all of the nodes, as against the original
scheme, where in one coordinator manages multiple
players. The small fluctuations in the curve is
attributed to network dynamics.
B. Attack Latency

 Attack Latency is the time between
sending and Send Attack message and receiving a
Attack Reply message. We measure the Round Trip
Time (RTT) of attack and the one way latency can be
approximated as half the RTT. Players attack one
another when within a certain region of visibility γ.
We present the latencies experienced in Figure 6.

Fig. 6 Attack Latency as a function of Numbers of

Players

The Attack Latency also remains more or
less a constant. As discussed before, this is due to the
intuitive closeness property provided by the Voronoi
Partitioning. Attack Latency is critical in most First
Player Shooter games like Quake, and hence it is
important to have little or no fluctuations in it.

C. Eat Latency

Eat Latency is the time between sending a
Food Request message and receiving a Food Reply
message from the coordinator. A Food Request
message is sent to the coordinator on sensing food in
a region ə around. Only the food in the region of
visibility γ can be consumed at any point. The
latencies are presented in Figure 7.

The Eat Latency experienced by the players
remains a constant in our scheme. Players maintain
state for region of game space that is closest to them,
and hence there is no load on a single “coordinator”.
Voronoi Partitioning distributes state among players
based on locality and closeness. So each node
maintains only that state, which is of interest to it. As
players move they no longer have to handle
communication and maintain state for the old region.

D. State Transfer Latency

As players move in the game space, the
state maintained at each node changes. State Transfer
Latency measures the time equired to obtain new state
as there is movement in the ame space. Figure 8
illustrates the time taken to perform state transfer.

Again, as seen from the graph, our
implementation gives near constant performance. No
single node has to handle the transfer between
players. Each player maintains and exchanges almost
constant amount of state.

http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

157

Fig. 7 Eat Latency as a function of Number of

Players

Fig. 8 State Transfer Latency as a function of

Number of Players

V. FUTURE WORK

One major challenge to the proposed
solution is an efficient implementation of voronoi
partitioning. There is need to enable nodes to
determine their voronoi regions in a distributed
manner. Also, current work does not address the
problem of fragmentation due to clustering of nodes
in a particular area. There is need to develop an
efficient solution to overcome the problem of
clustering.

Current work does not implement fault
tolerance. In future, we plan to implement and test
fault-tolerance mechanism proposed earlier.

The communication based on voronoi
partitioning is similar to Content Addressable
Network (CAN) [11]. Hence, it can implement
application layer multicast on the lines similar to
CAN. Such a mechanism will help to communicate
status updates to distant regions. For example,
updates to team members which are in other corner of
the playing area.

Peer-to-peer systems are highly susceptible
to cheating. Empowering nodes to control game state
can lead to the node manipulating the state to suit it
goal. For example, a player may move through a wall,

gain infinite health or drop other players’ packets.
Cheat prevention is one of the major challenges in
supporting multiplayer games on peer-to-peer system.
This work has not focused on the problem of cheat
prevention. Future work aims to provide a robust
cheat prevention mechanism.
VI. CONCLUSION

This work presents the implementation and
evaluation of a computational geometry technique –
Voronoi Diagram- to partition the game space and
support it on a peer-to-peer system. We exploit the
locality of interest and closeness property, and design
a scalable mechanism to maintain game state and
quickly propagate updates to the players.

Our initial results are promising and
closeness property provided by the Voronoi Diagram
can be used to efficiently support gaming systems on
a peer-to-peer structure. Measurements show that
latencies experienced by the players remain more or
less constant. Further message exchanged is also
independent of the number of simultaneous players.
In conclusion, we have demonstrated a new

technique to efficiently support gaming systems on a
peer-to-peer overlay. But much work needs to be
done to perform the Voronoi Partitioning in a
scalable, distributed, and dynamic manner to achieve
the full benefits of the partitioning. In our present
implementation, each node knows only the
neighbors. We have not implemented any routing
mechanism to achieve communication between
players in arbitrary regions of game space. Routing
can be performed as in CAN to achieve
communication between any two arbitrary regions.
Further replication must be done in an efficient
manner to achieve fault tolerance, in the wake of
node failures. Security is one another important
aspect, that needs attention in a peer-to- peer gaming
system.

We have performed an initial evaluation
with limited number of nodes and by considering
static partitions. The results show that our approach
holds promise, but further evaluation needs to be
done before strong claims can be made. We have to
experiment with a larger number of nodes with a
dynamically refining mesh. Further a LAN
environment assumes near uniform latencies. So
experiments need to be performed on a Wide Area
test bed. A completely distributed dynamically
refining mesh is needed to completely validate our
system.

REFERENCES
[1] E. J. Berglund and D. R. Cheriton. Amaze: A

multiplayer computer game. IEEE Software,
2(1), 1995.

http://www.lifesciencesite.com) 6s(10;3201 Life Science Journal

158

[2] Ashwin R. Bharambe, Sanjay Rao, and
Srinivasan Seshan. Mercury: a scalable
publish-subscribe system for internet games.
In Proceedings of the first workshop on
Network and system support for games, pages
3–9. ACM Press, 2012.

[3] Miguel Castro, Michael B. Jones, Anne-Marie
Kermarrec, Antony Rowstron, Marvin
Theimer, Helen Wang, and Alec Wolman. An
evaluation of scalable application-level
multicast built using peer-to-peer overlays. In
Infocom’03, April 2011.

[4] Frank Dabek, M. Frans Kaashoek, David
Karger, Robert Morris, and Ion Stoica. Wide-
area cooperative storage with CFS. In
Proceedings of SOSP’01, October 2011.

[5] Margaret DeLap, Bjorn Knutsson, Honghui Lu,
Oleg Sokolsky, Usa Sammapun, Insup Lee and
Christos Tsarouchis. Is Runtime Verification
Applicable to Cheat Detection?. In the
proceedings of Netgames '04, ACM
SIGCOMM 2011 Workshops, pp.134-138,
August 2011, Portland, Oregon.

[6] Steven Fortune. A Sweepline Algorithm for
Voronoi Diagrams. In the proceedings of
Symposium on Computational Geometry,
Yorktown Heights, NY, 2012.

[7] Bjorn Knutsson, Honghui Lu, Wei Xu and
Bryan Hopkins .Peer-to-Peer Support for
Massively Multiplayer Games. INFOCOM
2011, March 2004, Hong Kong, China.

[8] John Kubiatowicz, David Bindel, Yan Chen,
Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon,
Westly Weimer, Christopher Wells, and Ben
Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of
ASPLOS. ACM, November 2012.

[9] Nancy Lynch, Dahlia Malkhi, and David
Ratajczak. Atomic data access in content

addressable networks. In Proceedings of the 1st
International Workshop on Peer-to-Peer, March
2012.

[10] Katherine L. Morse. Interest management in
large-scale distributed simulations. Technical
Report ICS-TR-96-27, University of
California, Irvine, 2010.

[11] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Schenker. A scalable
content-addressable network. In Proceedings of
the 2011 conference on Applications,
technologies, architectures, and protocols for
computer communications, pages 161–172.
ACM Press, 2011.

[12] Antony Rowstron and Peter Druschel. Pastry:
scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM
International Conference on Distributed
Systems Platforms (Middleware), November
2012.

[13] Antony Rowstron and Peter Druschel. Storage
management and caching in PAST, A large-
scale, persistent peer-to-peer storage utility. In
Greg Ganger, editor, Proceedings of SOSP- 01,
volume 35, 5 of ACM SIGOPS Operating
Systems Review, pages 188–201, New York,
October 21–24 2012. ACM Press.

[14] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for
internet applications. In Roch Guerin, editor,
Proceedings of SIGCOMM-01, volume 31, 4
of Computer Communication Review, pages
149–160, New York, August 27–31 2011.
ACM Press.

[15] http://www.pi6.fernuni-hagen.de/GeomLab
/VoroGlide/index.html.en

3/5/2013

