
Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 641

Using FPGA to Implement Artificial Neural Network to Drive a Vehicle Automatically

Behnam Ghiaseddin1, Omid Rahmani Seryasat1, Javad Haddadnia2*

1,
 Department of Electrical Engineering, Takestan branch, Islamic Azad University, Takestan, Iran

2. Associate Professor, Electrical and Computer Engineering Department, Hakim Sabzevari University & Center for

Research of Advanced Medical Technologies, Sabzevar University of Medical Sciences, Sabzevar, Iran
*Corresponding author: Haddadnia@sttu.ac.ir

Abstract: Drive a Vehicle Automatically is consist of several concepts, like cruise control, automatic parking, and keep the

vehicle in safe distance from other vehicle and etc. But to reaching full autonomous in vehicle driving the first issue is keeping

the car in the road and controlling the speed base on the shape of the road. To acquire this capability we need an intelligence
system that could think like a driver. One of the usual way to build such a system is achievable by using Artificial Neural
Network (ANN). Using ANN, like most of other intelligent system, require lots of computation and using hardware
implementation of this system could increase performance. We used Multilayer Perceptron as an ANN technique and Xilinx
Spartan 3 FPGA as a hardware platform. We also use an open source simrace (Car Racing Simulator) application to simulate the
functionality of the system. We tune the system to process 3 frames/sec but this is increasable. average error of steering angle
accuracy is 1.2 degree which shows an acceptable result.
[Behnam Ghiaseddin, Omid Rahmani Seryasat, Javad Haddadnia. Implementation of an Automatic Vehicle

Driving System on a Single FPGA Chip. Life Sci J 2013;10(5s):641-643] (ISSN:1097-8135).

http://www.lifesciencesite.com. 112

Keywords: Automatic Vehicle Driving , FPGA, Neural Networks

1. Introduction

During the 1980s and early 1990s there was

significant work in the design and implementation of

hardware neurocomputers. Nevertheless, most of
these efforts may be judged to have been

unsuccessful: at no time have hardware

neurocomputers been in wide use. On the other hand,

gate-arrays of the period mentioned were never large

enough nor fast enough for serious artificial-neural

network (ANN) applications. But technology has

now improved: the capacity and performance of

current FPGAs are such that they present a much

more realistic alternative [1]. Consequently

neurocomputers based on FPGAs are now a much

more practical proposition than they have been in the

past. Generally, a pattern recognition system is
implemented using software technology. However,

the speed of software-based implementation is low,

and software-based implementation relies on

computer and is not suitable for using in the

environments where high portability is required [2].

FPGAs are a form of programmable logic, which like

software based systems, offer a good flexibility in

design, but with performance speeds closer to

Application Specific Integrated Circuits (ASICs).

FPGAs can be reconfigured repeatedly, making them

ideal prototyping tools for hardware designers [3].
Automatic vehicle driving is also a noticeable area in

which many scientists has been work on[4,5].

In this paper we use an offline learning method.

Offline training regards to learning procedure on a

general-purpose computing platform before the

trained system is implemented in hardware. Our

proposed idea has two main parts: The first one is a

Neural Network which decides for a suitable reaction

of driver. The other one is the efficient

implementation of the NN on a hardware platform. In
continue the major parts of our proposed system are

introduced in detail. The paper is organized as

follows:

Section 2 explains the system design. Section 3

introduces the specifications of FPGA and

Implementation Constrains. Section 4 presents the

implementation of system and shows the result.

Finally Section 5 concludes the paper and mention

future works.

2. System Design

In a real driving process, the driver, see the scene and

decide for pushing pedals and rotate steering wheel to

drive as well. So the system should consist of three

main parts: to get image as input, make a suitable

decision and provide desired output.

Here we need a set of video frames that show the

road as input. To simulate the driving condition, an

open-source software called TORCS is used. It

generates a road image in which a car can drive.

Based on image get from input, our automated

system should decide on how to drive in this road.

Decisions are made using an artificial neural network

which is implemented on FPGA. The output of

FPGA will be sent to the software for driving in road.

Steering wheel rotation and Desire Speed are the

output parameters defined to drive the vehicle

mailto:Haddadnia@sttu.ac.ir
http://www.lifesciencesite.com/

Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 642

automatically.

3. Preprocess of image

First of all, we need to gather data for training. To

simulate the driving condition, an open source

software called TORCS is used. It generates a road

image in which a car can drive. This image is

captured and saved while the value of pedals and car

speed which were shown on image is also extracted

from it. This is performed using a piece of code in

MATLAB and finally extract the steer value, pedals

and car speed as numbers. To decrease the processing

cost, image size must be reduced to a 16x64 matrix.

Then we used a segmentation method to extract the

road from scene. For extracting the road, a 4-

neighbor flood fill method was used. Finally, we

would have a black-and-white image (or a matrix of 0

and 1s) as our network input which can really

simplify the process.

4. Neural Network

As mentioned before, a Neural Network is designed

for decision making. The most commonly used

family of neural networks for pattern classification

tasks is the feed-forward network. In this paper, we

used a two-layer perceptron. Activation functions in

hidden and output layer are chosen sigmoid and

linear. Because of simplifications in input vector of

network, the number of nodes in hidden layer is

reduced. Nonetheless, due to number of input vector,

weight matrix is still big and affects the computation

and memory efficiency. Finally a 1024-10-2

multilayer Perceptron is designed to handle the main

process of the system.

5. Network training.

Input data is used as a number of video frames and

must be fed into network as a vector. So each 16x64

image frame has 1024 data which will be vectorized

to input the NN. We used 2650 samples for test and

Training algorithm is Levenberg-Marquart which has

a high speed in process. After 5 epochs, network

error is acceptable. Implementation Errors will be

discussed in section 4 in detail.

6. Implementing NN on FPGA

To get a better result of neural networks

specifications in parallel computation, we prefer to

implement our algorithms on a hardware platform

directly. For this purpose, we used our saved weight

matrix of our trained network in FPGA. Obviously in

this phase, an optimized implementation can strongly

affect the result. For real-time use of system, first we

should have an approximation for desired system

speed. Consider this as a constraint, we can decide

for optimized size of circuit. We try to minimize the

number of bits for variables, to make them in a

smaller area. Increase of bits can enlarge the circuit,

not only in saving process, but also in computation

phase. All the process is done in two phases:

Image segmentation, in which we extract road from

image, and

Produce network output.

Each phase has its own process time shown with C1 =

15360 clock and C2 = 1079 clock. Therefore Ctotal

becomes as follows:

1 2 15360 1079 16439 clocktotal      (1)

The Master Clock is 50MHz, so total time for

computation becomes 0.33 milliseconds.

16439 clock
Latency 0.33

50 MHz

total

MasterClock

C
ms

F
   (2)

So we can process 3041 process (image) per second:

1
3041

Latency
PPS   (3)

But there would be a delay for data transfer to FPGA

and if it is considered, the PPS would decrease into

1354 process per second. The throttle, brake and

steering wheel angles can be set by use of keyboard.

So here we need to use a piece of code, to transform

our NN outputs to the program and drive the car.

7. Hardware Constraints: Using Fixed Points

Although use of floating points has a better

flexibility, their complexity can really cause the size

of circuit to become large. In paper [2] authors have

shown in their researches a great difference in

implementation of a MLP with fixed and floating

point variables. Their experiments showed that, fixed

point implementation was 12 times faster and 13

times smaller than floating point implementation.

In first step, we need to calculate the inputs for

activation functions:

WX b (4)

We can show it as below, in which, n is number of

inputs:

1 1 2 2 n n b   (5)

As we are using the NN in offline mode, weight

matrix is fixed; but input matrix (X) is changing over

time. For implementing the activation function, we

have used look up table. So, we can consider the

constant values of the activation function in look up

table. In Eq.6, it has been shown that each input

should multiply in its related coefficient and be added

to an accumulator.

Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 643

 

' ' ' '

1 1 1

'

n n n

i i b i i b b bi i i

a

a a b

a a a

b

b b

b

  
  




  
 (6)

Also, the inputs must be added to another

accumulator without being multiplied. Finally the 2nd

accumulator is multiplied to Wb and differentiates

from the 1st accumulator. Although these can be done

at the same time using a single accumulator, it can be

decided, depends on implementing method of

multipliers in hardware.

8. Test and Implementation Errors

For our network's first layer, error varies in [-1,+1]

and in [-127,+127] for hardware neural network.

Average of Absolute Error (Ea) and Relative

Error(Er) are gain from networks is:

  0.023aMean Error E  (7)

0.023 2.3%
1

a
r

E
E    (8)

In Second layer also, these are same as first layer,

but in 2nd layer, the absolute maximum is 15; and

errors gained as:

  2 0.4823aMean Error E  (9)

2
2

0.4823
0.0322 3.2%

15 15

a
r

E
E     (10)

9. Conclusion & Future work

In This paper, we proposed a method for driving in a

road. A simulator software was used for input and

system reaction (steer & speed) as a virtual driver

defined for system output. A multilayer perceptron

were defined to decide as a virtual driver. The output

result of network and errors has shown a good try for

this purpose. For a better result in future, some key

points are mentioned:

The road has been defined without any other vehicles

on its path. We can train our network in a more

complicated scene and get a more reliable result.

Two main parts of algorithm were image

preprocesses and decision making based on neural

networks. To get a better result, we implemented

them on a FPGA chip. It is suggested to use RBF

neural networks instead of MLP for a better result; as

they are well defined for classification tasks.

Also we can use a fuzzy segmentation method to

have a better extraction of road. This can help us to

have a more accurate and precise map of road to

decide.

Adding some other features and increase the input

information of system is strongly advised. These

features can be GPS (Global Positioning System), or

vehicle acceleration in addition to its velocity that

can make the system performance much more. As

Automatic vehicle driving is one of the interesting

topics of research these days, there is still lots of

efforts must be done to establish an automated

reliable system.

References

1. R. Omondi, J. C. Rajapakse, FPGA

Implementations of Neural Networks,

Springer, 2006.

2. Ahlander, and B. Svensson, Floating point

calculations in bit-serial SIMD computers,

Research Report, Centre for Computer

Architecture, Halmstad University, 1992.

3. Almeida, L. D., Backpropagation in

perceptrons with feedback, in NATO ASI

Series: Neural Computers, Neuss, Federal

Republic of Germany, 1987.

4. J.Windish. (October 2010). Google’s got an

automated car,

themoderatevoice.com/88477/googles-got-

an-automated-car/

5. The Official Google Blog, What we’re

driving at,

googleblog.blogspot.com/2010/10/what-

were-driving-at.html, Oct 2010

3/12/2013

http://themoderatevoice.com/88477/googles-got-an-automated-car/
http://themoderatevoice.com/88477/googles-got-an-automated-car/
http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
http://googleblog.blogspot.com/2010/10/what-were-driving-at.html

