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1 Introduction and preliminaries
Let A denote the class of functions f(z) of the form

f(z)=z+2akzk (1)
=2
which are holomorphicin A = {z € C:| z|<1} . We denote by N the subclass of A consisting of functions
f(2) € A which are holomorphic univalent in
A and are of the form f(Z)ZZ—Zaka , a,20. (2)
=2

For more information about univalent analytic functions see [1] and [6].
Definition 1. Let n € N U {0} and 4 > 0. Let Q') f denote the operator defined by Q' : N = N, such that

Q) () =(1-D)S"f(2)+AR" f(z), z€A, (3)
where S f* is the Salagean differential operator [5] and R" f* is the Ruscheweyh differential operator [4].
For f(z) € N given by (1.2) we get

S”f(z)=z—ik”akzk 4)
and R”f(z)zz—in(n)akzk, (5)
Where Bk(n)z(k”_lJ: (n+1)(+2)..(n+k=1) ©
n (k-1)!

Further by replacing (1.4) and (1.5) in (1.3) we conclude
Q) f(2) = 2= S [K" (1= )+ 2B, ()2 a)
k=2
It is observed that for n =0,
Q f@)=1-DS"f(2)+ R f(2) = f(2) =S’ f(2)=Rf(2). Definition 2. A function f(z) € N is said to belong

QL SN+ S,

to the class ¥} (a, f3) if and only if Re{aZ[Q’j1 f(z)] +(1-a)Q) f(2)

Where 0 < <1, 0<a<l,a>pf.
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In recent years, many authors (e.g. [2,3]) have investigated certain subclasses of N .
2 On Main Results

We begin by proving a necessary and sufficient condition for a function belonging to the class ¥} (&, £).

Theorem 1 : A function f(z) given by (1.2) is in the class ¥ (&, f) if and only if

0

Dkk—~af~(1-e)k+ Pk 1-A)+ B0, <afy ©)

=
where B, (n) defined by (1.6). The result is best possible for the function
a—p
HZ)= Z. (10)

) [22-af—-(1-0@+P1R (1-A+B,»)]
Proof : By making use of (1.7) in (1.8) we have
az—ik(mk—l)[k” (1-A)+1B,(n)j "
Ref—= > p.

0

z— (dk+1-ak" 1-2)+ B, (W, 2"

k=2

By choosing the values of z on the real axis and the z — 1~ through real values, we get

(—-STher+k—)— A+ 1-a I (A28, 0) >0,

STk—cfi—(—-ae+ IR (-2 + B, ()<

Conversely, suppose that (2.1) holds true. We will show that (1.80 is satisfied and so f(z) € V] (e, ). Using
the fact that Reaw > f ifand onlyif |w — (14 f) |<| @ + (1= f) |, it is enough to show that

el [ +2[ S

L= ' _
o ol - r)
PV RIE) R ) I
Q) f()] +(1-a0)Q} £(2)
If o=az[Q) f(2)] +(1-a)Q’ f(z),wehave
L =|—;|[az[szz F@ +220Q f@)] —(+ B, a1

By using (1.7) and replacing [Q") £ ()] and [Q]} f(2)] in (2.3) we conclude

L<||Z||[(a_ﬁ_l)_ik(a+k—1)—(1+ﬁ)(dc—a+l)]Fc”(l—/i)+
) k=2

2B, (Mla, |27

After same calculation on R, when z € OA , it is easy to verify that R — L > 0 if (2.1) holds and so the proof is

complete.

We next find the extreme points of lP; (a, p).

Theorem 2 : Let f(z) =z and

a-p

fi@)=z -
kk—afj—(1-a)b+p k" 1-A)+B(m)]

2 k=23..
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then f(z) € ¥ (&, f) if and only if it can be expressed

where ¢, 20 and Ztk =1. f(Z)=Ztkfk(Z),
k=1 k=1

Proof : Let f(z)be expressed as in the above form. This means we can write

MERVIOYNAC

a—pf A
t”;t"z Z[k(k aB—(—a)b+ P (—A) +7B,(1)]

a-p
* k(k—ap)—(1—a)k+ B)k"(1- A1)+ AB, ()] Since
{kk—ef—(1 a)qﬁegc (-A+ /B((n)]d Zt e
k=2 o—

so by Theorem 2.1 we conclude that f(z) € V] (ax, ). Conversely, suppose that f(z) € ¥ («r, ) .By letting
_ktk—ap)-(1-a)(k+p)lK"(1-A) + 1B, (n)]
k= a-p
And t, =1- z t, , we conclude the required result.
k=2

3 Radius Properties
In the last section we obtain the radii of starlikeness, convexity and close to convexity.

Theorem 3 : Let f(z)¥) (&, ). Then f(z) is starlike of order (0 < o <1) in | z |< R,, where

g[k(k—aﬁ—(l—a)qfﬁ[’) I (1-A)+4B,(m)](— O)}k S
(@-Pk-o)

zf (2)
(z

(12)

R =in

Proof : For 0 < o <1, we need to show that| —1|<1—0 . In other words, it is sufficient to show that

, > (k-1 Lz
gy, s

f(Z) l_i akzkfl

S (k- |z |

<=2 <kl-o,

l_z a, |z

k=2

0

Or Z(llc_

k=2 -

O _
)a, |z |k '<1. By using (2.1) it is easy to see that above inequality holds if
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i1 _k—af—~(1-a)k+pk' 1-A+Bn))-0)
(@-Pk—o)

and this complete the proof.

2]

Since f(z) is convex if and only if zf’ ' (z) is starlike, we obtain the following theorem.

Theorem 4 : Let f(z)V¥) (a, ). Then f(z)is close to convex oforder (0 <o <1) in |z |< R, , where

[k(k—a,@—(1—0!)(k+ﬂ)[k"(1—l)+23k(”)](1—0)}ﬁ
k(a—p)k—o)

Theorem 5 : Let f(z)¥) (a, ). Then f(z)is close to convex of order (0 <o <1) in | z |< R, , where

[k(k—af)—(1-a)k+P)k"1-A)+ 4B (n)]d-0)

R, =inf} (13)

o -

1
Y (14

Proof : We must show that | / (z)—1|<1—o for | z|< R, we have R, is given by (3.3). Now

| S @)1= Y ka2 <Y kay |27
k=2 k=2

ka
|z
1-o

Thus | £ (z)-1|<1-0 if Y
k=2

et But, by Theorem 2.1, above inequality holds true if

i _[kk—ap)—(-a)k+ Pk (1-2)+ B, (m)]1-0)

|z
and this gives the required result.
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