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Abstract: In this paper, we construct a new modification of Newton's method for solving nonlinear equations, 
which is based on the method of Gauss quadrature integration. It is shown by way of some illustrative examples that 
the proposed method is a powerful tool for approximation simple root of nonlinear equations. Numerical examples 
are given to compare the convergent results of this method compared with other existed methods.  
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1.  Introduction and Preliminaries 

Solving nonlinear equations is one of the most 
important problems of numerical computations in 
mathematics and engineering. There is a wide variety 
of iterative methods, such as Newton's method and 
it's modifications to solve nonlinear equations. 

In recent years there has been considerable 
interest in developing new algorithms with high order 
convergence. Normally, these high order 
convergence algorithms contain higher derivatives of 
the function or multi-step. In the former case, various 
techniques can be used to eliminate the derivatives. 
However, the resulting interaction function may be 
more complex than the Original. 

Chun et al. [3] developed a new family of 
fourth-order methods for simple roots free from 

second derivative. Amat et al. [2] discussed the 
dynamics of the family of third-order methods do not 
require second derivatives. In another paper [1] they 
discussed the dynamics of King and Jarratt's 
schemes. Neta et al. [6] discussed the best choice of 
the parameter in King's method. 

In this paper we consider a family of third-order 
algorithms to find a simple root of a nonlinear 
equation . We use known Gauss 
integrations formulas to produce new methods. We 
also prove the convergence rate of the methods. 
2 . General Method 
Newton's method for the calculation of , the simple 
solution of , is probably the most widely 
used iterative method defined by  

 (1) 

It is well known that this method has second order convergence order. 
Several third-order methods based on quadratures are given in the literature. A third-order variant of Newton's 
method appeared in Weerakoon and Fernando [7] where rectangular and trapezoidal approximations to the integral 
in Newton's theorem  

  (2) 

were considered to rederive Newton's method and to obtain the cubically convergent method  

  (3) 

respectively, where from here on  

  (4) 

Frontini and Sormani [5] considered the midpoint rule for the integral (1) to obtain the third-order method  

  (5) 

 
Let us approximate the integral of (1) with a weighted combination of two quadrature formulas of order one as 
follows  

 

(6) 
where  is an arbitrary real number. After substituting (6) in (1) and putting , we get the following formula  
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  (7) 

where  is defined in (4). 
For the method defined in (7) we have the following analysis of convergence.  
 
Theorem 1: Let  be a simple zero of a sufficiently differentiable function  for an open interval . Let 

, then the method defined in (7) is of order two. 
Proof: Let . Using the Taylor expansion and taking into account  and 
by simple calculations, we easily obtain  

  (8) 
  
 

(9) 
  
 

(10) 
  
 

(11) 
  

  (12) 

dividing (8) by (12), we get  
 

(13) 
Thus putting (13) in (7) we get  

 

(14) 
This means that the method defined by (7) is of order two. This completes the proof. □ 
From (14) it is obvious that for  the method (7) is of order three. In this case the method (7) is the well 
known Trapezoid Newton method defined in (3). 
To produce another method of order three we use two points Gauss quadrature formula which is exact for 
integration of all polynomials of degree not grater than three. Consider (1) as follows  

  (15) 

After substituting (15) in (1) and putting , we get the following formula  

  (16) 

where  and  are  

  

and  is defined in (4). 
For the method defined in (16) we have the following analysis of convergence.  
 
Theorem 2: Let  be a simple zero of a sufficiently differentiable function  for an open interval . Let 

, then the method defined in (16) is of order three. 
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Proof: Let . Using the Taylor expansion and taking into account  and 
by simple calculations, we obtain following  

 

(17) 
  
 

(18) 

where ,  and .  

 

(19) 
  
 

(20) 
  

  (21) 

Thus putting (21) in (16) we get  
  (22) 

This means that the method defined by (16) is of order three. This completes the proof. □ 
From (22) it is obvious that if  then the method (16) is of order four. 
 
3  Numerical examples 
We present some numerical test results. The method 
of Gauss Newton (GN) were compared with the 
classic Newton's method (NM) and the Trapezoid 
Newton's method (TN). All computations were done 
using MAPLE using 200 point arithmetics 
(Digits:=200). We use the following two stoping 
criterias for computer programs: (i) , 
(ii) , and so when the stopping criterion 

is satisfied,  is taken as the exact root  
computed. For numerical illustrations in this section 
we use the fixed stopping criterion . We 
used the test functions as the Weerakoon and 
Fernando [7] and the test functions in Neta 
Error! Reference source not found. as listed in 
Table 1.   

 
Table 1: Test functions 

  Test   Function        
1     1.0   1.63198080556606351752210644554 
2     1.0   1.4044916482153412260350868178 
3     2.0   0.25753028543986076045536730499 
4     1.5   0.73908513321516064165531208767 
5    -1.0  -1.2076478271309189270094167584 

6     4.0   6.3087771299726890947675717718 
7     2.0   2.8424399537844470678165859402 
8     1.0   8.3094326942315717953469556827 

 
 As convergence criterion, it is required that 

the distance of two consecutive approximations  be 
less than  that is . Table 2. 
displays the numerical results for the test functions of 
Table 1. In this table IT is the number of iterations to 
approximate the root, NFE denotes the number of 
function and its derivatives evaluations which counts 

the sum of the number of evaluations of the function 
itself plus the number of evaluations of the derivative 
and CO denotes the convergence order which is 
approximated as follows  

                          (23) 
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The test results in table 2. shows that for most of the 
functions, the Gauss Newton method have equal or 
better performance compared to the Trapezoid 

Newton method and both of these methods have 
better performance compared with the classical 
Newton's method. 

 
Table 2: Numerical results of the proposed examples 

Test  Method     IT     NFE                CO  

 1   NM   7   14   58E-62   78E-62   2  
  GN   5   15   27E-117   13E-118   3  
  TN   5   15   44E-110   21E-111   3  
 2   NM   7   14   10E-51   31E-51   2  
  GN   5   15   58E-95   23E-95   3  
  TN   5   15   89E-90   36E-90   3  
 3   NM   6   12   29E-56   91E-56   2  
  GN   5   15   13E-162   34E-163   3  
  TN   4   12   81E-68   21E-68   3  
 4   NM   6   12   38E-65   22E-65   2  
  GN   4   12   31E-81   34E-81   3  
  TN   4   12   31E-81   34E-81   3  

 5   NM   7   14   23E-64   11E-65   2  
  GN   5   15   25E-121   12E-122   3  
  TN   5   15   25E-121   12E-122   3  
 6   NM   10   20   17E-63   22E-67   2  
  GN   7   21   23E-79   51E-83   4  
  TN   7   21   40E-79   22E-67   4  
 7   NM   8   16   29E-93   16E-94   2  
  GN   5   15   18E-87   10E-90   3  
  TN   5   15   38E-69   21E-70   3  
 8   NM   8   16   25E-80   84E-80   2  
  GN   5   15   13E-77   43E-77   3  
  TN   6   18   14E-163   48E-163   3  
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