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1. INTRODUCTION
Let the class of all functions f(z) = z + a,, ;2" +

which are analytic in E ={z:]z| <1} be
denoted by 4,, and let A; = A. A function f(z) € 4,
is said to be in the class S; (n, 8, t), if
a1 —0)zf'(2)

f(2) - f(t2)
for all z € E,0 < B < 1and A is real with 2] <~.
For A = 0, this class reduces to S,, (8, t) (see, [6]) and
for n =1, 1 =0, we obtain the class S(B, t) studied
by Owa et.al [9] and Goyal et.al [5]. The class
S55(1,0,—1) was introduced by Sakaguchi [I11].
Therefore, a function f(z) € S;(1,8,—1) is called
Sakaguchi functions of order B (see, [4]). Also we
note that forn =1,t =0, = 0, the class S; (n, 5, t)
reduces to the class of spiral-like functions
introduced by Spacek [12] in 1933.
Sufficient conditions for different classes were
studied by various authors, see [1,2,3].

In this paper, we obtain a sufficient

condition for a function f(z) € S;(n, B, t). To prove
our main result, we need the following Lemma
proved in [8].
Lemma 1.1. Let Q be a set in the complex plane C
and suppose that ¢ is a mapping from C2 X E to C
which satisfies ¢ (ix,y;z) & Q for z € E, and for all
real x, y such thaty < —n(1 +x2)/2.1Ifp(z) = 1 +
¢, Z™ + -+ is analytic in E and ¢ (p(2), zp'(2); z) € Q
for all z € E, then Re p(z) > 0.

2. MAIN RESULTS
Theorem 2.1. If f (z) € A, satisfies
. ( i t)2zf'(z)> (aZf” (2)

f(2) - f(t2) f'(2)
MZ
+ 1) > 4L +N,
where 0 <a <1, 0<pB<1, te[-1,1), Aisreal
with [4] <= and

Re e > B cosh, tE€[-1,1),

atzf'(tz)
f(@) - f(t2)
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L=a(l-p) [g(l —t)+ (1 — B) cos? /1] cosA

M = —(1 — B)?sin24 cosA 2.1
N = ap [(ﬁ + 2a sin? 1) cos® 4
n asin24
+ (E — cos/l) 1- t)] l—

na
+ (ﬁ cosA — 7) 1-v),
then f(z) € S;(n, B, t).
Proof. Set
(A -t)zf'(2)
il — = —
e ey = 4 = cos2 (L= Pp() + ]
+isinA. (2.2)
Then p(z)and q(z) are analytic in E with p(0) =1
and q(0) = 1.
Taking logarithmic differentiation of (2.2), we have
zf"(z) L '(2)
f'@  f@)—f(tz)
_(1-6)zq'(2) +e™q*(2) - (1 — )q(2)
(1-1t)q(2) '
and hence

(eu (1- t)2zf'(z)> (aZf” (2)
@ -1 )\ F@

)

= Azp'(z) + Bp%(2) + Cp(2z) + D
=¢p(2), zp'(2); 2),
with

A=a(l—-t)(1—-pB)cosA,

B = ae™*(1 — B)?cos?2,

¢ = (1 -p)(2aBe *cos?A + iae*sin24
+ (1 —a)(1 —t)cosi),

D = ae"*(B?cos?A — sin?1 + i Bsin 21) + (1
—t)(1 —a)(BcosA+isind).

N atzf'(tz)
f(z) = f(tz)

Now
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¢(r,s;t) = As + Br? + Cr + D.
For all real x and y satisfying y < —n(1 + x2)/2,
we have
¢(ix,y;z) = Ay — Bx? + iCx + D.
Taking real part on both sides and then by simple
computation, we obtain
Re ¢(ix,y;z) < —Lx* + Mx + N

M1 M?
=— \/Zx+—] +—+N
[ VLl 4L
MZ
<—+N,
4L

where L, M and N are given by (2.1).
2
Let @ = {w; Rew > =+ N}. Then
4L

¢o(p(2),2p'(2);z) € Qand p(ix,y; z) & Q, for all
real x and y < —n(1 + x2)/2,z € E. Now by using
Lemma 1.1, we obtain the required result.
On taking A = 0, in Theorem 2.1, we have the
following result proved in [7].
Corollary 2.2. If f (z) € A,, satisfies

R (1-t)?%zf"(2) (azf”(z) atzf'(tz) N 1)

TOTF@ \ @ @[
>$1,

where 0 <a<1,0<pf<1,t€[-11)and

§=af[5-0-(1-0)+p]

+a-0[(e-7))
Then f(z) € S§(n, B, t).

Ifweput t =0,n =1and ¢ = 0 in Theorem 2.1,
we obtain
Corollary 2.3. If f (z) € A, satisfies

Re (e”‘ %ﬁ?) > 3 cos/,
then f(z) € S;(1,8,0).

Ifwetake A =0, t =—1and f§ = 0 in Theorem
2.1, we get
Corollary 2.4. If f(z) € A, satisfies

pe2f'@ (aZf”(Z)_ azf'(-2) +1)
f@-f2)\ f'(@ f@-f(-2)
—nha
'y

thenf(z) € S5(n, 0,—1).

Fort = 0 = 4, in Theorem 2.1, we have the
following result proved in [10].
Corollary2.5. If f(z) € A, satisfies

zf'(z) (azf" (2)
@ ( @ 1)
n na
>ap{p+5-1}+{p-=)
Then f(z) € S5(n,B,0).
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Ifwetake =0, n=1, t=0andA =0, in
Theorem 2.1, we have the result proved in [7] as:

Corollary 2.6. If f(z) € A, satisfies

zf'(z) (azf" (z) a

e—f(z) (—f’(z) + 1) > —E(z € E),
for some a(a = 0), thenf (z) € S5(1,0,0) = S*.
Also for g = %,n =1,t = 0and A = 0, Theorem
2.1 reduces to the result proved in [7] as follows:
Corollary 2.7. If f(2) € A, satisfies

zf'(z) (azf”(Z) + 1) > __‘12(1 —a)(z €E),

“Fo \ F@ 4

for some a(0 < a < 2), then f(2) € S* (g)
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