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Abstract: A grid adaptive finite difference technique is instigated to valuate butterfly spread call option for one 
asset using Black-Scholes equation. The grid is refined near three exercise prices and a coarse grid is generated 
otherwise. The non unoform finite difference scheme is used in this computation. The numerical experiments show 
that the adaptive finite difference method is much more efficient than the method with uniform spacing. The grid 
adaptation technique reduces the points drastically which in turn decreases the computational cost and makes the 
algorithm highly efficient. A fully implicit and explicit scheme is also compared in this computation. 
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1. Introduction 

 The finite difference scheme that was developed 
in (Ashraf et al. 2012) is extended to work with one-
asset butterfly spread option using Black-Scholes 
equation.There are many types of financial 
instruments (Duffy, 2006) which go by the name of 
Options. Options are traded on all of the world's 
major exchanges. Butterfly options (Khaliq, et al, 
2007) are not only very popular in the over-the-
counter markets but also important tools for 
designing more complex financial derivatives 
(Wilmott and Howison, 1996). In butterfly option, 
the payoff has a discontinuity at strike prices. In this 
work, we will focus on butterfly spread call options 
for one asset. 

 Fisher-Black and Myron-Schole (Black and 
Scholes, 1973) derived a celebrated partial 
differential equation. The Black-Scholes model is the 
convenient way to calculate the price of an option 
(Cox et al, 1979). In this article, numerical methods ( 
Smith, 1985) will be used to solve the finite 
difference equation (Courtadon, 1982) of Black-
Scholes. The solution to the Black-Scholes equation 
is smooth but the final condition has discontinuity 
which produces oscillation in the numerical solution. 
Numerical methods have been studied (Dura and 
Mosneagu, 2010. Zhu et al, 1988) in many 
application areas in order to cure this oscillation from 
the initial discontinuities. Finite difference methods 
(Khaliq et al, 2008. Wade et al, 2007) with variable 
space-steps are proposed in order to valuate butterfly 
options.  

 The purpose of this paper is to develop efficient 
and accurate numerical technique to price options 
(Zhongdi and Anbo, 2009) with payoff containing 
discontinuities. For butterfly options, the 
discontinuity lies only in the initial condition, 

therefore we need to use small space-steps initially 
then use bigger space-steps to keep the efficiency. In 
proposed study, we focus on adaptivity (Hongjoong, 
2011) for space-steps in order to see effects of 
variable space-steps. In this study, several numerical 
tests show that the adaptive finite difference methods 
approximate the solution more efficiently than 
uniform finite difference methods. 
2. Explicit Finite Difference Scheme 

 Let S(t) be the price of the underlying asset at 

time t (0 )Tt   with a given expiry date T, 

constant interest rate r >0 and a constant volatility 

> 0 . The value, ( , )V S t  of butterfly options under 

classical Black-Scholes model can be computed by 
solving the following one asset partial differential 
equation, 
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The interval  0,T  is divided into M equally sized 

subintervals of length .t  The price of underlying 
asset will take the values in the unbounded interval 

[0, ).  However, an artificial limit maxS  is 
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three to four times the exercise prices. The interval 

0,
max

S 
 

 is divided into N subintervals of length 

.S
i

  The asset price at an arbitrary point n will be 

0 1 2 1= 0
=

n

i N ni
S S S S S S             Let 

us assign a variable n  to this summation, then

= .
= 0

n S
in i

    



Life Science Journal 2013;10(5s)                                                          http://www.lifesciencesite.com 

 

77 

 

Using this nomenclature, we can say that 

= == 0
N SnN n

  S .max  where S
i

  are the non-

uniform space-steps. Hence, the space 

 0, 0,
max

S T 
 

 is approximated by a grid 
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 where Nn ,0,1,=   and .,0,1,= Mm   For 

uniform spacing n  = .nSn  Let 
m

nV  denote the 

numerical approximation of  ., tmV n    

The explicit scheme for non uniform grid is (Ashraf 
et al. 2012). 
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 In butterfly option, the discontinuity appears at three 
exercise prices (E1, E2 and E3). In the proposed 
procedure, dense grid is generated in the vicinity of 
the exercise prices and coarse grid is generated 
elsewhere as shown in figure 2.The patches I, II and 
III have dense grids and coarse grid elsewhere. The 
grid in each patch is uniform, therefore, the order of 
the error in each patch is the same as for uniform 

grid, i.e. 2( ) .o S
n

  The condition of stability can be 

deduced (Ashraf et al. 2012) , 
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3 Backward-Euler Finite Difference Scheme 

 In this method, we use forward difference for 
V first time derivative, central difference for first S 
derivative and for second S derivative, we first use 
forward difference and then backward difference: 
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Using the above substitutions, equation (2.1) takes 
the form : 
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 After simplifying and re-arranging, the above 
equation takes the form : 
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This system of equations can be solved by  

Gauss-Seidel method. The values ,0
nV ,0

mV m
NV  

with = 0, ,n N  and = 0, ,m M  are known from 

initial and boundary conditions. 
 
4. Numerical Experiments 

 We demonstrate some numerical experiments 
for one asset butterfly spread call option. The 
butterfly can be created by using call or put 
options.The strategy is termd "Butterfly" due to the 
shape of the risk characteristics graph we see, the two 
wings and the larger body.The butterfly spread is 
constructed through buying 1 long In The 
Money(ITM) call, shorting two At The Money 
(ATM) calls and buying 1 long Out of the money 
(OTM) call. The ratio between the three options is 
1:2:1 and the distance between the strike prices of 
long options should be equidistant from the short call 
strike. For example, a butterfly spread could be made 
of 3 call options with strikes of E1=10, E2 =20 and E3 

=30. The butterfly will result in a net debit transaction 
as the ITM and OTM call options will total a larger 
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value than the two short ATM calls. The payoff 
function of butterfly spread call option is given by 
�(�, �) = ���(� − ��, 0) − 2���(� − ��, 0) +
���(� − ��, 0). 

 In butterfly spread call option, the payoff is 
acting as the initial condition and has a piecewise 
discontinuity at the strike prices. We use the 
following parameters for the computation of the 
butterfly spread call option for one asset: T=0.5, 
r=0.1,  =0.4, S=40, E1=10, E2 =20 and E3 =30, with 
N=27,57, 85,115, 143, 216, 289 grids in space, 
different schemes are applied for option valuation. 
Tables 1 and 2 show the option prices for an at-the-
money (S=E1) butterfly option from various schemes. 
In Tables 1 and 2, N shows the number of points for 
uniform and variable space-stepping, Cu,e shows the 
option price for uniform spacing and Ca,e shows the 
option price for adaptive spacing for Explicit scheme. 
Cu,i and Ca,i are option prices for implicit scheme. It 
can be observed that same option values are obtained 
by using less number of points in adaptive space-
stepping as compared to uniform space-stepping and 
adaptive space-stepping converges more rapidly than 
uniform space-stepping. 
 
Table 1. Comparison between Explicit and adaptive 
explicit schemes option values 
N  Cu,e  Ca,e  
 29  1.4266   1.2860  
59  1.1761  1.1904  
 89  1.1685   1.1574  
119  1.1658   1.1406  
149 1.1644  1.1305  
 

Figure 1, depicts the grid for initial conditions 
for one asset. Here, we refined intervals [E1- ,E1+
], [E2- , E2+ ] and [E3- , E3+ ] around the strike 

prices. We choose ( epsilon) as 5 and the grid is 

refined in these intervals to cure oscillations caused 
by discontinuity. Figure 3, represents the Gamma plot 
for for one asset by explicit method. Figure 5 Time 
plot for payoff function. 

Similar results can be obtained for space-
stepping by Backward-Euler scheme. This shows that 
adaptive space-stepping is much better than uniform 
space-stepping. Figure 4, shows time option 
evolution plot. 
 
4. Conclusions  

We have developed an efficient finite difference 
numerical technique for one asset to cure oscillations 
in the solution. The computational domain is 
descretized embedding more points near the 
singularities and coarse grid otherwise. We have to 
modify the numerical scheme to deal with the uneven 

spacing of the points. The stability analysis of 
explicit scheme is also performed for one asset 
Black-Scholes equation. The results are presented for 
an adaptive explicit scheme, and adaptive implicit 
scheme. 

The oscillations at discontinuities are eliminated by 
using adaptive space-stepping. The adaptive space-
stepping speeds up the solution convergence as 
compared to the uniform space-stepping. The 
adaptive finite difference scheme needs less points in 
its computation and hence is very efficient. 

 
Table 2. Comparison between Implicit and adaptive 
implicit schemes option values  

N Cu,i  Ca,i  
27  1.4522   1.3101  
57  1.2697  1.1938  
85  1.2313  1.1612  
115 1.1956 1.1419  
143 1.1299  1.1321  

 

 
Figure 1Payoff function for one asset butterfly spread  

 

 
Figure 2Butterfly option simulation using adaptive 

explicit 
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Figure 3 Gamma plot for butterfly option 

 
Figure 4Time evolution for butterfly call option 
 

 
Figure 5Time evolution for gamma 
 
Acknowledgements:  

We are thankful to Prof.Dr.A.Q.M.Khaliq, 
Middle Tennessee State University, USA, for his 
cooperation in this research. 
 

Corresponding Author: 
Muhammad Ashraf 
Phd scholar Department of Mathematics  
Riphah International University  
Islamabad, Pakistan  
E-mail: muhammad.ashraf91@yahoo.com  
 
References 
1. M.ashraf, N.A, Mir, S.ahmad, 2012. Space Adaptive 

Technique To Solve Black-Scholes equation, Life 
Science Journal(accepted).  

2. A. Q. M. Khaliq, D. A. Voss and K. Kazmi, Adaptive 

 methods for pricing American options, J. 
Comput. Appl. Math. 
 2008:222 (1): 210-227. 

3. A.Q.M. Khaliq, D.A. Voss, M. Yousaf, Pricing exotic 
options with L-stable Pade Schemes, journal of 
Banking and Finance 2007:31: 3438-3461. 

4. B.A. Wade, A.Q.M. Khaliq, M. Yousuf, J. Vigo-
Aguiar, R. Deininger, On smoothing of the Crank--
Nicolson scheme and higher order schemes for pricing 
barrier options, J. Comput. Appl. Math. 2007: 204: 
144-158. 

5. Courtadon, G. A more accurate finite difference 
approximation for the valuation of Options. J. Fin. 
Quant. Anal. 
 1982: 17: 697--703. 

6. Duffy D.J. Finite difference methods in financial 
engineering .New York, John Wiley & Sons, 2006. 

7. F. Black ,M.S. Scholes, The pricing of options and 
corporate liabilities of Political Economy. 1973: 81: 
637-654. 

8.  G.D. Smith, Numerical Solution of Partial 
Differential Equation: Finite Difference Methods, 
Oxford University Press, London. 1985. 

9. G. Dura and Ana-Maria Mosneagu, 
Numerical approximation of Black-Scholes 
equation,Tomul LVI, f.1, 2010: 39-64. 

10. Zhu Y, Zhong X., Chen B., Zhang Z., Difference 
methods for initial-boundary-Value problems and flow 
around bodies. Springer and Science Press, Heidelberg 
1988. 

11. Zhongdi Cen, Anbo Le, A robust finite difference 
scheme for pricing American options with Singularity-
Separating method, Springer science and Busiess 
media, LLC 2009. 

12. Hongjoong Kim, Adaptive time-stepping hybrid finite 
difference method for pricing binary options, 
Bull.Korean Math.Soc. 2011: 48(2): 413-426. 

13.  J.C. Cox, S. Ross and M.Rubinstein, Option pricing 
:asimplified approach, J.Fin. Econ, 1979: 7:229-264. 

14.  P. Wilmott, S. Howison, J. Dewynne, The 
mathematics of financial derivatives, Cambridge 
University Press, 1996. 

 
2/9/2013  

0 5 10 15 20 25 30 35 40
-0.06

-0.04

-0.02

0

0.02

0.04

0.06


