
 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

3538 

The Proposal of Improved Component Selection Framework  
 

Weam Gaoud Alghabban, M. Rizwan Jameel Qureshi  
 

 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia 
weam_ghabban@yahoo.com, anriz@hotmail.com 

 
Abstract: Component selection is considered one of hard tasks in Component Based Software Engineering (CBSE). 
It is difficult to find the optimal component selection. CBSE is an approach that is used to develop a software system 
from pre-existing software components. Appropriate software component selection plays an important role in CBSE. 
Many approaches were suggested to solve component selection problem. In this paper the component selection is 
done by improving the integrated component selection framework by including the pliability metric. Pliability is a 
flexible measure that assesses software quality in terms of its components quality. The validation of this proposed 
solution is done through collecting a sample of people who answer an electronic questionnaire that composed of 20 
questions. The questionnaire is distributed through social sites such as Twitter, Facebook and emails. The result of 
the validation showed that using the integrated component selection framework with pliability metric is suitable for 
component selection. 
[Alghabban WG, Qureshi MRJ. The Proposal of Improved Component Selection Framework. Life Sci J 
2013;10(4):3538-3544]. (ISSN:1097-8135). http://www.lifesciencesite.com. 470 
  
Keywords: Component Based Software Engineering (CBSE); pliability; framework 
 
1. Introduction 

Component Based Software Engineering 
(CBSE) is concerned with selecting and designing 
components. It is centered on the idea of developing 
a system from pre-existing components. Designing a 
system by reusing existing components leads to faster 
time to market. However, finding the appropriate set 
of components that satisfy a set of requirements is 
becoming more difficult and has its challenges. That 
means the components must include enough 
information to allow designers to take decisions when 
selecting among components.   

Several researches have addressed these 
challenges by reducing the search space for 
component selection problem. One of these 
researches is integrated framework. According to 
(Calvert et al., 2011) this framework estimates 
whether a combination of components satisfy the 
system performance requirements by using system 
modeling and statistical analysis in the first phase. 
The second phase is the component selection phase. 
The pliability metric was produced (Pande et al., 
2013), which measures software quality as a function 
of individual components quality, is added to the 
framework in the first phase in order to enhance it.  

This paper's organization is as follow: 
Section 2 provides an overview of the literature. 
Section 3 defines the problem statement. The 
proposed solution for the problem is described in 
Section 4. Section 5 discusses the validation of the 
proposed solution by means of the questionnaire. 
Section 6 shows the results of questionnaire and 
statistical analysis. Finally the conclusion is 
presented in Section 7.  

2. Related Work  
Component-Based Software Engineering 

(CBSE) is an approach which concerned with 
selecting, composing and designing components. 
CBSE aims to develop software faster with better 
quality by using existing components. Selecting 
components from available component set which can 
satisfies a given set of requirements with low cost 
plays an important role to enhance the reusability and 
quality. For that, (Vescan, 2009) aimed to a selection 
approach that takes into consideration some attributes 
of components and the evaluation of them. He 
considered three attributes for the system which are 
cost, reusability and functionality and he defined 
metrics for these attributes. 

The existing components selection methods 
do not address specification of functional and non-
functional requirements. Component selection 
decision is important because the integration risks 
can be solved by the right selection of components. 
genetic algorithms based approach is proposed to 
solve the problem of component selection (Dixit and 
Saxena, 2009). 

Software modularity is used in CBSE 
development to enhance the comprehensibility and 
flexibility of software systems. A methodology is 
proposed to perform the optimal selection of software 
components for CBSE development based on a 
modified way of measuring the cohesion and 
coupling of software modules by using genetic 
algorithm (Kwong et al., 2010). Information and 
complexity theory can be examined to measure the 
cohesion and coupling of software modules. 



 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

3539 

Complex component selection problem can 
depend on dynamic environment and its 
characterization use more than one criterion. An 
approach is proposed (Vescan et al., 2011) to 
envisage both of these aspects. This approach uses 
principles of evolutionary computation and multi-
objective optimization. First, the problem is 
formulated as a multiple objective optimization 
problem having four objectives: used components 
number, new requirements number, provided 
interfaces number and the initial requirements 
number that are not in solution.  

Component selection process is not 
considering an easy task in CBSE. The cost of the 
component is considered, (Kaur and Mann, 2010), 
when selecting a component which is calculated on 
the basis of quality of component.  

Many of the previous researches focused on 
technical details of component selection while the 
internal management provided by the models is 
ignored. Also, some of researches have few formal 
techniques to consider compatibility and assembly of 
component selection. For that, (Tang et al., 2011) 
proposed an optimization model to solve the problem 
of component selection including reusability and 
compatibility at the same time. This model depends 
on genetic algorithm and that helps the developers to 
select components when they are working on 
multiple applications concurrently.  

A comparison of different methods is 
provided, (Fahmi and Choi, 2009), that already used 
for components selection. 

In CBSE, component selection is considered 
a main issue. After completing the requirement 
analysis and design phase of X model, developers 
start searching for optimal set of components that 
meet client's requirements and minimize the overall 
cost. A new algorithm is proposed (Tomar and Gill, 
2013)  to choose the optimal components from TCR 
and RCR. This algorithm depends on best-fit strategy 
and first-fit strategy for searching the components 
through SCSP and CCSP. 

Designing a system by using the existing 
components can reduces the time to market. But how 
to select the right components that meet the system 
requirements become harder job because components 
must have enough information that enable designers 
to take decisions when choosing between them. Also 
there is difficulty for designers to select between 
many components with similar functionalities but 
with different performance and quality.  For that, 
(Calvert et al., 2011) proposed a framework for 
components selection by using simulated annealing 
algorithm. 

Since CBSE includes reuse of components 
into new software, it aims to enhance software 

quality by improving functionality, security, cost and 
maintainability. There is a need to consider many 
different quality attributes in the final system. For 
that, (Pande et al., 2013) developed a flexible 
evaluation model to enable optimal component 
selection based on different quality metrics of 
component and cost. This model based on integer 
programming to maximize the pliability of the overall 
system by designing a metric called the pliability 
metric, which enhances component selection. 

Right selection components from 
components set plays important role for system 
successfully. For that, a comparison table is drawn, as 
shown in Table 1,  to present each component 
selection methods with its limitations.  
3. Problem Statement  

Selecting pre-existing software components 
that satisfy the client's requirements plays a critical 
role. A formal definition of the problem that 
addresses in this paper is as follow: consider the 
client's requirements and there is a set of components 
available for selection between them. Each 
component can satisfies a group of requirements. The 
question: "how to find a set of components that 
satisfy the requirements?" is considered one of the 
main problems related to the component selection 
and reuse. The next section describes the proposed 
solution for this problem. 
4. The Proposed Solution for Component Selection 
Problem 

Designing a system by reusing existing 
components can lead to a faster time to market. 
However, selection the optimum set of components 
from a component library that satisfies the functional 
and non-functional system requirements has its 
challenges. There are several approaches have 
addressed these challenges. Calvert et al. (2011) 
developed one approach which is integrated 
component selection framework. 

The system performance cannot be 
expressed by terms of its individual components' 
performance. That is because performance cannot be 
measured for each component in isolation, rather than 
it can be measured for the integrated system. For that, 
the framework uses system modeling and analysis, 
which is the first phase (Figure 1), to conclude the 
dependencies between system performance and 
components attributes. In the first phase, the 
regression analysis computes the dependency of 
system performance with attributes of individual 
components and probability analysis computes the 
probability of how can a certain component satisfy 
certain performance requirements. The outputs of this 
phase are regression equations and conditional 
probabilities which are used in the second phase 
(Calvert et al., 2011).  



 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

3540 

The second phase begins from the system 
requirements and specification. In the component 
filtering step, the search space is reducing by 
eliminating the components that do not satisfy the 
system specification constraints. Then, the selection 
algorithm is chosen from three algorithms which are 
greedy, intelligent greedy and simulated annealing 
algorithms. Each one of these algorithms produce a 
combination of components. Then, performance of 
this combination of components is estimated by using 

the output of phase 1 which is regression equations. 
Then, this proposed components performance is 
compared with giving system performance 
requirements. If it is satisfied the giving system 
performance requirements, then it will be as a 
recommended solution for the user. If not, the 
process loops back again and the selected algorithm 
generates another combination of components and 
the process continues (Calvert et al., 2011).  

Table 1. Comparison of brief related work  
Paper Title    Limitations 
A Metrics-Based Evolutionary Approach for the 
Component Selection Problem (Vescan, 2009). 

 Limitation is metrics that are used to select component 
based on three attributes: cost, reusability and 
functionality. 

 It is not specifying compatibility between two connected 
components. 

Software Component Retrieval Using Genetic 
Algorithms (Dixit and Saxena, 2009). 

 Limitation of this approach is retrieving component is 
expensive. 

Optimization of Software Components Selection 
for Component-Based Software System 
Development (Kwong et al., 2010). 

 Limitation of this methodology is that it includes 
judgments from software development teams to 
determine the interaction scores and function ratings. 

 
Paper Title    Limitations 
A Hybrid Evolutionary Multiobjective Approach 
for the Dynamic Component Selection Problem 
(Vescan et al., 2011). 

 This approach limitation is that it deals with simple 
problems without considering hierarchies of components. 

Component Selection for Component based 
Software Engineering (Kaur and Mann, 2010). 

 Limitation in this approach is that requirement 
specification may not detailed enough for evaluating 
OTSO software alternatives. 

 Case studies that carried out in this approach were 
relatively small and the evaluation processes and 
resulting criteria were extensive. 

An Optimization model for Software Component 
Selection under Multiple Applications 
Development (Tang et al., 2011). 

 Limitation of this model does not focus on functional and 
non functional requirements that should be considered 
simultaneously. 

 Customized genetic algorithm could not guarantee the 
optimal solution. 

A Study on Software Component Selection 
Methods (Fahmi and Choi, 2009). 

 This approach limitation is that there must be case base 
and database of components that do not have all cases. 

Algorithm for Component Selection to Develop 
Component-Based Software with X Model 
(Tomar and Gill, 2013). 

 Limitation of this approach is time and cost of 
development are high. 

 How to use it to develop component based software by 
choosing optimal set of components from X model 
repositories that meets client's requirements. 

An Integrated Component Selection Framework 
for System-Level Design (Calvert et al., 2011). 

 Limitation in this approach is that the number of  system 
requirements used in component selection is small. 

Optimal Component Selection for Component 
Based Software Development using Pliability 
Metric (Pande et al., 2013). 

 Limitation of this model is not include more quality 
metrics for components that are easy to calculate and 
more feasible to use. 

 One limitation is that how to devise a formal 
methodology for determining the relative weights to be 
assigned to the different quality metrics based on 
stakeholder input. 



 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

3541 

 
Figure 1. The proposed integrated component selection framework  

 
System performance is considered as an 

important perspective in the integrated component 
selection framework. Another robust perspective must 
be taken into consideration when performing 
component selection is that the software quality 
enhancement which is one aim of CBSE. The software 
quality can be achieved by improving maintainability, 
security, functionality, cost and other aspects. One 
important consideration is that many software quality 
attributes must be considered in the final system. 
Moreover, these quality attributes have different 
relative importance which depends on the software 
system type being developed. So, there is a need for 
an approach to enable the component selection based 
on the software quality importance. For that, a flexible 
metric which is pliability metric is used to evaluate 
software quality. Pande et al. (2013) produced the 
pliability metric that measures the software quality as 
a function of individual components quality while 
enabling the customer to define and prioritize the 
quality attributes that are important.  

This paper proposes an approach that can 
solve the components selection problem by integrating 
the pliability metric to the existing integrated 
component selection framework to improve its 

performance and utilize multiple dimensions of 
quality that enable flexibility for the system being 
designed. The software quality step is adding in the 
first phase (Figure 1). The total software quality 
measure, Q, can be defined based on a set of quality 
attributes which includes reliability, performance, 
fault tolerance, security, safety, availability, 
maintainability and testability. Other quality attributes 
which consider important can be included (Pande et 
al., 2013). So, the total software quality can be 
expressed as weighted linear combination of these 
attributes values as: 
Q= wRR + wPP+ wFF+ wSaSa+ wSeSe+ 
wAvAv+wTT+ wMM    
where, R= Reliability, P= Performance, F= Fault 
tolerance, Sa= Safety, Se= Security, Av= Availability, 
T= Testability, M= Maintainability. 

For each one of attributes, a weighted value 
is assigned and the sum of all weights is equal to 1 as: 
wR + wP+ wF+ wSa+ wSe+ wAv+wT+ wM = 1    

This metric provides a flexible way to assign 
weighted values for each attribute depending on 
software type. For example, in financial system, a 
high weighted value is assigned for security attribute. 
In ecommerce system, the performance, reliability, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

High level system 
modeling 

Component ranking 
with probability 

analysis 

Software 
quality 

System performance 
dependency estimation 
with regression analysis 

Component 
library 

System requirements 
and specification 

Final System 
Architecture 

Component filtering 

System Architecture 
Evaluation 

System 
Requirement

Satisfied? 

No 

Yes

System components selection 

 
Intelligent 

Greedy 
Greedy Simulated 

Annealing 

Phase 2: Component Selection 

 
Phase 1: System Modeling and Analysis 

 



 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

3542 

security, maintainability and availability attributes are 
considered important relative to other attributes. So, 
high weighted values can be assigned to them. 

It is important to normalize quality attribute 
measures so it allows comparing between them in a 
right way. For that, a normalized level, (qhi), for each 
quality attribute (h) contributed by a component (i) is 
defined. A normalized value from 0 to 10 can be 
calculated by this formula: 
 qhi= ((Raw QA (h, i)) / (Max (h)) × 10 
which is a ratio raw measured value of component (i) 
with respect to quality attribute (h) to maximum raw 
measured value of h attained by any component (i). 
By using this method, quality attributes measurements 
are normalized in a meaningful way.  

After calculating the total weighted 
normalized value, this value is used in component 
filtering step (Figure 1).  
5. Validation of the Proposed Solution 

In this paper the validation of the proposed 
solution is done by using an electronic questionnaire. 
The electronic questionnaire composes of 20 close 
ended questions divided into 3 goals and it is targeted 
to software engineering specialists. Questions were 
arranged according to their relevancy to defined goals. 
This questionnaire is distributed via social sites such 
as Twitter, Facebook and email. The total number of 
people who answered is 46 respondents which formed 
the study sample. The likert scale is used to answer 
the questionnaire (Table 2). 

 
Table 2. Likert scale 

1 Very low 
2 Low 
3 Nominal 
4 High 
5 Very high 

Once data is collected, a statistical analysis is 
applied on it. The analytic form is represented by 
using frequency tables and bar charts. The next 
section shows the results of questionnaire and 
statistical analysis. 
 6. Findings 

This section shows the results of statistical 
analysis for each goal. 
6.1 Cumulative Statistical Analysis of Goal 1 

Goal 1: need for effective 
framework/software that automatically selecting 
component especially when there are a large number 
of components. This goal covers questions that are 
related to selecting the right components among a 
large number of components is considered a major 
issue in component selection especially when this is 
done automatically rather than manually. As it is clear 
from the cumulative descriptive analysis of goal 1 that 
1.71% of respondents are very low agreed, 4.85% are 

low agreed, 22.57 % are neither agree nor disagree, 
41.57% of the them are high agreed and 29.28 % of 
them are very high agreed. 

The result of the analysis of the goal 1 is 
shown in (Table 3). 

 
Table 3. Cumulative statistical analysis of goal 1 

Q. No. Very low Low Nominal High Very high 
1 2% 11% 24% 35% 28% 
2 0% 2% 20% 48% 30% 
3 0% 2% 35% 48% 15% 
4 2% 0% 7% 39% 52% 
5 2% 4% 16% 35% 43% 
6 4% 11% 43% 42% 0% 
7 2% 4% 13% 44% 37% 
Total 12% 34% 158% 291% 205% 
Average 1.71% 4.85% 22.57% 41.57% 29.28% 

 
Figure 2. Graphical representation of goal 1 

 
6.2 Cumulative Statistical Analysis of Goal 2 

Goal 2: the proposed integrated component 
selection framework can improve and make a perfect 
selection of components. This goal covers questions 
that are related to the proposed integrated component 
selection framework if it can improve a perfect 
selection of components or not. As it is clear from the 
cumulative descriptive analysis of goal 2 that 1.87% 
of respondents are very low agreed, 4.25% are low 
agreed, 25.25% are neither agreed nor disagreed, 
44.87% are high agreed and 23.75% are very high 
agreed.  

The result of the analysis of the goal 2 is 
shown in (Table 4). 

 
Table 4. Cumulative analysis of goal 2  

Q. No. Very low Low Nominal High Very high 
8 2% 2% 15% 59% 22% 
9 9% 0% 13% 33% 45% 
10 2% 0% 9% 61% 28% 
11 0% 4% 22% 37% 37% 
12 0% 4% 30% 39% 27% 
13 0% 2% 39% 46% 13% 
14 2% 20% 46% 30% 2% 
15 0% 2% 28% 54% 16% 

Total 15% 34% 202% 359% 190% 
Average 1.87% 4.25% 25.25% 44.87% 23.75% 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

1 2 3 4 5

P
e

rc
e

n
ta

ge

Likert Scale



 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

3543 

 
Figure 3. Graphical representation of goal 2 

 
6.3 Cumulative Statistical Analysis of Goal 3 

Goal 3: user satisfaction by using proposed 
integrated component selection framework. This goal 
covers questions that are related to if the proposed 
integrated component selection framework satisfies 
the users or not. As it is clear from the cumulative 
descriptive analysis of goal 3 that 1.6% of respondents 
are very low agreed, 6.8% are low agreed, 32.6% are 
neither agreed nor disagreed, 43.6% are high agreed 
and 15.4% are very high agreed. 

The result of the analysis of the goal 3 is 
shown in (Table 5). 
6.4 Cumulative Statistical Analysis of 3 Goals 

The evaluation of 3 goals together showing 
that 1.75% are in favor of very low, 5.1% are 

supporting low, 26.15% are neither agreed nor 
disagreed, 43.4% are highly agreed and 23.60% are 
very highly agreed. 
 

Table 5. Cumulative analysis of goal 3  
Q. No. 

Very 
low 

Low Nominal High 
Very 
high 

16 0% 4% 28% 52% 16% 
17 4% 28% 46% 20% 2% 
18 0% 0% 41% 48% 11% 
19 2% 2% 41% 37% 18% 
20 2% 0% 7% 61% 30% 

Total 8% 34% 163% 218% 77% 
Average 1.6% 6.8% 32.6% 43.6% 15.4% 

 
 Figure 4. Graphical representation of goal 3 

 
The result of the analysis of the 3 goal is 

shown in (Table 6).  

 
Table 6. Cumulative analysis of 3 goals  

Q. No. Very low Low Nominal High Very high 
1 2% 11% 24% 35% 28% 
2 0% 2% 20% 48% 30% 
3 0% 2% 35% 48% 15% 
4 2% 0% 7% 39% 52% 
5 2% 4% 16% 35% 43% 
6 4% 11% 43% 42% 0% 
7 2% 4% 13% 44% 37% 
8 2% 2% 15% 59% 22% 
9 9% 0% 13% 33% 45% 
10 2% 0% 9% 61% 28% 
11 0% 4% 22% 37% 37% 
12 0% 4% 30% 39% 27% 
13 0% 2% 39% 46% 13% 
14 2% 20% 46% 30% 2% 
15 0% 2% 28% 54% 16% 
16 0% 4% 28% 52% 16% 
17 4% 28% 46% 20% 2% 
18 0% 0% 41% 48% 11% 
19 2% 2% 41% 37% 18% 
20 2% 0% 7% 61% 30% 
Total 35% 102% 523% 868% 472% 
Average 1.75% 5.1% 26.15% 43.4% 23.600% 
 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

1 2 3 4 5

P
e

rc
e

n
ta

ge

Likert Scale

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

1 2 3 4 5

P
e

rc
e

n
ta

ge
Likert Scale



 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

3544 

 
Figure 5. Graphical representation of 3 goals 

 
7. Conclusion  

The authors proposed a solution for one of 
the most problem related to components reuse. The 
proposed solution is improving the integrated 
component selection framework by adding the 
pliability metric that includes the software quality 
attributes in component selection. This proposed 
solution deals with selecting the appropriate 
components that satisfies the client's requirements. 
The questionnaire results reflect that the proposed 
solution improves the integrated component selection 
framework to select the suitable components. 
 
Corresponding Authors: 
Weam Gaoud Alghabban 
Graduate Student of Information Technology 
Faculty of Computing & Information Technology 
King Abdulaziz University, Jeddah 
E-mail: weam_ghabban@yahoo.com  
 
Dr. Rizwan Jameel Qureshi 
Assistant Professor of Information Technology, 
Faculty of Computing & Information Technology 
King Abdulaziz University, Jeddah 
E-mail: anriz@hotmil.com  
 
References 
1. Calvert C, Hamza-Lup GL, Agarwal A, Alhalabi 

B. An Integrated Component Selection 

Framework for System-Level Design. in Proc. 
4th Annu. IEEE Int. Syst. Conf.,  2011; 261–266. 

2. Pande J , Garcia CJ, Pant D. Optimal Component 
Selection for Component Based Software 
Development using Pliability Metric. ACM 
SIGSOFT Software Engineering Notes. January 
2013; Volume 38 Number 1. 

3. Vescan A. A Metrics-Based Evolutionary 
Approach for the Component Selection Problem. 
in Proc. Computer Modelling and Simulation, 
2009; 83-88. 

4. Dixit A, Saxena PC. Software Component 
Retrieval Using Genetic Algorithms. in Proc. 
International Conference on Computer and 
Automation Engineering, IEEE, 2009;151-155.  

5. Kwong CK, Mu LF, Tang JF, Luo XG. 
Optimization of Software Components Selection 
for Component-Based Software System 
Development. Journal of Computers and 
Industrial Engineering. Vol. 58, Jan 2010; 618-
624. 

6. Vescan A, Grosan C, Yang S. A Hybrid 
Evolutionary Multiobjective Approach for the 
Dynamic Component Selection Problem. in 
Proc. 11th International Conference on Hybrid 
Intelligent Systems (HIS), 2011; 714-721. 

7. Kaur A, Mann KS. Component Selection for 
Component based Software Engineering. 
International Journal of Computer Applications 
IJCA, vol. 2, 2010; 109-114. 

8. Tang JF, Mu LF, Kwong CK, Luo XG. An 
Optimization model for Software Component 
Selection under Multiple Applications 
Development. European Journal of Operational 
Research, 2011; 301–311. 

9. Fahmi SA, Choi H. A Study on Software 
Component Selection Methods. In 11th 
International Conference on Advanced 
Communication Technology, Feb 2009; 288-
292. 

10. Tomar P, Gill NS. New Algorithm for 
Component Selection to Develop Component-
Based Software with X Model. Lecture notes on 
Software Engineering,  Vol. 1, No. 3,  Aug 2013; 
298-302.  

 
 
12/22/2013 

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

1 2 3 4 5

P
er

ce
n

ta
ge

Likert Scale


