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1. Introduction 

       Integro-differential equations arise quite 

naturally in the study of many physical phenomena 

in life science and engineering, for example, 

equations of this form occur in the formulation of 

problems in reactor dynamics, in the study of the 

growth of biological population models and in the 

theory of automatic systems resulting in the delay-

differential equations, see for more details [1]. 

Many investigations have been carried out 

concerning the existence and uniqueness of solution 

of deterministic and stochastic integro-differential 

equations of Volterra type, see [2-5]. However, due 

to the complex nature of the problems being 

characterized by such equations, many authors, in 

the last few decades, pointed out that fractional 

stochastic models are very suitable for the 

description of properties of various real materials, 

e.g. polymers. It has been shown that new models 

are more adequate than previously integer-order 

models [6-8]. In many cases, it is better to have 

more initial information to obtain a good 

description of the evolution of a physical system. 

The local initial condition is replaced then by a 

nonlocal condition, which gives better effect than 

the initial condition, since the measurement given 

by a nonlocal condition is usually more precise than 

the only one measurement given by a local 

condition, see [9]. Therefore, in this paper we shall 

be concerned with extending the results in El-Borai 

et al. [10], William J. padgett and Chris P. Tsokos 

[5]. That is, we shall consider a nonlinear stochastic 

perturbed factional integro-differential equation of 

Volterra-Itô type of the form: 

 
𝜕𝛼𝑥 𝑡;𝜔 

𝜕𝑡𝛼
=

𝑕 𝑡, 𝑥 𝑡; 𝜔  +  𝑘1 𝑡, 𝜏; 𝜔 
𝑡

0
𝑓1 𝜏, 𝑥 𝜏; 𝜔  𝑑𝜏 +

 𝑘2 𝑡, 𝜏; 𝜔 
𝑡

0
𝑓2 𝜏, 𝑥 𝜏; 𝜔  𝑑𝛽 𝜏                      (1.1)  

with the nonlocal condition 

𝑥 0;𝜔 +  𝑐𝑖𝑥 𝑡𝑖 , 𝜔 

𝑝

𝑖=1

= 𝑥0 𝜔                                     1.2  

where 0 < 𝛼 ≤ 1, 𝑡 ∈ 𝑅+ =  0,∞ , 0 < 𝑡1 <  … <
 𝑡𝑝 < ∞. The fractional derivative is provided by the 

Caputo derivative and  

 

(i) 𝜔 ∈ 𝛺,  the supporting set of a probability 

measure space  𝛺,𝒜, 𝑃  ; 
(ii) 𝑥 𝑡; 𝜔  is the unknown stochastic process for 

𝑡 ∈ 𝑅+; 
(iii) 𝑕 𝑡, 𝑥  is called the stochastic perturbing term 

and it is a scalar function of 𝑡 ∈ 𝑅+ and 𝑥 ∈ 𝑅 ; 
(iv) 𝑘1 𝑡, 𝜏; 𝜔 ,  𝑘2 𝑡, 𝜏; 𝜔  are scalar stochastic 

kernels defined for 𝑡  and 𝜏  satisfying 0 ≤ 𝜏 ≤ 𝑡 <
∞ ;  
(v) 𝑓1 𝑡, 𝑥 , 𝑓2 𝑡, 𝑥  are scalar functions of 𝑡 ∈
𝑅+, 𝑥 ∈ 𝑅 to be specified later; 

(vi) 𝛽 𝑡  is a stochastic process to be defined later. 

  

       The purpose of this paper is to obtain the 

conditions which guarantee the existence and 

uniqueness of random solution 𝑥 𝑡;𝜔  of the 

problem  1.1 ,  1.2  and to investigate the 

asymptotic moment behavior of such a random 

solution. In addition, the usefulness of the results 

will be illustrated with an application to fractional 

stochastic feedback system. Equations (1.1), (1.2) 

generalize the results of El-Borai et al. [10], and the 
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results of Padgett and Tsokos [5]. The considered 

nonlocal Cauchy problem (1.1), (1.2) consists of 

two parts, the first integral being a lebesgue integral 

and the second a stochastic integral of the Itô-Doob 

type. In our work we shall utilize the spaces of 

functions and admissibility theory which were 

introduced into the study of stochastic integral 

equations by Tsokos [11]. The nonlocal Cauchy 

problem (1.1), (1.2) has applications in many fields 

such as electromagnetic theory, viscoelasticity, and 

fluid mechanics [12-13]. 

 

2. Preliminaries 

       Let  𝛺,𝒜, 𝑃  denotes a probability measure 

space, that is 𝛺  is a nonempty set known as the 

sample space, 𝒜 is a sigma-algebra of subsets of 𝛺, 

and 𝑃 is a complete probability measure on 𝒜. Let 

𝐿2 𝛺,𝒜, 𝑃   be the space of all random 

variables  𝑥 𝑡;𝜔 ,  𝑡 ∈ 𝑅+,  which have a second 

moment with respect to 𝑃-measure for each 𝑡 ∈ 𝑅+.  

That is: 𝐸  𝑥 𝑡; 𝜔  2 =   𝑥 𝑡; 𝜔  2 𝑑𝑝 𝜔  
 

𝛺
< ∞ .  

The norm of 𝑥 𝑡; 𝜔  in 𝐿2 𝛺,𝒜, 𝑃  is 

defined for each  𝑡 ∈ 𝑅+  by:   𝑥 𝑡;𝜔  =

   𝐸  𝑥 𝑡; 𝜔  
2  

1
2 .  

Let 𝐿∞ 𝛺,𝒜, 𝑃   be the space of all 

measurable and 𝑃 -essentially bounded random 

variables of 𝜔 ∈ 𝛺 . The norm of 𝑘 𝑡, 𝜏; 𝜔  in 

𝐿∞ 𝛺,𝒜, 𝑃   will be defined by:   𝑘 𝑡, 𝜏; 𝜔   =
𝑃 − 𝑒𝑠𝑠 𝑠𝑢𝑝𝜔∈𝛺  𝑘 𝑡, 𝜏; 𝜔  . With respect to the 

random process 𝛽 𝑡 , we shall assume that 𝛽 𝑡  is 

adapted to the filtration  𝒜𝑡 𝑡≥0  which is an 

increasing family of sub sigma-algebras 𝒜𝑡 ⊂ 𝒜. 
furthermore, we shall assume that:  

(i)  The process  𝛽 𝑡 ,  𝒜𝑡 , 0 ≤ 𝑡 < ∞  is a real 

martingale. 

(ii) There is a continuous monotone nondecreasing 

function 𝐹 𝑡  on 𝑅+,  such that, if 𝑠 < 𝑡,  then 
𝐸  𝛽 𝑡; 𝜔 − 𝛽 𝑠;𝜔  2 = 𝐸  𝛽 𝑡; 𝜔 − 𝛽 𝑠;𝜔  2 \
𝒜𝑠  = 𝐹 𝑡 − 𝐹 𝑠    𝑃 − 𝑎. 𝑒. 
 

Note that: 

If 𝐹 𝑡 = 𝑐𝑡 , 𝑐 is a constant, with almost 

all its sample functions are continuous, then 𝛽 𝑡  is 

a Brownian motion process, (see [14], pp. 436-437), 

and this is the most important special case. 

 

Definition 2.1 

We define the space 

𝐶𝑐 = 𝐶𝑐 𝑅+, 𝐿2 𝛺,𝒜, 𝑃    to be the space of all 

continuous functions  𝑥 𝑡; 𝜔  from 𝑅+  into 

𝐿2 𝛺,𝒜, 𝑃  , such that for each 𝑡 ∈ 𝑅+ , 𝑥 𝑡; 𝜔  is 

𝒜𝑡-measurable.  

We define a topology in the space 𝐶𝑐  by 

means of the following family of seminorms: 

 𝑥 𝑡; 𝜔  𝑛 = 𝑠𝑢𝑝0≤𝑡≤𝑛   𝑥 𝑡; 𝜔    
 ,

𝑛 = 1,2,3, …  
        It is known that this topology is metrizable and 

the space 𝐶𝑐  is Frechet space. 

 

Definition 2.2  

We define the space 

𝐶𝑔 = 𝐶𝑔 𝑅+, 𝐿2 𝛺,𝒜, 𝑃    to be the space of all 

continuous functions from 𝑅+  into 𝐿2 𝛺,𝒜, 𝑃  , 

such that there exist a constant 𝑎 > 0 and a positive 

continuous function 𝑔 𝑡  on 𝑅+ satisfying 
  𝑥 𝑡; 𝜔   ≤ 𝑎 𝑔 𝑡 . The norm in 

𝐶𝑔 𝑅+, 𝐿2 𝛺,𝒜, 𝑃    will be defined by:  

  𝑥 𝑡; 𝜔  𝐶𝑔 = 𝑠𝑢𝑝𝑡∈𝑅+ 
  

  𝑥 𝑡; 𝜔   

𝑔 𝑡 
 . 

Definition 2.3 

We define the space 

𝐶 = 𝐶 𝑅+, 𝐿2 𝛺,𝒜, 𝑃    to be the space of all 

continuous and bounded functions on 𝑅+ with 

values in 𝐿2 𝛺,𝒜, 𝑃  , that is, 𝐶 is the space of all 

second order stochastic processes on 𝑅+ which are 

bounded and continuous in mean square. The norm 

in 𝐶 is defined by: 

 𝑥 𝑡; 𝜔  𝐶 = 𝑠𝑢𝑝𝑡∈𝑅+
  𝑥 𝑡;𝜔     < ∞  

It is clear that 𝐶, 𝐶𝑔  are Banach spaces 

and the following inclusion hold: 𝐶 ⊂ 𝐶𝑔 ⊂ 𝐶𝑐  . 

  

Definition 2.4  

The pair of Banach spaces  𝐵, 𝐷  with 

𝐵, 𝐷 ⊂  𝐶𝑐  is said to be admissible with respect to 

the operator 𝑇: 𝐶𝑐 → 𝐶𝑐  if and only if 𝑇 𝐵 ⊂ 𝐷. 
 

Definition 2.5 

The Banach space 𝐵 is said to be stronger 

than 𝐶𝑐 ,  if every convergent sequence in 𝐵 , with 

respect to its norm, will also converge in 𝐶𝑐 . (but the 

converse is not true in general). 

 

Definition 2.6 

We call 𝑥 𝑡; 𝜔  a random solution of the 

equation (1.1) if 𝑥 𝑡; 𝜔 ∈ 𝐶𝑐  for each 𝑡 ∈ 𝑅+, 
satisfies the equation (1.1) for every 𝑡 > 0  and 

satisfies the nonlocal initial condition almost surely.  

         

We now state the following lemma which 

is given by Tsokos [4]. 

 

Lemma 2.1  

Let 𝑇  be a continuous linear operator 

from 𝐶𝑐 𝑅+, 𝐿2 𝛺,𝒜, 𝑃    into itself, if 𝐵 and 𝐷 are 

Banach spaces stronger than 𝐶𝑐  and if  𝐵, 𝐷  is 

admissible with respect to 𝑇, then 𝑇 is a continuous 

linear operator from 𝐵 into 𝐷.  
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3. Main results 

      Using the definitions of the fractional 

derivatives and integrals, it is suitable to rewrite the 

considered problem in the form: 
 𝑥 𝑡; 𝜔 

= 𝑥 0;𝜔  +
1

Γ 𝛼 
  𝑡 − 𝜏 𝛼−1

𝑡

0

𝑕 𝜏, 𝑥 𝜏; 𝜔  𝑑𝜏 

+
1

Γ 𝛼 
   𝑡 − 𝑠 𝛼−1 𝑘1 𝑠, 𝜏; 𝜔 

𝑠

0

𝑓1 𝜏, 𝑥 𝜏; 𝜔  𝑑𝜏𝑑𝑠   

𝑡

0

+
1

Γ 𝛼 
   𝑡 − 𝑠 𝛼−1𝑘2 𝑠, 𝜏; 𝜔 

𝑠

0

𝑓2 𝜏, 𝑥 𝜏; 𝜔  𝑑𝛽 𝜏 𝑑𝑠

𝑡

0

 

 

Changing the order of integration (note 

that: the assumptions on the functions  𝑘2  and 𝑓2 

permit this operation on the last integral and the 

proof is essential the same as the one given in ([14], 

pp.430-431) 
𝑥 𝑡; 𝜔 

= 𝑥 0;𝜔  +
1

Γ 𝛼 
  𝑡 − 𝜏 𝛼−1

𝑡

0

𝑕 𝜏, 𝑥 𝜏; 𝜔  𝑑𝜏 

+
1

Γ 𝛼 
 𝑲𝟏 𝑡, 𝜏; 𝜔 𝑓1 𝜏, 𝑥 𝜏; 𝜔  𝑑𝜏   

𝑡

0

+
1

Γ 𝛼 
 𝑲𝟐 𝑡, 𝜏; 𝜔 𝑓2 𝜏, 𝑥 𝜏; 𝜔  𝑑𝛽 𝜏               3.1  

𝑡

0

 

Where 

𝑲𝟏 𝑡, 𝜏; 𝜔 =   𝑡 − 𝑠 𝛼−1𝑘1 𝑠, 𝜏; 𝜔 𝑑𝑠          3.2 

𝑡

𝜏

 

𝑲𝟐 𝑡, 𝜏; 𝜔 =   𝑡 − 𝑠 𝛼−1𝑘2 𝑠, 𝜏; 𝜔 𝑑𝑠     3.3 

𝑡

𝜏

 

Now define the integral operators 𝑇1 , 𝑇2 

and 𝑇3 on 𝐶𝑐 𝑅+, 𝐿2 𝛺,𝒜, 𝑃    as follows: 

 𝑇1𝑥  𝑡; 𝜔 =
1

Γ 𝛼 
  𝑡 − 𝜏 𝛼−1𝑥 𝜏;𝜔 𝑑𝜏           3.4 

𝑡

0

 

 𝑇2𝑥  𝑡; 𝜔 =
1

Γ 𝛼 
 𝑲𝟏 𝑡, 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝜏           3.5 

𝑡

0

 

 𝑇3𝑥  𝑡; 𝜔 =
1

Γ 𝛼 
 𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝛽 𝜏        3.6 

𝑡

0

 

In lemma (3.1) in [10], El-Borai et al. 

proved that 𝑇1  is continuous operator from 𝐶𝑐  into 

𝐶𝑐  . Now we shall prove a lemma concerning the 

continuity of 𝑇2  and 𝑇3  as mappings from 

𝐶𝑐 𝑅+ , 𝐿2 𝛺,𝒜, 𝑃    into itself. 

 

Lemma 3.1  
Suppose that  

(i) The functions 𝑘1 𝑡, 𝜏; 𝜔  and 𝑘2 𝑡, 𝜏; 𝜔  are 𝒜𝜏  

measurable and 𝑃 -ess bounded for each 𝑡, 𝜏 

satisfying 0 ≤ 𝜏 ≤ 𝑡 < ∞; 
(ii) 𝑘1 𝑡, 𝜏; 𝜔  and 𝑘2 𝑡, 𝜏; 𝜔 are continuous as 

maps from ∆=   𝑡, 𝜏 : 0 ≤ 𝜏 ≤ 𝑡 < ∞  into 

𝐿∞ 𝛺,𝒜, 𝑃  . 
Then the operators 𝑇2  and 𝑇3  defined by 

the equation  3.5  and  3.6  are continuous 

mappings from the space 𝐶𝑐 𝑅+ , 𝐿2 𝛺,𝒜, 𝑃    into 

itself. 

 

Proof:  

The assertion about 𝑇2  follows from 

lemma (3.2) in El-Borai et al. [10]. Hence, we shall 

only prove the assertion regarding the operator 𝑇3 . 
Step1, we shall show that 𝑇3: 𝐶𝑐 → 𝐶𝑐  . 

We need to prove that   𝑇3𝑥  𝑡; 𝜔 ∈
𝐿2 𝛺,𝒜, 𝑃   and is continuous function in mean 

square sense for each  𝑡 ∈ 𝑅+ .  By the same way 

which was used in lemma (3.2) in El-Borai et al. 

[10], it is easy to prove that the assumptions (i),(ii) 

on 𝑘2 𝑡, 𝜏; 𝜔  imply that 𝑲𝟐 𝑡, 𝜏; 𝜔 ∈ 𝐿∞ 𝛺,𝒜, 𝑃 , 
also for each  𝑡, 𝜏 ∈ ∆,𝑲𝟐 𝑡, 𝜏; 𝜔  is 𝒜𝜏  

measurable and is a continuous map from ∆  into 

𝐿∞ 𝛺,𝒜, 𝑃 , hence for each 𝑥 𝑡; 𝜔 ∈ 𝐶𝑐  and for 

each 𝑡 , the function 𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏; 𝜔  is 𝑑𝜏𝑑𝑃 

measurable and  
  𝑇3𝑥  𝑡; 𝜔  

2 

=
1

 Γ 𝛼  2
  𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝛽 𝜏  

𝑡

0

 

2

    

≤
1

 Γ 𝛼  2
   𝑲𝟐 𝑡, 𝜏; 𝜔   𝟐 𝑥 𝜏; 𝜔  2𝑑𝐹 𝜏  < ∞ 

𝑡

0

 

 

Thus, the stochastic kernel in  3.6  is well 

defined, and  𝑇3𝑥  𝑡; 𝜔 ∈ 𝐿2 𝛺,𝒜, 𝑃 .  Now it 

remains only to prove that 𝑇3  is continuous in the 

mean square sense for each 𝑡 ∈ 𝑅+ as follow:  

Let 𝑥 𝑡;𝜔 ∈ 𝐶𝑐  , 0 ≤ 𝑡1 < 𝑡2 , 𝑡1, 𝑡2 ∈
 0, 𝑛 ⊂ 𝑅+, then 

 
   𝑇3𝑥  𝑡2; 𝜔 −  𝑇3𝑥  𝑡1; 𝜔  2 

≤
1

 Γ 𝛼  2
  𝑲𝟐 𝑡2, 𝜏; 𝜔 𝑥 𝜏; 𝜔 𝑑𝛽 𝜏 

𝑡2

0

− 𝑲𝟐 𝑡1, 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝛽 𝜏  

𝑡1

0

 

2

 

=
1

 Γ 𝛼  2
   𝑲𝟐 𝑡2, 𝜏; 𝜔 − 𝑲𝟐 𝑡1 , 𝜏; 𝜔  𝑥 𝜏; 𝜔 𝑑𝛽 𝜏 

𝑡1

0

+  𝑲𝟐 𝑡2, 𝜏; 𝜔 𝑥 𝜏; 𝜔 𝑑𝛽 𝜏  

𝑡2

 𝑡1

 

2

 

Using the inequality  𝐴 + 𝐵 2 ≤ 2 𝐴2 + 𝐵2 , yields 
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  𝑇3𝑥  𝑡2; 𝜔 −  𝑇3𝑥  𝑡1; 𝜔  2 

≤
2

 Γ 𝛼  2
   𝑲𝟐 𝑡2, 𝜏; 𝜔 

𝑡1

0

−𝑲𝟐 𝑡1, 𝜏; 𝜔  𝑥 𝜏; 𝜔 𝑑𝛽 𝜏   

2

+
2

 Γ 𝛼  2
  𝑲𝟐 𝑡2, 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝛽 𝜏  

𝑡2

𝑡1

 

2

    

 
Appling Itô-Doob Isometry, yields 

 

≤
2

 Γ 𝛼  2
   𝑲𝟐 𝑡2, 𝜏; 𝜔 

𝑡1

0

− 𝑲𝟐 𝑡1, 𝜏; 𝜔   2.  𝑥 𝜏;𝜔  𝟐𝑑𝐹 𝜏   

+
2

 Γ 𝛼  2
    𝑲𝟐 𝑡2, 𝜏; 𝜔   2.  𝑥 𝜏; 𝜔  𝟐𝑑𝐹 𝜏    

𝑡2

𝑡1

 

≤
2

 Γ 𝛼  2
 𝑥 𝑡; 𝜔  𝑛

2    𝑲𝟐 𝑡2, 𝜏; 𝜔 

𝑡1

0

− 𝑲𝟐 𝑡1, 𝜏; 𝜔   2𝑑𝐹 𝜏   

+
2

 Γ 𝛼  2
 𝑥 𝑡; 𝜔  𝑛

2     𝑲𝟐 𝑡2, 𝜏; 𝜔   2 𝑑𝐹 𝜏  

𝑡2

𝑡1

 

→ 0, as 𝑡1 → 𝑡2  
Since 𝑲𝟐  is continuous from ∆=   𝑡, 𝜏 : 0 ≤ 𝜏 ≤
𝑡 < ∞  into 𝐿∞ 𝛺,𝒜, 𝑃  , and 𝐹 is continuous, then 

𝑇3 is continuous in the mean square sense for each 

𝑡 ∈ 𝑅+, and hence, 𝑇3: 𝐶𝑐 → 𝐶𝑐  . 
Step2, we shall show that 𝑇3: 𝐶𝑐 → 𝐶𝑐  is a 

continuous operator as follow:  

Let 𝑥 𝑡; 𝜔 ∈ 𝐶𝑐 , then  
  𝑇3𝑥  𝑡; 𝜔  

2 

=
1

 Γ 𝛼  2
   𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝛽 𝜏  

𝑡

0

 

2

𝑑𝑃

 

𝛺

 

 

Appling Itô-Doob Isometry, yields 

   ≤
1

 Γ 𝛼  2
    𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏; 𝜔  𝟐𝑑𝐹 𝜏 

𝑡

0

 𝑑𝑃

 

𝛺

 

   ≤
1

 Γ 𝛼  2
    𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏; 𝜔  𝟐

 

𝛺

𝑑𝑃 𝑑𝐹 𝜏 

 𝑡

0

 

   ≤
1

 Γ 𝛼  2
   𝑲𝟐 𝑡, 𝜏; 𝜔   𝟐.  𝑥 𝜏; 𝜔  2𝑑𝐹 𝜏  

 𝑡

0

 

   ≤
1

 Γ 𝛼  2
 𝑥 𝑡; 𝜔  𝑛

2    𝑲𝟐 𝑡, 𝜏; 𝜔   𝟐 𝑑𝐹 𝜏   

 𝑡

0

 

Now, 

  𝑇3𝑥  𝑡; 𝜔  
 

≤
1

Γ 𝛼 
 𝑥 𝑡; 𝜔  𝑛

     𝑲𝟐 𝑡, 𝜏; 𝜔   𝟐 𝑑𝐹 𝜏 

 𝑡

0

 

1
2

 

Thus,  

   𝑇3𝑥  𝑡; 𝜔   𝑛 = 𝑠𝑢𝑝0≤𝑡≤𝑛 𝑇3𝑥  𝑡; 𝜔          

≤
 1

Γ 𝛼 
 𝑥 𝑡; 𝜔  𝑛

 

 
 

 

𝑠𝑢𝑝0≤𝑡≤𝑛     𝑲𝟐 𝑡, 𝜏; 𝜔   𝟐 𝑑𝐹 𝜏 

 𝑡

0

 

1
2

 
 

 

  

 ≤ 𝑁𝟏 𝑥 𝑡; 𝜔  𝑛
   

 
where 𝑁𝟏  is a constant depends upon 𝑛  and 𝛼 . 

Since  𝑲𝟐 𝑡, 𝜏; 𝜔    is continuous, it follows that 

𝑇3 is continuous operator from 𝐶𝑐  into 𝐶𝑐 , (see [15] 

p. 42). Hence the required results. 

       Now let the operators 𝑇1 , 𝑇2 and 𝑇3  be defined 

by equations  3.4 ,  3.5  and  3.6  respectively, 

and let 𝐵, 𝐷 ⊂  𝐶𝑐 𝑅+, 𝐿2 𝛺,𝒜, 𝑃   be Banach 

spaces stronger than 𝐶𝑐 , such that  𝐵, 𝐷  is 

admissible with respect to each of the operators 

𝑇1 , 𝑇2 and 𝑇3 . Then, It follows from lemma (2.1), 

that 𝑇1 , 𝑇2 and 𝑇3  are continuous from 𝐵  into 𝐷 , 

hence there exist constants 𝑀1, 𝑀2 ,and 𝑀3 such that  
  𝑇𝑖𝑥  𝑡; 𝜔  𝐷 ≤

 𝑀𝑖 𝑥 𝑡; 𝜔  𝐵         𝑖 = 1,2,3  

         

The infimum of such constants 𝑀1 , 𝑀2 , 

and 𝑀3 is called the norm of the operators 𝑇1 , 𝑇2and 

𝑇3 respectively. 

In what follow we shall assume that 

𝑓1 and 𝑓2  are maps from 𝐶𝑐  into 𝐶𝑐  and that 

𝑘1 𝑡, 𝜏; 𝜔  and 𝑘2 𝑡, 𝜏; 𝜔  satisfy the conditions of 

lemma (3.1). 

 

Lemma 3.2 

Assume that  𝑐𝑖 ≠ −1,
𝑝
𝑖=1  then the 

nonlocal Cauchy problem  1.1 ,  1.2  is equivalent 

to the following integral equation 

𝑥 𝑡; 𝜔 = 𝐴𝑥0 𝜔 − 𝐴   𝑐𝑖

𝑝

𝑖=1

  𝑇1𝑖𝑕𝑥  𝑡𝑖 , 𝜔 

+  𝑇2𝑖𝑓1𝑥  𝑡𝑖 , 𝜔 

+  𝑇3𝑖𝑓2𝑥  𝑡𝑖 , 𝜔    

+ 𝑇1𝑕𝑥  𝑡; 𝜔 +  𝑇2𝑓1𝑥  𝑡; 𝜔 +  𝑇3𝑓2𝑥  𝑡; 𝜔    3.7  
where 

𝐴 =  1 +  𝑐𝑖

𝑝

𝑖=1  

 

−1

 



Life Science Journal 2013;10(4)                                                    http://www.lifesciencesite.com 

http://www.lifesciencesite.com     3372                                                   lifesciencej@gmail.com 

 𝑇1 , 𝑇2  and 𝑇3  are defined by  3.4 ,  3.5  and  3.6  
respectively and 

  𝑇1𝑖𝑥  𝑡𝑖 ; 𝜔 =
1

Γ 𝛼 
  𝑡𝑖 − 𝜏 𝛼−1𝑥 𝜏;𝜔 𝑑𝜏    

𝑡𝑖

0

 

   𝑇2𝑖𝑥  𝑡𝑖 ; 𝜔 =
1

Γ 𝛼 
 𝑲𝟏 𝑡𝑖 , 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝜏  

𝑡𝑖

0

 

 𝑇3𝑖𝑥  𝑡; 𝜔 =
1

Γ 𝛼 
 𝑲𝟐 𝑡𝑖 , 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝛽 𝜏   

𝑡𝑖

0

 

𝑖 = 1,2, …… . 𝑝 

The proof is analogous to that of lemma 

(3.3) in El-Borai et al. [10] and hence omitted. 

        We now go to the following existence theorem. 

 
Theorem 3.1 

Suppose the integral equation  1.1  
satisfies the following conditions: 

(i) 𝐵 and 𝐷 are Banach spaces stronger than 𝐶𝑐  and 

the pair  𝐵, 𝐷  is admissible with respect to each of 

the operators, 𝑇1 , 𝑇2  and 𝑇3  defined by  3.4 ,  3.5  
and  3.6  respectivly;  

(ii)  𝑥 𝑡; 𝜔 → 𝑕 𝑡, 𝑥 𝑡; 𝜔   is an operator on  

𝑆 =  𝑥 𝑡; 𝜔 ∈ 𝐷:  𝑥 𝑡; 𝜔  𝐷 ≤ 𝜌 , with values in 

𝐵 satisfying: 

 𝑕 𝑡, 𝑥 𝑡; 𝜔  − 𝑕 𝑡, 𝑦 𝑡; 𝜔   
𝐵

 

≤ 𝜆1 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐷  

for 𝑥 𝑡; 𝜔 , 𝑦 𝑡; 𝜔 ∈ 𝑆  and 𝜌 > 0, 𝜆1 > 0  are 

constants;  

(iii) 𝑥 𝑡; 𝜔 → 𝑓1 𝑡, 𝑥 𝑡; 𝜔   is an operator on 𝑆 

with values in 𝐵 satisfying: 

 𝑓1 𝑡, 𝑥 𝑡; 𝜔  − 𝑓1 𝑡, 𝑦 𝑡; 𝜔   𝐵 

≤ 𝜆2 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐷 
 for 𝑥 𝑡;𝜔 , 𝑦 𝑡; 𝜔 ∈ 𝑆 and 𝜆2 > 0 constant; 

(iv) 𝑥 𝑡; 𝜔 → 𝑓2 𝑡, 𝑥 𝑡; 𝜔   is an operator on 𝑆 

with values in 𝐵 satisfying: 

 𝑓2 𝑡, 𝑥 𝑡; 𝜔  − 𝑓2 𝑡, 𝑦 𝑡; 𝜔   
𝐵

 

≤ 𝜆3 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐷 

for 𝑥 𝑡; 𝜔 , 𝑦 𝑡; 𝜔 ∈ 𝑆 and 𝜆3 > 0 constant; 

(v) 𝑘1 𝑡, 𝜏; 𝜔  and 𝑘2 𝑡, 𝜏; 𝜔  satisfy the conditions 

of lemma (3.1) 

(vi) 𝑥0 𝜔 ∈ 𝐷. 
Then there exists a unique random solution 

𝑥 𝑡; 𝜔 ∈ 𝑆 of equation  1.1 , provided that: 

  𝑀1𝜆1 + 𝑀2𝜆2 + 𝑀3𝜆3  1 +  A   𝑐𝑖  

𝑝

𝑖=1

   < 1 

   A  𝑥0 𝜔  𝐷 + 𝑀1 𝑕 𝑡, 0  𝐵  1 +  A   𝑐𝑖 

𝑝

𝑖=1

 + 

 𝑀2 𝑓1 𝑡, 0  𝐵 + 𝑀3 𝑓2 𝑡, 0  𝐵  1 +  A   𝑐𝑖 

𝑝

𝑖=1

  

≤ 𝜌 1 −  𝑀1𝜆1 + 𝑀2𝜆2 + 𝑀3𝜆3  1 +  A   𝑐𝑖 

𝑝

𝑖=1

   

where 𝑀1  and 𝑀2  and 𝑀3  are the norms of 𝑇1 , 𝑇2 

and 𝑇3, respectively. 

 

Proof:  

By condition (i) and lemmas (3.1) in [10], 

(2.1), and (3.1), 𝑇1 , 𝑇2 and 𝑇3 are continuous from 𝐵 

into 𝐷. Hence, their norms 𝑀1 and 𝑀2 and 𝑀3 exist. 

Define the operator 𝑈: 𝑆 → 𝐷 by  
 𝑈𝑥  𝑡; 𝜔 = A𝑥0 𝜔 +  𝑇1𝑕𝑥  𝑡; 𝜔 +  𝑇2𝑓1𝑥  𝑡; 𝜔 

+  𝑇3𝑓2𝑥  𝑡; 𝜔  

      − A 𝑐𝑖

𝑝

𝑖=1

  𝑇1𝑖𝑕𝑥  𝑡𝑖 , 𝜔 +  𝑇2𝑖𝑓1𝑥  𝑡𝑖 , 𝜔 

+  𝑇3𝑖𝑓2𝑥  𝑡𝑖 , 𝜔   
  3.8  

We must show that 𝑈 𝑆 ⊂ 𝑆 and that the 

operator 𝑈 is a contraction operator on 𝑆. Then, we 

may apply Banach’s fixed-point theorem to obtain 

the existence of a unique random solution. 

Let 𝑥 𝑡;𝜔 ∈ 𝑆,  then take the norm of 
 3.8 , we get  

  𝑈𝑥  𝑡; 𝜔  𝐷 ≤  A𝑥0 𝜔  D +   𝑇1𝑕𝑥  𝑡; 𝜔  𝐷  

+  𝑇2𝑓1𝑥  𝑡; 𝜔  𝐷 +   𝑇3𝑓2𝑥  𝑡; 𝜔  𝐷  

+ −A 𝑐𝑖  𝑇1𝑖𝑕𝑥  𝑡𝑖 ; 𝜔 +  𝑇2𝑖𝑓𝑥  𝑡𝑖 ; 𝜔 

𝑝

𝑖=1

+  𝑇3𝑖𝑓2𝑥  𝑡𝑖 , 𝜔   

𝐷 

 

≤  A  𝑥0 𝜔  𝐷 +   𝑇1𝑕𝑥  𝑡; 𝜔  𝐷 

+  𝑇2𝑓1𝑥  𝑡; 𝜔  𝐷+  𝑇3𝑓2𝑥  𝑡; 𝜔  𝐷 

+ A   𝑐𝑖    𝑇1𝑖𝑕𝑥  𝑡𝑖 ; 𝜔  𝐷

𝑝

𝑖=1

 

+ A   𝑐𝑖    𝑇2𝑖𝑓1𝑥  𝑡𝑖 ; 𝜔  𝐷

𝑝

𝑖=1

 

+ A   𝑐𝑖    𝑇3𝑖𝑓2𝑥  𝑡𝑖 , 𝜔  𝐷

𝑝

𝑖=1

 

≤  A  𝑥0 𝜔  𝐷 +  𝑀1 𝑕 𝑡, 𝑥 𝑡; 𝜔   𝐵 

+ A   𝑐𝑖 𝑀1 𝑕 𝑡𝑖 , 𝑥 𝑡𝑖 ; 𝜔   𝐵

𝑝

𝑖=1

 

+ A   𝑐𝑖 𝑀2 𝑓1 𝑡𝑖 , 𝑥 𝑡𝑖 ; 𝜔   𝐵

𝑝

𝑖=1

 

+ A   𝑐𝑖 𝑀3 𝑓2 𝑡𝑖 , 𝑥 𝑡𝑖 ; 𝜔   𝐵

𝑝

𝑖=1

 

+𝑀2 𝑓1 𝑡, 𝑥 𝑡; 𝜔   𝐵 + 𝑀3 𝑓2 𝑡, 𝑥 𝑡; 𝜔   𝐵 

≤  A  𝑥0 𝜔  𝐷 + 𝑀1 𝜆1 𝑥 𝑡; 𝜔  𝐷+ 𝑕 𝑡, 0  𝐵  

+ A   𝑐𝑖 𝑀1 𝜆1 𝑥 𝑡𝑖 ; 𝜔  𝐷 +   𝑕 𝑡𝑖 , 0  𝐵  

𝑝

𝑖=1
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+ A   𝑐𝑖 

𝑝

𝑖=1

𝑀2 𝜆2 𝑥 𝑡𝑖 ; 𝜔  𝐷 +   𝑓1 𝑡𝑖 , 0  𝐵  

+ A   𝑐𝑖 𝑀3

𝑝

𝑖=1

 𝜆3 𝑥 𝑡𝑖 ; 𝜔  𝐷 +  𝑓2 𝑡𝑖 , 0  𝐵  

+𝑀2 𝜆2 𝑥 𝑡; 𝜔  𝐷+ 𝑓1 𝑡, 0  𝐵  
+𝑀3 𝜆3 𝑥 𝑡; 𝜔  𝐷+ 𝑓2 𝑡, 0  𝐵  

≤  A  𝑥0 𝜔  𝐷 + 𝑀1 𝑕 𝑡, 0  𝐵  1 +  A   𝑐𝑖 

𝑝

𝑖=1

  

+𝜌 𝑀1𝜆1 + 𝑀2𝜆2 + 𝑀3𝜆3  1 +  A   𝑐𝑖 

𝑝

𝑖=1

  

+ 𝑀2  𝑓1 𝑡, 0  𝐵 + 𝑀3  𝑓2 𝑡, 0  𝐵  1 +  A   𝑐𝑖 

𝑝

𝑖=1

  

≤ 𝜌 

 

Thus, 𝑈 𝑆 ⊂ 𝑆, by the last condition of 

the theorem. 

Let 𝑦 𝑡; 𝜔  be another element of 𝑆, from 

the assumptions, it is clear that: 

   𝑈𝑥  𝑡;𝜔 −  𝑈𝑦  𝑡; 𝜔  ∈ 𝐷,  since the difference of 

two elements of a Banach space is in the Banach 

space. 
 
  𝑈𝑥  𝑡; 𝜔 −  𝑈𝑦  𝑡; 𝜔  𝐷  

 ≤  −A   𝑐𝑖    𝑇1𝑖𝑕𝑥  𝑡𝑖 ; 𝜔 −  𝑇1𝑖𝑕𝑦  𝑡𝑖 ; 𝜔  

𝑝

𝑖=1

   

𝐷 

 

 + −A   𝑐𝑖    𝑇2𝑖𝑓1𝑥  𝑡𝑖 ; 𝜔 −  𝑇2𝑖𝑓1𝑦  𝑡𝑖 ; 𝜔  

𝑝

𝑖=1

   

𝐷 

 

+ −A   𝑐𝑖    𝑇3𝑖𝑓2𝑥  𝑡𝑖 ; 𝜔 −  𝑇3𝑖𝑓2𝑦  𝑡𝑖 ; 𝜔  

𝑝

𝑖=1

   

𝐷 

 

+  𝑇1𝑕𝑥  𝑡; 𝜔 −  𝑇1𝑕𝑦  𝑡; 𝜔  𝐷 
+  𝑇2𝑓1𝑥  𝑡; 𝜔 −  𝑇2𝑓1𝑦  𝑡; 𝜔  𝐷 

+  𝑇3𝑓2𝑥  𝑡; 𝜔 −  𝑇3𝑓2𝑦  𝑡; 𝜔  𝐷 

≤  A   𝑐𝑖  𝑀1  𝑕 𝑡𝑖 , 𝑥 𝑡𝑖 ; 𝜔  

𝑝

𝑖=1

− 𝑕 𝑡𝑖 , 𝑦 𝑡𝑖 ; 𝜔   𝐵  
  

 + A   𝑐𝑖  𝑀2 𝑓1 𝑡𝑖 , 𝑥 𝑡𝑖 ; 𝜔  

𝑝

𝑖=1

− 𝑓1 𝑡𝑖 , 𝑦 𝑡𝑖 ; 𝜔   𝐵  

 + A   𝑐𝑖  𝑀3 𝑓2 𝑡𝑖 , 𝑥 𝑡𝑖 ; 𝜔  

𝑝

𝑖=1

− 𝑓2 𝑡𝑖 , 𝑦 𝑡𝑖 ; 𝜔   𝐵  

+𝑀1 𝑕 𝑡, 𝑥 𝑡; 𝜔  − 𝑕 𝑡, 𝑦 𝑡; 𝜔   
𝐵

  

+𝑀2 𝑓1 𝑡, 𝑥 𝑡; 𝜔  − 𝑓1 𝑡, 𝑦 𝑡; 𝜔   
𝐵

   

+𝑀3 𝑓2 𝑡, 𝑥 𝑡; 𝜔  − 𝑓2 𝑡, 𝑦 𝑡; 𝜔   
𝐵

  

≤  A   𝑐𝑖  𝑀1𝜆1 𝑥 𝑡𝑖 ; 𝜔 − 𝑦 𝑡𝑖 ; 𝜔  𝐷

𝑝

𝑖=1   

 

+ A   𝑐𝑖  𝑀2𝜆2 𝑥 𝑡𝑖 ; 𝜔 − 𝑦 𝑡𝑖 ; 𝜔  𝐷

𝑝

𝑖=1

               

+ A   𝑐𝑖  𝑀3𝜆3 𝑥 𝑡𝑖 ; 𝜔 − 𝑦 𝑡𝑖 ; 𝜔  𝐷

𝑝

𝑖=1

              

+𝑀1𝜆1 𝑥 𝑡;𝜔 − 𝑦 𝑡; 𝜔  𝐷  

+𝑀2𝜆2 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐷 
+ 𝑀3𝜆3 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐷 

≤   𝑀1𝜆1 + 𝑀2𝜆2 + 𝑀3𝜆3  1 +  A   𝑐𝑖  

𝑝

𝑖=1

    𝑥 𝑡; 𝜔 

− 𝑦 𝑡; 𝜔  𝐷 

 

Since by hypothesis: 

  𝑀1𝜆1 + 𝑀2𝜆2 + 𝑀3𝜆3  1 +  A   𝑐𝑖  
𝑝
𝑖=1    < 1,  

then 𝑈  is a contraction operator on 𝑆.  Applying 

Banach’s fixed-point theorem, there exists a unique 

element of 𝑆 so that  𝑈𝑥  𝑡; 𝜔 = 𝑥 𝑡; 𝜔 . That is, 

there is a unique random solution of the random 

equation  1.1 , completing the proof. 

        We now state the following corollary when the 

stochastic perturbing term 𝑕 𝑡, 𝑥 𝑡; 𝜔   is zero 

which is a generalization of the integro-differential 

equation studied by Tsokos [5] and El-Borai et al. 

[10]. 

 

Corollary 3.1  

If the stochastic fractional integro-differential 

equation  

𝜕𝛼𝑥 𝑡; 𝜔 

𝜕𝑡𝛼
=   𝑘1 𝑡, 𝜏; 𝜔 

𝑡

0

𝑓1 𝜏, 𝑥 𝜏; 𝜔  𝑑𝜏  

+ 𝑘2 𝑡, 𝜏; 𝜔 

𝑡

0

𝑓2 𝜏, 𝑥 𝜏; 𝜔  𝑑𝛽 𝜏    3.9  

with the nonlocal condition 

   𝑥 0;𝜔 +  𝑐𝑖𝑥 𝑡𝑖 , 𝜔 

𝑝

𝑖=1

= 𝑥0 𝜔      3.10  

satisfies the following conditions:  

(i)  𝐵 and 𝐷 are Banach spaces stronger than 𝐶𝑐  and 

the pair  𝐵, 𝐷  is admissible with respect the 

operator 𝑇2 and 𝑇3 defined by  3.5 ,  3.6 ; 

(ii)  𝑥 𝑡; 𝜔 → 𝑓1 𝑡, 𝑥 𝑡; 𝜔   is an operator on  

𝑆 =  𝑥 𝑡; 𝜔 ∈ 𝐷:  𝑥 𝑡; 𝜔  𝐷 ≤ 𝜌 , with values in 

𝐵 satisfying: 

 𝑓1 𝑡, 𝑥 𝑡; 𝜔  − 𝑓1 𝑡, 𝑦 𝑡; 𝜔   𝐵 

≤ 𝜆2 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐷 

for 𝑥 𝑡; 𝜔 , 𝑦 𝑡; 𝜔 ∈ 𝑆  and 𝜌 > 0, 𝜆2 
> 0  are 
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constants; 

(iii)  𝑥 𝑡; 𝜔 → 𝑓2 𝑡, 𝑥 𝑡; 𝜔   is an operator on 𝑆 

with values in 𝐵 satisfying: 

 𝑓2 𝑡, 𝑥 𝑡; 𝜔  − 𝑓2 𝑡, 𝑦 𝑡; 𝜔   
𝐵

 

≤ 𝜆3 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐷 

for 𝑥 𝑡; 𝜔 , 𝑦 𝑡; 𝜔 ∈ 𝑆 and 𝜆3 > 0 constant; 

(vii) 𝑘1 𝑡, 𝜏; 𝜔  and 𝑘2 𝑡, 𝜏; 𝜔  satisfy the 

conditions of lemma (3.1), and 

(iv) 𝑥0 𝜔 ∈ 𝐷. 
Then there exists a unique random 

solution 𝑥 𝑡; 𝜔 ∈ 𝑆 of equation 3.9 , provided that: 

  𝜆2𝑀2 + 𝜆3𝑀3  1 +  A   𝑐𝑖  

𝑝

𝑖=1

   < 1 

 A  𝑥0 𝜔  𝐷 + 

  𝑀2 𝑓1 𝑡, 0  𝐵 + 𝑀3 𝑓2 𝑡, 0  𝐵  1 +  A   𝑐𝑖 

𝑝

𝑖=1

  

≤ 𝜌 1 −  𝜆2𝑀2 + 𝜆3𝑀3  1 +  A   𝑐𝑖 

𝑝

𝑖=1

   

Where 𝑀2, and  𝑀3  are the norm of 𝑇2  and 𝑇3 

respectively. 

Since  3.9  is the equivalent of  3.7  with 

𝑕 𝑡, 𝑥  equal to zero, the proof follows from that 

theorem (3.1) with 𝑇1 being the null operator. 

 

4. Boundedness and Asymptotic Behavior of 

Random Solution. 

Using the spaces 𝐶𝑔  and 𝐶, we now give 

some results concerning the asymptotic behavior of 

the random solution of  1.1 . We first consider the 

unperturbed case  3.9 . 
 

Theorem 4.1 

Suppose that equation  3.9  satisfies the following 

conditions: 

(i)   𝑘1 𝑠, 𝜏; 𝜔   ≤ Λ1  e−γ t−τ   for some constants 

Λ1 > 0 and 𝛾 > 0 , 0 ≤ 𝜏 ≤ 𝑠 ≤ 𝑡; 

(ii)    𝑘2 𝑠, 𝜏; 𝜔   2𝑑𝑠
𝑡

𝜏
≤ Λ2  for some constant 

Λ2 > 0 and 0 ≤ 𝜏 ≤ 𝑠 ≤ 𝑡; 

(iii)   𝑡 − 𝜏 2𝛼−1  e−2βτ𝑑𝐹 𝜏 ≤  Λ3  
𝑡

0
 for some 

constant Λ3 > 0; 

(iv) 𝑥 𝑡; 𝜔 → 𝑓1 𝑡, 𝑥 𝑡; 𝜔   satisfies 

 𝑓1 𝑡, 𝑥 𝑡; 𝜔   ≤ Λ4e−βt , 𝑡 ≥ 0, for some Λ4 > 0,

𝛾 > 𝛽 > 0, and   

 𝑓1 𝑡, 𝑥 𝑡; 𝜔  − 𝑓1 𝑡, 𝑦 𝑡; 𝜔    
 

≤ 𝜆2e−βt 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔    

for  𝑥 𝑡; 𝜔   and  𝑦 𝑡; 𝜔  ≤ 𝜌  at each 𝑡 ≥ 0 and 

𝜆2 > 0 constant; 

(v) 𝑥 𝑡; 𝜔 → 𝑓2 𝑡, 𝑥 𝑡; 𝜔   satisfies 

 𝑓2 𝑡, 𝑥 𝑡; 𝜔   ≤ Λ5e−βt , 𝑡 ≥ 0, for some 

Λ5 > 0, 𝛾 > 𝛽 > 0, and 

 𝑓2 𝑡, 𝑥 𝑡; 𝜔  − 𝑓2 𝑡, 𝑦 𝑡; 𝜔   
 
 

≤ 𝜆3e−βt 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔    

for  𝑥 𝑡; 𝜔   and  𝑦 𝑡; 𝜔  ≤ 𝜌  at each 𝑡 ≥ 0 and 

𝜆3 > 0 constant; and 

(vi) 𝑥0 𝜔 = 0 𝑃 − 𝑎. 𝑒. 

Then there exists a unique random solution to 

equation  3.9  such that   

𝑠𝑢𝑝
𝑡≥0

 𝑥 𝑡; 𝜔  = 𝑠𝑢𝑝
𝑡≥0

 𝐸  𝑥 𝑡;𝜔  2  
1
2 ≤ 𝜌 ,      

where 𝐸 ·  is the mathematical expectation, 

provided that:  𝜆2  , 𝜆3 ,    𝑓1 𝑡, 0  𝐶𝑔  and 

  𝑓2 𝑡, 0  𝐶𝑔   are small enough. 

 

Proof: 

It is sufficient to show that conditions (i) , 

(ii) and (iii) implies the admissibility of the pair of 

spaces  𝐶𝑔 , 𝐶  with respect to the operators 𝑇2  and 

𝑇3  defined by  3.5 ,  3.6 , and that conditions (iv) 

and (v) are equivalent to condition (ii) and (iii) of 

corollary (3.1) with 𝐵 = 𝐶𝑔  , 𝐷 = 𝐶 ,   𝑔 𝑡 =

e−βt , 𝛽 > 0. 

            In [10], El-Borai et al. proved that  𝐶𝑔 , 𝐶  is 

admissible with respect to the operators 𝑇2 . Now let 

us consider 𝑇3 , let 𝑥 𝑡; 𝜔 ∈ 𝐶𝑔 𝑅+, 𝐿2 𝛺,𝒜, 𝑃  , 

taking the norm in 𝐿2 𝛺,𝒜, 𝑃   of  3.6 , we obtain  

  𝑇3 
𝑥  𝑡; 𝜔  

2
 

≤  
1

Γ 𝛼 
 𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏; 𝜔 𝑑𝛽 𝜏  

𝑡

0

 

2

        

 ≤
1

 Γ 𝛼  2
  𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏;𝜔  𝟐𝑑𝐹 𝜏       

𝑡

0

 

 

 ≤
1

 Γ 𝛼  2    𝑲𝟐 𝑡, 𝜏; 𝜔   2.  𝑥 𝜏; 𝜔  𝟐𝑑𝐹 𝜏 

𝑡

0

 

 

    ≤
Λ2  Λ3 

 2𝛼 − 1   Γ 𝛼  2
 𝑥 𝑡; 𝜔  𝐶𝑔    

2         

 

This implies that 𝑠𝑢𝑝𝑡≥0  𝑇3 
𝑥  𝑡; 𝜔   is 

bounded, which implies  𝑇3 
𝑥  𝑡; 𝜔 ∈ 𝐶, and thus, 

 𝐶𝑔 , 𝐶  is admissible with respect to the 

operators 𝑇3 . Now we will show that conditions (iv) 

and (v) are equivalent to condition (ii) and (iii) of 

corollary (3.1), let 𝑓1 𝑡, 𝑥 𝑡; 𝜔  , 𝑓1 𝑡, 𝑦 𝑡; 𝜔  ∈

𝐶𝑔 , then 

 𝑓1 𝑡, 𝑥 𝑡; 𝜔  − 𝑓1 𝑡, 𝑦 𝑡; 𝜔    𝐶𝑔
 

      = 𝑠𝑢𝑝𝑡≥0  
 𝑓1 𝑡, 𝑥 𝑡; 𝜔  − 𝑓1 𝑡, 𝑦 𝑡; 𝜔   

e−βt
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      ≤ 𝑠𝑢𝑝𝑡≥0  
𝜆2e−βt 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔   

e−βt
  

= 𝜆2 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔  𝐶              
and similarly for the other condition, applying 

corollary (3.1), we get on the required result.  

Now we state the results concerning the 

perturbed equation  1.1  
 
Theorem 4.2 

Assume that equation  1.1  satisfies the 

following conditions: 

(i)   𝑘1 𝑠, 𝜏; 𝜔   ≤ Λ1  for some constant Λ1 > 0,  

0 ≤ 𝜏 ≤ 𝑠 ≤ 𝑡; 

(ii)    𝑘2 𝑠, 𝜏; 𝜔   2𝑑𝑠
𝑡

𝜏
≤ Λ2  for some Λ2 > 0 , 

0 ≤ 𝜏 ≤ 𝑠 ≤ 𝑡; 

(iii)   𝑡 − 𝜏 2𝛼−1  𝑑𝐹 𝜏   
𝑡

0
≤ Λ3, for some Λ3 > 0; 

(iv) 𝑥 𝑡; 𝜔 → 𝑕 𝑡, 𝑥 𝑡; 𝜔   satisfies, for some 

Λ4 > 0  and 𝛽 > 0,  𝑕 𝑡, 𝑥 𝑡; 𝜔   ≤ Λ4, 𝑡 ≥ 0, 
and 

 𝑕 𝑡, 𝑥 𝑡; 𝜔  − 𝑕 𝑡, 𝑦 𝑡; 𝜔   
 
 

≤ 𝜆1   𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔    

for  𝑥 𝑡; 𝜔   and  𝑦 𝑡; 𝜔  ≤ 𝜌, 𝑡 ≥ 0 and 𝜆1 > 0 

constant; 

(v) 𝑥 𝑡; 𝜔 → 𝑓1 𝑡, 𝑥 𝑡; 𝜔   satisfies, for some 

constant Λ5 > 0,  𝑓1 𝑡, 𝑥 𝑡; 𝜔   ≤ Λ5 , 𝑡 ≥ 0, and 

 𝑓1 𝑡, 𝑥 𝑡; 𝜔  − 𝑓1 𝑡, 𝑦 𝑡; 𝜔    
 

≤ 𝜆2 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔    

for  𝑥 𝑡; 𝜔   and  𝑦 𝑡; 𝜔  ≤ 𝜌 at each 𝑡 ≥ 0 and 

𝜆2 > 0 constant; 

(vi) 𝑥 𝑡; 𝜔 → 𝑓2 𝑡, 𝑥 𝑡; 𝜔   satisfies, for some 

constant Λ6 > 0,  𝑓2 𝑡, 𝑥 𝑡; 𝜔   ≤ Λ6, 𝑡 ≥ 0, and 

 𝑓2 𝑡, 𝑥 𝑡; 𝜔  − 𝑓2 𝑡, 𝑦 𝑡; 𝜔   
 
 

≤ 𝜆3 𝑥 𝑡; 𝜔 − 𝑦 𝑡; 𝜔    

for  𝑥 𝑡; 𝜔   and  𝑦 𝑡; 𝜔  ≤ 𝜌 at each 𝑡 ≥ 0 and 

𝜆3 > 0 constant; 

(vii) 𝑥0 𝜔 ∈ 𝐶 

Then, there exists a unique random of 

solution of  1.1  satisfying 

sup
𝑡≥0

 𝑥 𝑡;𝜔  = 𝑠𝑢𝑝
𝑡≥0

 𝐸  𝑥 𝑡; 𝜔  2  
1

2  ≤ 𝜌 ,

𝑡 ≥ 0, 
Provided that: 

𝜆1, 𝜆2 , 𝜆3,  𝑥0 𝜔  𝐶 ,   𝑕 𝑡, 0  𝐶  𝑓1 𝑡, 0  𝐶 , and 
  𝑓2 𝑡, 0  𝐶 are sufficiently small. 

 

Proof: 

It will suffice to show that the pair of 

spaces  𝐶, 𝐶  is admissible with respect to the 

integral operators defined by  3.4 ,  3.5 ,  3.6  
under conditions (i), (ii) and (iii). In [10], El-Borai 

et al. proved that  𝐶, 𝐶  is admissible with respect 

to  𝑇1 , 𝑇2 ,  so we need to prove that  𝐶, 𝐶  is 

admissible with respect to  𝑇3  as follow: Let 

𝑥 𝑡; 𝜔 ∈ 𝐶. then from  3.6  we have that  

   𝑇3 
𝑥  𝑡; 𝜔  

2
 

≤  
1

Γ 𝛼 
 𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏;𝜔 𝑑𝛽 𝜏  

𝑡

0

 

2

            

 ≤
1

 Γ 𝛼  2
  𝑲𝟐 𝑡, 𝜏; 𝜔 𝑥 𝜏;𝜔  𝟐𝑑𝐹 𝜏       

𝑡

0

 

 

 ≤
1

 Γ 𝛼  2
   𝑲𝟐 𝑡, 𝜏; 𝜔   2.  𝑥 𝜏; 𝜔  𝟐𝑑𝐹 𝜏  

𝑡

0

 

 

  ≤
Λ2Λ3

 2𝛼 − 1   Γ 𝛼  2   𝑥 𝑡; 𝜔  𝐶
2 < ∞.             

 

This implies that 𝑠𝑢𝑝𝑡≥0  𝑇3 
𝑥  𝑡; 𝜔   is 

bounded, which implies  𝑇3 
𝑥  𝑡; 𝜔 ∈ 𝐶 and thus, 

 𝐶, 𝐶  is admissible with respect to the operators 𝑇3 . 
Therefore, the conditions of theorem (3.1) hold with 

𝐵 = 𝐶, 𝑔 𝑡 = 1, and 𝐷 = 𝐶, and then, there exists 

a unique random solution 𝑥 𝑡;𝜔  of  1.1 ,  1.2 ,  
which is bounded in the mean square by 𝜌 for all 

𝑡 ∈ 𝑅+. and hence, sup𝑡≥0 𝑥 𝑡; 𝜔   ≤ 𝜌. 
 

5. Application to a Stochastic Fractional 

Feedback System.  

Consider the following nonlinear 

stochastic fractional differential system: 

𝑑𝑦 𝑡; 𝜔 = Π 𝜔 𝑦 𝑡; 𝜔 + b1 𝜔 Φ1 𝑡, 𝜎 𝑡; 𝜔  𝑑𝑡 

    + b2 𝜔 Φ2 𝑡, 𝜎 𝑡; 𝜔  𝑑𝛽 𝑡       5.1   
𝜕𝛼𝜎 𝑡; 𝜔 

𝜕𝑡𝛼
= 𝐶𝑇 𝑡; 𝜔 𝑦 𝑡; 𝜔 ,                                         5.2  

with the following initial conditions  

𝜎 0;𝜔 +  𝑐𝑖𝜎 𝑡𝑖 , 𝜔 

𝑝

𝑖=1

= 𝜎0 𝜔 ,

𝑦 0;𝜔 =  𝑦0 𝜔    

where  0 < 𝛼 ≤ 1, 𝑡 ∈ 𝑅+ =  0,∞ , 0 < 𝑡1 <  … <  𝑡𝑝 <

∞ . The fractional derivative is provided by the 

Caputo derivative. Π 𝜔  is an 𝑛 × 𝑛  matrix of 

measurable functions, 𝑥 𝑡; 𝜔  and 𝐶 𝑡; 𝜔  are 

𝑛 × 1 vectors of random variables for each 𝑡 ∈ 𝑅+, 
bi 𝜔 , 𝑖 = 1,2,  is an 𝑛 × 1  vector of random 

variables, 𝜎 𝑡; 𝜔  is a scalar random variable for 

each 𝑡 ∈ 𝑅+,  Φi 𝑡, 𝜎 , 𝑖 = 1,2,  is a scalar function 

for each 𝑡 ∈ 𝑅+, and 𝑇  denotes the transpose of a 

matrix. 𝛽 𝑡  is a standard Brownian motion. 

Now integrating  5.1 , we have  

𝑦 𝑡; 𝜔 = 𝑒Π 𝜔 𝑡𝑦 0;𝜔  

       + 𝑒Π 𝜔  𝑡−𝜏 b1 𝜔 Φ1 𝜏, 𝜎 𝜏; 𝜔  𝑑𝜏  
𝑡

0

  

+ 𝑒Π 𝜔  𝑡−𝜏 b2 𝜔 Φ2 𝜏, 𝜎 𝜏; 𝜔  𝑑𝛽 𝜏   5.3 
𝑡

0

  

Substituting from  5.3  into  5.2 , we obtain  

 
𝜕𝛼𝜎 𝑡; 𝜔 

𝜕𝑡𝛼
= 𝑐𝑇 𝑡; 𝜔 𝑒Π 𝜔 𝑡  𝑦0 𝜔  
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+ 𝑒Π 𝜔  𝑡−𝜏 𝑐𝑇 𝑡; 𝜔 b1 𝜔 Φ1 𝜏, 𝜎 𝜏; 𝜔  𝑑𝜏 
𝑡

0

 

+ 𝑒Π 𝜔  𝑡−𝜏 𝑐𝑇 𝑡; 𝜔  b2 𝜔 Φ2 𝜏, 𝜎 𝜏; 𝜔  𝑑𝛽 𝜏  
𝑡

0

          5.4  

Now assume that   𝑐𝑇 𝑡;𝜔   ≤ 𝐾1  for 

all 𝑡 ≥ 0 and 𝐾1 > 0 a constant. Also, let 𝑦0 𝜔 ∈
𝐶, and bi 𝜔 ∈ 𝐿∞ 𝛺,𝒜, 𝑃  , 𝑖 = 1,2, if we assume 

that the matrix Π 𝜔  is stochastically stable, that is, 

there exist an ∝ > 0 such that  

𝑃 𝜔: 𝑅𝑒 𝜓𝑘 𝜔 < −∝, 𝑘 = 1,2,……… , 𝑛 
= 1, 

where 𝜓𝑘 𝜔 ,  𝑘 = 1,2, ……… , 𝑛,  are the 

characteristic roots of the matrix Π 𝜔 , then it has 

been shown by Morozan [16] that  

  𝑒Π 𝜔 𝑡  ≤ 𝐾2𝑒
−∝𝑡 < 𝐾2 

for some constant 𝐾2 > 0.  We also let 

Φi 𝑡, 𝜎 𝑡; 𝜔  ∈ 𝐶𝑐 𝑅+, 𝐿2 𝛺,𝒜, 𝑃   , 𝑖 = 1,2 for 

each 𝑡 ∈ 𝑅+, and  

 Φi 𝑡, 𝜎1 𝑡; 𝜔  − Φi 𝑡, 𝜎2 𝑡; 𝜔   

≤ 𝜆𝑖 𝜎1 𝑡; 𝜔 − 𝜎2 𝑡; 𝜔  . 
where 𝜆𝑖 > 0 , 𝑖 = 1,2 , is a constant, also let 

h 𝑡, 𝜎 𝑡; 𝜔  = 𝑐𝑇 𝑡; 𝜔 𝑒Π 𝜔 𝑡  𝑦0 𝜔  

then 

 h 𝑡, 𝜎 𝑡;𝜔   

≤   𝑐𝑇 𝑡; 𝜔   .   𝑒Π 𝜔 𝑡  .  𝑦0 𝜔  ≤ 𝑍𝐾1𝐾2𝑒
−∝𝑡

≤ 𝑍𝐾1𝐾2 

where 𝑍 > 0 is a constant, since 𝑦0 𝜔 ∈ 𝐶.  

Thus, by definition h 𝑡, 𝜎 𝑡; 𝜔  ∈ 𝐶 , 

also, since 𝑕 does not depend on 𝜎, then  

 h 𝑡, 𝜎1 𝑡; 𝜔  − h 𝑡, 𝜎2 𝑡; 𝜔   = 0 

that is, it satisfies a Lipschitz condition. 

Now, by the assumptions on 

𝑐𝑇 𝑡; 𝜔 , b 𝜔 , and Π 𝜔 , we have  

𝑘1 𝑠, 𝜏; 𝜔 = 𝑒Π 𝜔  𝑠−𝜏 𝑐𝑇 𝑠; 𝜔 b1 𝜔  

Satisfying 

  𝑘1 𝑠, 𝜏;𝜔   

≤   𝑒Π 𝜔  𝑠−𝜏     𝑐𝑇 𝑠; 𝜔     b1 𝜔    

  ≤ 𝐾1𝐾2𝑒
−∝ 𝑠−𝜏    b1 𝜔    

               ≤ 𝐾1𝐾2  b1 𝜔    
and  

𝑘2 𝑠, 𝜏; 𝜔 = 𝑒Π 𝜔  𝑠−𝜏 𝑐𝑇 𝑠; 𝜔  b2 𝜔  
satisfying  

   𝑘2 𝑠, 𝜏; 𝜔   2𝑑𝑠 ≤  𝐾1
2

 
𝐾2

2  b2 𝜔   
2  𝑑𝑠

𝑡

𝜏

𝑡

𝜏

 

    =  𝐾1
2

 
𝐾2

2  b2 𝜔   
2 𝑡 − 𝜏 < ∞ 

Moreover, 

  𝑡 − 𝜏 2𝛼−1 𝑑𝐹 𝜏 =  𝑎   𝑡 − 𝜏 2𝛼−1 𝑑𝜏

𝑡

0

  

𝑡

0

 

             =  
𝑎

2𝛼
 𝑡2𝛼 < ∞. 

Therefore, all conditions of theorem (4.2) 

are satisfied, and hence, there exists a unique 

random solution of the system  5.1 ,  5.2  which is 

bounded in the mean square on 𝑅+. 
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